Flash Cards

to accompany

A First Course in Linear Algebra

by
Robert A. Beezer
Department of Mathematics and Computer Science
University of Puget Sound

Copyright © 2004, 2005, 2006 Robert A. Beezer.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the GNU Free Documentation License can be found at http://www.gnu.org/copyleft/fdl.html and is incorporated here by this reference.

The most recent version of this work can always be found at http://linear.ups.edu/.

A system of linear equations is a collection of m equations in the variable quantities $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ of the form,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

where the values of $a_{i j}, b_{i}$ and x_{j} are from the set of complex numbers, \mathbb{C}.

Two systems of linear equations are equivalent if their solution sets are equal.

Given a system of linear equations, the following three operations will transform the system into a different one, and each is known as an equation operation.

1. Swap the locations of two equations in the list.
2. Multiply each term of an equation by a nonzero quantity.
3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one.

If we apply one of the three equation operations of Definition EO to a system of linear equations (Definition SLE), then the original system and the transformed system are equivalent.

An $m \times n$ matrix is a rectangular layout of numbers from \mathbb{C} having m rows and n columns. We will use upper-case Latin letters from the start of the alphabet (A, B, C, \ldots) to denote matrices and squared-off brackets to delimit the layout. Many use large parentheses instead of brackets - the distinction is not important. Rows of a matrix will be referenced starting at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1 is at the left). For a matrix A, the notation $[A]_{i j}$ will refer to the complex number in row i and column j of A.

A column vector of size m is an ordered list of m numbers, which is written in order vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column vector as simply a vector. Column vectors will be written in bold, usually with lower case Latin letter from the end of the alphabet such as $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}$. Some books like to write vectors with arrows, such as \vec{u}. Writing by hand, some like to put arrows on top of the symbol, or a tilde underneath the symbol, as in u. To refer to the entry or component that is number i in the list that is the vector \mathbf{v} we write $[\mathbf{v}]_{i}$.

The zero vector of size m is the column vector of size m where each entry is the number zero,

$$
\mathbf{0}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

or more compactly, $[\mathbf{0}]_{i}=0$ for $1 \leq i \leq m$.

For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the coefficient matrix is the $m \times n$ matrix

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & & & & \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]
$$

For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the vector of constants is the column vector of size m

$$
\mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{m}
\end{array}\right]
$$

For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the solution vector is the column vector of size n

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]
$$

If A is the coefficient matrix of a system of linear equations and \mathbf{b} is the vector of constants, then we will write $\mathcal{L S}(A, \mathbf{b})$ as a shorthand expression for the system of linear equations, which we will refer to as the matrix representation of the linear system.

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of constants \mathbf{b}. Then the augmented matrix of the system of equations is the $m \times(n+1)$ matrix whose first n columns are the columns of A and whose last column (number $n+1$) is the column vector \mathbf{b}. This matrix will be written as $[A \mid \mathbf{b}]$.

The following three operations will transform an $m \times n$ matrix into a different matrix of the same size, and each is known as a row operation.

1. Swap the locations of two rows.
2. Multiply each entry of a single row by a nonzero quantity.
3. Multiply each entry of one row by some quantity, and add these values to the entries in the same columns of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

1. $R_{i} \leftrightarrow R_{j}$: Swap the location of rows i and j.
2. αR_{i} : Multiply row i by the nonzero scalar α.
3. $\alpha R_{i}+R_{j}$: Multiply row i by the scalar α and add to row j.

Two matrices, A and B, are row-equivalent if one can be obtained from the other by a sequence of row operations.

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear equations that they represent are equivalent systems.

Definition RREF Reduced Row-Echelon Form

A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero lies below any row that contains a nonzero entry.
2. The leftmost nonzero entry of a row is equal to 1 .
3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If $s>i$, then $t>j$.

A row of only zero entries will be called a zero row and the leftmost nonzero entry of a nonzero row will be called a leading 1 . The number of nonzero rows will be denoted by r.
A column containing a leading 1 will be called a pivot column. The set of column indices for all of the pivot columns will be denoted by $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ where $d_{1}<d_{2}<d_{3}<\cdots<d_{r}$, while the columns that are not pivot colums will be denoted as $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ where $f_{1}<f_{2}<f_{3}<\cdots<f_{n-r}$.

Suppose A is a matrix. Then there is a matrix B so that

1. A and B are row-equivalent.
2. B is in reduced row-echelon form.

To row-reduce the matrix A means to apply row operations to A and arrive at a row-equivalent matrix B in reduced row-echelon form.

A system of linear equations is consistent if it has at least one solution. Otherwise, the system is called inconsistent.

Suppose A is the augmented matrix of a consistent system of linear equations and B is a rowequivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that contains the leading 1 for some row (i.e. column j is a pivot column), and this column is not the last column. Then the variable x_{j} is dependent. A variable that is not dependent is called independent or free.

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column $n+1$ of B.

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If $r=n+1$, then the system of equations is inconsistent.

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \leq n$. If $r=n$, then the system has a unique solution, and if $r<n$, then the system has infinitely many solutions.

Theorem FVCS Free Variables for Consistent Systems

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with $n-r$ free variables.

A system of linear equations has no solutions, a unique solution or infinitely many solutions.

Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions 26

Suppose a consistent system of linear equations has m equations in n variables. If $n>m$, then the system has infinitely many solutions.

A system of linear equations, $\mathcal{L S}(A, \mathbf{b})$ is homogeneous if the vector of constants is the zero vector, in other words, $\mathbf{b}=\mathbf{0}$.

Suppose that a system of linear equations is homogeneous. Then the system is consistent.

Suppose a homogeneous system of linear equations has n variables. The solution $x_{1}=0$, $x_{2}=0, \ldots, x_{n}=0$ (i.e. $\mathbf{x}=\mathbf{0}$) is called the trivial solution.

Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions

Suppose that a homogeneous system of linear equations has m equations and n variables with $n>m$. Then the system has infinitely many solutions.

The null space of a matrix A, denoted $\mathcal{N}(A)$, is the set of all the vectors that are solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$.

A matrix with m rows and n columns is square if $m=n$. In this case, we say the matrix has size n. To emphasize the situation when a matrix is not square, we will call it rectangular.

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations $\mathcal{L S}(A, \mathbf{0})$ is $\{\mathbf{0}\}$, i.e. the system has only the trivial solution. Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix.

The $m \times m$ identity matrix, I_{m}, is defined by

$$
\left[I_{m}\right]_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A, $\mathcal{N}(A)$, contains only the zero vector, i.e. $\mathcal{N}(A)=\{\mathbf{0}\}$.

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector \mathbf{b}.

Theorem NME1 Nonsingular Matrix Equivalences, Round 1

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.

The vector space \mathbb{C}^{m} is the set of all column vectors (Definition CV) of size m with entries from the set of complex numbers, \mathbb{C}.

The vectors \mathbf{u} and \mathbf{v} are equal, written $\mathbf{u}=\mathbf{v}$ provided that

$$
[\mathbf{u}]_{i}=[\mathbf{v}]_{i} \quad 1 \leq i \leq m
$$

Given the vectors \mathbf{u} and \mathbf{v} the sum of \mathbf{u} and \mathbf{v} is the vector $\mathbf{u}+\mathbf{v}$ defined by

$$
[\mathbf{u}+\mathbf{v}]_{i}=[\mathbf{u}]_{i}+[\mathbf{v}]_{i} \quad 1 \leq i \leq m
$$

Given the vector \mathbf{u} and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of \mathbf{u} by $\alpha, \alpha \mathbf{u}$ is defined by

$$
[\alpha \mathbf{u}]_{i}=\alpha[\mathbf{u}]_{i} \quad 1 \leq i \leq m
$$

- ACC Additive Closure, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\mathbf{u}+\mathbf{v} \in \mathbb{C}^{m}$.
- SCC Scalar Closure, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $\alpha \mathbf{u} \in \mathbb{C}^{m}$.
- CC Commutativity, Column Vectors If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
- AAC Additive Associativity, Column Vectors If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^{m}$, then $\mathbf{u}+$ $(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.
- ZC Zero Vector, Column Vectors There is a vector, $\mathbf{0}$, called the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $\mathbf{u} \in \mathbb{C}^{m}$.
- AIC Additive Inverses, Column Vectors If $\mathbf{u} \in \mathbb{C}^{m}$, then there exists a vector $-\mathbf{u} \in \mathbb{C}^{m}$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
- SMAC Scalar Multiplication Associativity, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $\alpha(\beta \mathbf{u})=(\alpha \beta) \mathbf{u}$.
- DVAC Distributivity across Vector Addition, Column Vectors If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$.
- DSAC Distributivity across Scalar Addition, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u}$.
(c)2005, 2006 Robert A. Beezer

Definition LCCV Linear Combination of Column Vectors

Given n vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}$ from \mathbb{C}^{m} and n scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, their linear combination is the vector

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n} .
$$

Denote the columns of the $m \times n$ matrix A as the vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$. Then \mathbf{x} is a solution to the linear system of equations $\mathcal{L S}(A, \mathbf{b})$ if and only if

$$
[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n}=\mathbf{b}
$$

Theorem VFSLS Vector Form of Solutions to Linear Systems

Suppose that $[A \mid \mathbf{b}]$ is the augmented matrix for a consistent linear system $\mathcal{L S}(A, \mathbf{b})$ of m equations in n variables. Let B be a row-equivalent $m \times(n+1)$ matrix in reduced rowechelon form. Suppose that B has r nonzero rows, columns without leading 1's with indices $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}, n+1\right\}$, and columns with leading 1's (pivot columns) having indices $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$. Define vectors $\mathbf{c}, \mathbf{u}_{j}, 1 \leq j \leq n-r$ of size n by

$$
\begin{gathered}
{[\mathbf{c}]_{i}= \begin{cases}0 & \text { if } i \in F \\
{[B]_{k, n+1}} & \text { if } i \in D, i=d_{k}\end{cases} } \\
{\left[\mathbf{u}_{j}\right]_{i}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\
0 & \text { if } i \in F, i \neq f_{j} \\
-[B]_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases} }
\end{gathered}
$$

Then the set of solutions to the system of equations $\mathcal{L S}(A, \mathbf{b})$ is

$$
S=\left\{\mathbf{c}+x_{f_{1}} \mathbf{u}_{1}+x_{f_{2}} \mathbf{u}_{2}+x_{f_{3}} \mathbf{u}_{3}+\cdots+x_{f_{n-r}} \mathbf{u}_{n-r} \mid x_{f_{1}}, x_{f_{2}}, x_{f_{3}}, \ldots, x_{f_{n-r}} \in \mathbb{C}\right\}
$$

Suppose that \mathbf{w} is one solution to the linear system of equations $\mathcal{L S}(A, b)$. Then \mathbf{y} is a solution to $\mathcal{L S}(A, b)$ if and only if $\mathbf{y}=\mathbf{w}+\mathbf{z}$ for some vector $\mathbf{z} \in \mathcal{N}(A)$.

Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are row-equivalent to A and in reduced row-echelon form. Then $B=C$.

Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}\right\}$, their span, $\langle S\rangle$, is the set of all possible linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}$. Symbolically,

$$
\begin{aligned}
\langle S\rangle & =\left\{\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{p} \mathbf{u}_{p} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq p\right\} \\
& =\left\{\sum_{i=1}^{p} \alpha_{i} \mathbf{u}_{i} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq p\right\}
\end{aligned}
$$

Theorem SSNS Spanning Sets for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ be the column indices where B has leading 1's (pivot columns) and $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ be the set of column indices where B does not have leading 1's. Construct the $n-r$ vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ of size n as

$$
\left[\mathbf{z}_{j}\right]_{i}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\ 0 & \text { if } i \in F, i \neq f_{j} \\ -[B]_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
$$

Then the null space of A is given by

$$
\mathcal{N}(A)=\left\langle\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \ldots, \mathbf{z}_{n-r}\right\}\right\rangle .
$$

Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$, a true statement of the form

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}=\mathbf{0}
$$

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e. $\alpha_{i}=0,1 \leq i \leq n$, then we say it is the trivial relation of linear dependence on S.

The set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is linearly dependent if there is a relation of linear dependence on S that is not trivial. In the case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent set of vectors.

Suppose that A is an $m \times n$ matrix and $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m} that are the columns of A. Then S is a linearly independent set if and only if the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ has a unique solution.

Suppose that A is an $m \times n$ matrix and $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m} that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if $n=r$.

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m}, and that $n>m$. Then S is a linearly dependent set.

Theorem NMLIC Nonsingular Matrices have Linearly Independent Columns 56

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set.

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A form a linearly independent set.

Theorem BNS Basis for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ and $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the $n-r$ vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ of size n as

$$
\left[\mathbf{z}_{j}\right]_{i}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\ 0 & \text { if } i \in F, i \neq f_{j} \\ -[B]_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
$$

Define the set $S=\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \ldots, \mathbf{z}_{n-r}\right\}$. Then

1. $\mathcal{N}(A)=\langle S\rangle$.
2. S is a linearly independent set.

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a set of vectors. Then S is a linearly dependent set if and only if there is an index $t, 1 \leq t \leq n$ such that $\mathbf{u}_{\mathbf{t}}$ is a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \ldots, \mathbf{u}_{n}$.

Theorem BS Basis of a Span

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ is a set of column vectors. Define $W=\langle S\rangle$ and let A be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A, with $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ the set of column indices corresponding to the pivot columns of B. Then

1. $T=\left\{\mathbf{v}_{d_{1}}, \mathbf{v}_{d_{2}}, \mathbf{v}_{d_{3}}, \ldots \mathbf{v}_{d_{r}}\right\}$ is a linearly independent set.
2. $W=\langle T\rangle$.

Suppose that \mathbf{u} is a vector from \mathbb{C}^{m}. Then the conjugate of the vector, $\overline{\mathbf{u}}$, is defined by

$$
[\overline{\mathbf{u}}]_{i}=\overline{[\mathbf{u}]_{i}} \quad 1 \leq i \leq m
$$

Suppose \mathbf{x} and \mathbf{y} are two vectors from \mathbb{C}^{m}. Then

$$
\overline{\mathrm{x}+\mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}
$$

Suppose \mathbf{x} is a vector from \mathbb{C}^{m}, and $\alpha \in \mathbb{C}$ is a scalar. Then

$$
\overline{\alpha \mathbf{x}}=\bar{\alpha} \overline{\mathbf{x}}
$$

Definition IP Inner Product

Given the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ the inner product of \mathbf{u} and \mathbf{v} is the scalar quantity in \mathbb{C},

$$
\langle\mathbf{u}, \mathbf{v}\rangle=[\mathbf{u}]_{1} \overline{[\mathbf{v}]_{1}}+[\mathbf{u}]_{2} \overline{[\mathbf{v}]_{2}}+[\mathbf{u}]_{3} \overline{[\mathbf{v}]_{3}}+\cdots+[\mathbf{u}]_{m} \overline{[\mathbf{v}]_{m}}=\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{[\mathbf{v}]_{i}}
$$

Suppose $\mathbf{u v}, \mathbf{w} \in \mathbb{C}^{m}$. Then

$$
\begin{array}{ll}
\text { 1. } & \langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle \\
\text { 2. } & \langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle
\end{array}
$$

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ and $\alpha \in \mathbb{C}$. Then

1. $\langle\alpha \mathbf{u}, \mathbf{v}\rangle=\alpha\langle\mathbf{u}, \mathbf{v}\rangle$
2. $\langle\mathbf{u}, \alpha \mathbf{v}\rangle=\bar{\alpha}\langle\mathbf{u}, \mathbf{v}\rangle$

Suppose that \mathbf{u} and \mathbf{v} are vectors in \mathbb{C}^{m}. Then $\langle\mathbf{u}, \mathbf{v}\rangle=\overline{\langle\mathbf{v}, \mathbf{u}\rangle}$.

The norm of the vector \mathbf{u} is the scalar quantity in \mathbb{C}

$$
\|\mathbf{u}\|=\sqrt{\left|[\mathbf{u}]_{1}\right|^{2}+\left|[\mathbf{u}]_{2}\right|^{2}+\left|[\mathbf{u}]_{3}\right|^{2}+\cdots+\left|[\mathbf{u}]_{m}\right|^{2}}=\sqrt{\sum_{i=1}^{m}\left|[\mathbf{u}]_{i}\right|^{2}}
$$

Suppose that \mathbf{u} is a vector in \mathbb{C}^{m}. Then $\|\mathbf{u}\|^{2}=\langle\mathbf{u}, \mathbf{u}\rangle$.

Suppose that \mathbf{u} is a vector in \mathbb{C}^{m}. Then $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ with equality if and only if $\mathbf{u}=\mathbf{0}$.

A pair of vectors, \mathbf{u} and \mathbf{v}, from \mathbb{C}^{m} are orthogonal if their inner product is zero, that is, $\langle\mathbf{u}, \mathbf{v}\rangle=0$.

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a set of vectors from \mathbb{C}^{m}. Then the set S is orthogonal if every pair of different vectors from S is orthogonal, that is $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=0$ whenever $i \neq j$.

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of nonzero vectors. Then S is linearly independent.

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly independent set of vectors in \mathbb{C}^{m}. Define the vectors $\mathbf{u}_{i}, 1 \leq i \leq p$ by

$$
\mathbf{u}_{i}=\mathbf{v}_{i}-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{2}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{3}\right\rangle}{\left\langle\mathbf{u}_{3}, \mathbf{u}_{3}\right\rangle} \mathbf{u}_{3}-\cdots-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{i-1}\right\rangle}{\left\langle\mathbf{u}_{i-1}, \mathbf{u}_{i-1}\right\rangle} \mathbf{u}_{i-1}
$$

Then if $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}\right\}$, then T is an orthogonal set of non-zero vectors, and $\langle T\rangle=$ $\langle S\rangle$.

Suppose $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of vectors such that $\left\|\mathbf{u}_{i}\right\|=1$ for all $1 \leq i \leq n$. Then S is an orthonormal set of vectors.

The vector space $M_{m n}$ is the set of all $m \times n$ matrices with entries from the set of complex numbers.

The $m \times n$ matrices A and B are equal, written $A=B$ provided $[A]_{i j}=[B]_{i j}$ for all $1 \leq i \leq m$, $1 \leq j \leq n$.

Given the $m \times n$ matrices A and B, define the sum of A and B as an $m \times n$ matrix, written $A+B$, according to

$$
[A+B]_{i j}=[A]_{i j}+[B]_{i j} \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

Given the $m \times n$ matrix A and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of A is an $m \times n$ matrix, written αA and defined according to

$$
[\alpha A]_{i j}=\alpha[A]_{i j} \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

- ACM Additive Closure, Matrices If $A, B \in M_{m n}$, then $A+B \in M_{m n}$.
- SCM Scalar Closure, Matrices If $\alpha \in \mathbb{C}$ and $A \in M_{m n}$, then $\alpha A \in M_{m n}$.
- CM Commutativity, Matrices If $A, B \in M_{m n}$, then $A+B=B+A$.
- AAM Additive Associativity, Matrices If $A, B, C \in M_{m n}$, then $A+(B+C)=$ $(A+B)+C$.
- ZM Zero Vector, Matrices There is a matrix, \mathcal{O}, called the zero matrix, such that $A+\mathcal{O}=A$ for all $A \in M_{m n}$.
- AIM Additive Inverses, Matrices If $A \in M_{m n}$, then there exists a matrix $-A \in$ $M_{m n}$ so that $A+(-A)=\mathcal{O}$.
- SMAM Scalar Multiplication Associativity, Matrices If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{m n}$, then $\alpha(\beta A)=(\alpha \beta) A$.
- DMAM Distributivity across Matrix Addition, Matrices If $\alpha \in \mathbb{C}$ and $A, B \in$ $M_{m n}$, then $\alpha(A+B)=\alpha A+\alpha B$.
- DSAM Distributivity across Scalar Addition, Matrices If $\alpha, \beta \in \mathbb{C}$ and $A \in$ $M_{m n}$, then $(\alpha+\beta) A=\alpha A+\beta A$.

The $m \times n$ zero matrix is written as $\mathcal{O}=\mathcal{O}_{m \times n}$ and defined by $[\mathcal{O}]_{i j}=0$, for all $1 \leq i \leq m$, $1 \leq j \leq n$.

Given an $m \times n$ matrix A, its transpose is the $n \times m$ matrix A^{t} given by

$$
\left[A^{t}\right]_{i j}=[A]_{j i}, \quad 1 \leq i \leq n, 1 \leq j \leq m .
$$

The matrix A is symmetric if $A=A^{t}$.

Suppose that A is a symmetric matrix. Then A is square.

Suppose that A and B are $m \times n$ matrices. Then $(A+B)^{t}=A^{t}+B^{t}$.

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $(\alpha A)^{t}=\alpha A^{t}$.

Suppose that A is an $m \times n$ matrix. Then $\left(A^{t}\right)^{t}=A$.

Suppose A is an $m \times n$ matrix. Then the conjugate of A, written \bar{A} is an $m \times n$ matrix defined by

$$
[\bar{A}]_{i j}=\overline{[A]_{i j}}
$$

Suppose that A and B are $m \times n$ matrices. Then $\overline{A+B}=\bar{A}+\bar{B}$.

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $\overline{\alpha A}=\bar{\alpha} \bar{A}$.

Suppose that A is an $m \times n$ matrix. Then $\overline{\left(A^{t}\right)}=(\bar{A})^{t}$.

Suppose A is an $m \times n$ matrix with columns $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$ and \mathbf{u} is a vector of size n. Then the matrix-vector product of A with \mathbf{u} is the linear combination

$$
A \mathbf{u}=[\mathbf{u}]_{1} \mathbf{A}_{1}+[\mathbf{u}]_{2} \mathbf{A}_{2}+[\mathbf{u}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{u}]_{n} \mathbf{A}_{n}
$$

Solutions to the linear system $\mathcal{L S}(A, \mathbf{b})$ are the solutions for \mathbf{x} in the vector equation $A \mathbf{x}=\mathbf{b}$.

Suppose that A and B are $m \times n$ matrices such that $A \mathbf{x}=B \mathbf{x}$ for every $\mathbf{x} \in \mathbb{C}^{n}$. Then $A=B$.

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}, \ldots, \mathbf{B}_{p}$. Then the matrix product of A with B is the $m \times p$ matrix where column i is the matrix-vector product $A \mathbf{B}_{i}$. Symbolically,

$$
A B=A\left[\mathbf{B}_{1}\left|\mathbf{B}_{2}\right| \mathbf{B}_{3}|\ldots| \mathbf{B}_{p}\right]=\left[A \mathbf{B}_{1}\left|A \mathbf{B}_{2}\right| A \mathbf{B}_{3}|\ldots| A \mathbf{B}_{p}\right] .
$$

Suppose A is an $m \times n$ matrix and $B=$ is an $n \times p$ matrix. Then for $1 \leq i \leq m, 1 \leq j \leq p$, the individual entries of $A B$ are given by

$$
\begin{aligned}
{[A B]_{i j} } & =[A]_{i 1}[B]_{1 j}+[A]_{i 2}[B]_{2 j}+[A]_{i 3}[B]_{3 j}+\cdots+[A]_{i n}[B]_{n j} \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}
\end{aligned}
$$

Suppose A is an $m \times n$ matrix. Then

1. $A \mathcal{O}_{n \times p}=\mathcal{O}_{m \times p}$
2. $\mathcal{O}_{p \times m} A=\mathcal{O}_{p \times n}$

Suppose A is an $m \times n$ matrix. Then

1. $A I_{n}=A$
2. $\quad I_{m} A=A$

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then 1. $A(B+C)=A B+A C$
2. $(B+C) D=B D+C D$

Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 100

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(A B)=$ $(\alpha A) B=A(\alpha B)$.

Suppose A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix. Then $A(B D)=$ $(A B) D$.

If we consider the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ as $m \times 1$ matrices then

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{t} \overline{\mathbf{v}}
$$

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $\overline{A B}=\bar{A} \bar{B}$.

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(A B)^{t}=B^{t} A^{t}$.

Suppose A and B are square matrices of size n such that $A B=I_{n}$ and $B A=I_{n}$. Then A is invertible and B is the inverse of A. In this situation, we write $B=A^{-1}$.

Let $\mathbf{e}_{j} \in \mathbb{C}^{m}$ denote the column vector that is column j of the $m \times m$ identity matrix I_{m}. Then the set

$$
\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{m}\right\}=\left\{\mathbf{e}_{j} \mid 1 \leq j \leq m\right\}
$$

is the set of standard unit vectors in \mathbb{C}^{m}.

Suppose

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then A is invertible if and only if $a d-b c \neq 0$. When A is invertible, we have

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Theorem CINM Computing the Inverse of a Nonsingular Matrix

Suppose A is a nonsingular square matrix of size n. Create the $n \times 2 n$ matrix M by placing the $n \times n$ identity matrix I_{n} to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n columns of N. Then $A J=I_{n}$.

Suppose the square matrix A has an inverse. Then A^{-1} is unique.

Suppose A and B are invertible matrices of size n. Then $(A B)^{-1}=B^{-1} A^{-1}$ and $A B$ is an invertible matrix.

Suppose A is an invertible matrix. Then A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.

Suppose A is an invertible matrix. Then A^{t} is invertible and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.

Suppose A is an invertible matrix and α is a nonzero scalar. Then $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$ and αA is invertible.

Suppose that A and B are square matrices of size n and the product $A B$ is nonsingular. Then A and B are both nonsingular.

Suppose A and B are square matrices of size n such that $A B=I_{n}$. Then $B A=I_{n}$.

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.

Suppose that A is nonsingular. Then the unique solution to $\mathcal{L S}(A, \mathbf{b})$ is $A^{-1} \mathbf{b}$.

Suppose that Q is a square matrix of size n such that $(\bar{Q})^{t} Q=I_{n}$. Then we say Q is unitary.

Suppose that Q is a unitary matrix of size n. Then Q is nonsingular, and $Q^{-1}=(\bar{Q})^{t}$.

Suppose that A is a square matrix of size n with columns $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$. Then A is a unitary matrix if and only if S is an orthonormal set.

Suppose that Q is a unitary matrix of size n and \mathbf{u} and \mathbf{v} are two vectors from \mathbb{C}^{n}. Then

$$
\langle Q \mathbf{u}, Q \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle \quad \text { and } \quad\|Q \mathbf{v}\|=\|\mathbf{v}\|
$$

If A is a square matrix, then its adjoint is $A^{H}=(\bar{A})^{t}$.

The square matrix A is Hermitian (or self-adjoint) if $A=(\bar{A})^{t}$

Suppose that A is an $m \times n$ matrix with columns $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$. Then the column space of A, written $\mathcal{C}(A)$, is the subset of \mathbb{C}^{m} containing all linear combinations of the columns of A,

$$
\mathcal{C}(A)=\left\langle\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}\right\rangle
$$

Suppose A is an $m \times n$ matrix and \mathbf{b} is a vector of size m. Then $\mathbf{b} \in \mathcal{C}(A)$ if and only if $\mathcal{L S}(A, \mathbf{b})$ is consistent.

Suppose that A is an $m \times n$ matrix with columns $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ be the set of column indices where B has leading 1's. Let $T=\left\{\mathbf{A}_{d_{1}}, \mathbf{A}_{d_{2}}, \mathbf{A}_{d_{3}}, \ldots, \mathbf{A}_{d_{r}}\right\}$. Then

1. T is a linearly independent set.
2. $\mathcal{C}(A)=\langle T\rangle$.

Suppose A is a square matrix of size n. Then A is nonsingular if and only if $\mathcal{C}(A)=\mathbb{C}^{n}$.

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.

Suppose A is an $m \times n$ matrix. Then the row space of $A, \mathcal{R}(A)$, is the column space of A^{t}, i.e. $\mathcal{R}(A)=\mathcal{C}\left(A^{t}\right)$.

Suppose A and B are row-equivalent matrices. Then $\mathcal{R}(A)=\mathcal{R}(B)$.

Theorem BRS Basis for the Row Space

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero columns of B^{t}. Then

1. $\mathcal{R}(A)=\langle S\rangle$.
2. S is a linearly independent set.

Suppose A is a matrix. Then $\mathcal{C}(A)=\mathcal{R}\left(A^{t}\right)$.

Suppose A is an $m \times n$ matrix. Then the left null space is defined as $\mathcal{L}(A)=\mathcal{N}\left(A^{t}\right) \subseteq \mathbb{C}^{m}$.

Suppose A is an $m \times n$ matrix. Add m new columns to A that together equal an $m \times m$ identity matrix to form an $m \times(n+m)$ matrix M. Use row operations to bring M to reduced row-echelon form and call the result $N . N$ is the extended reduced row-echelon form of A, and we will standardize on names for five submatrices (B, C, J, K, L) of N.
Let B denote the $m \times n$ matrix formed from the first n columns of N and let J denote the $m \times m$ matrix formed from the last m columns of N. Suppose that B has r nonzero rows. Further partition N by letting C denote the $r \times n$ matrix formed from all of the non-zero rows of B. Let K be the $r \times m$ matrix formed from the first r rows of J, while L will be the $(m-r) \times m$ matrix formed from the bottom $m-r$ rows of J. Pictorially,

$$
M=\left[A \mid I_{m}\right] \xrightarrow{\mathrm{RREF}} N=[B \mid J]=\left[\begin{array}{c|c}
C & K \\
\hline 0 & L
\end{array}\right]
$$

Theorem PEEF Properties of Extended Echelon Form

Suppose that A is an $m \times n$ matrix and that N is its extended echelon form. Then

1. J is nonsingular.
2. $B=J A$.
3. If $\mathbf{x} \in \mathbb{C}^{n}$ and $\mathbf{y} \in \mathbb{C}^{m}$, then $A \mathbf{x}=\mathbf{y}$ if and only if $B \mathbf{x}=J \mathbf{y}$.
4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.
5. L is in reduced row-echelon form, has no zero rows and has $m-r$ pivot columns.

Suppose A is an $m \times n$ matrix with extended echelon form N. Suppose the reduced row-echelon form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and the first n columns and L is the submatrix of N formed from the last m columns and the last $m-r$ rows. Then

1. The null space of A is the null space of $C, \mathcal{N}(A)=\mathcal{N}(C)$.
2. The row space of A is the row space of $C, \mathcal{R}(A)=\mathcal{R}(C)$.
3. The column space of A is the null space of $L, \mathcal{C}(A)=\mathcal{N}(L)$.
4. The left null space of A is the row space of $L, \mathcal{L}(A)=\mathcal{R}(L)$.

Definition VS Vector Space

Suppose that V is a set upon which we have defined two operations: (1) vector addition, which combines two elements of V and is denoted by " + ", and (2) scalar multiplication, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a vector space if the following ten properties hold.

- AC Additive Closure If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v} \in V$.
- SC Scalar Closure If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha \mathbf{u} \in V$.
- C Commutativity If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
- AA Additive Associativity If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.
- Z Zero Vector There is a vector, $\mathbf{0}$, called the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $\mathbf{u} \in V$.
- AI Additive Inverses If $\mathbf{u} \in V$, then there exists a vector $-\mathbf{u} \in V$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
- SMA Scalar Multiplication Associativity If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha(\beta \mathbf{u})=$ $(\alpha \beta) \mathbf{u}$.
- DVA Distributivity across Vector Addition If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u}+$ $\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$.
- DSA Distributivity across Scalar Addition If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $(\alpha+\beta) \mathbf{u}=$ $\alpha \mathbf{u}+\beta \mathbf{u}$.

The objects in V are called vectors, no matter what else they might really be, simply by virtue

Suppose that V is a vector space. The zero vector, $\mathbf{0}$, is unique.

Suppose that V is a vector space. For each $\mathbf{u} \in V$, the additive inverse, $-\mathbf{u}$, is unique.

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $0 \mathbf{u}=\mathbf{0}$.

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. Then $\alpha \mathbf{0}=\mathbf{0}$.

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $-\mathbf{u}=(-1) \mathbf{u}$.

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. If $\alpha \mathbf{u}=\mathbf{0}$, then either $\alpha=0$ or $\mathbf{u}=\mathbf{0}$.

Suppose that V is a vector space, and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. If $\mathbf{w}+\mathbf{u}=\mathbf{w}+\mathbf{v}$, then $\mathbf{u}=\mathbf{v}$.

Suppose V is a vector space, $\mathbf{u}, \mathbf{v} \in V$ and α is a nonzero scalar from \mathbb{C}. If $\alpha \mathbf{u}=\alpha \mathbf{v}$, then $\mathbf{u}=\mathbf{v}$.

Suppose V is a vector space, $\mathbf{u} \neq \mathbf{0}$ is a vector in V and $\alpha, \beta \in \mathbb{C}$. If $\alpha \mathbf{u}=\beta \mathbf{u}$, then $\alpha=\beta$.
Definition S Subspace

Suppose that V and W are two vector spaces that have identical definitions of vector addition and scalar multiplication, and that W is a subset of $V, W \subseteq V$. Then W is a subspace of V.

Suppose that V is a vector space and W is a subset of $V, W \subseteq V$. Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

1. W is non-empty, $W \neq \emptyset$.
2. If $\mathbf{x} \in W$ and $\mathbf{y} \in W$, then $\mathbf{x}+\mathbf{y} \in W$.
3. If $\alpha \in \mathbb{C}$ and $\mathbf{x} \in W$, then $\alpha \mathbf{x} \in W$.

Given the vector space V, the subspaces V and $\{\mathbf{0}\}$ are each called a trivial subspace.

Suppose that A is an $m \times n$ matrix. Then the null space of $A, \mathcal{N}(A)$, is a subspace of \mathbb{C}^{n}.

Suppose that V is a vector space. Given n vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}$ and n scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, their linear combination is the vector

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n} .
$$

Suppose that V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$, their span, $\langle S\rangle$, is the set of all possible linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}$. Symbolically,

$$
\begin{aligned}
\langle S\rangle & =\left\{\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\} \\
& =\left\{\sum_{i=1}^{t} \alpha_{i} \mathbf{u}_{i} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\}
\end{aligned}
$$

Suppose V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\} \subseteq V$, their span, $\langle S\rangle$, is a subspace.

Suppose that A is an $m \times n$ matrix. Then $\mathcal{C}(A)$ is a subspace of \mathbb{C}^{m}.

Suppose that A is an $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of \mathbb{C}^{n}.

Suppose that A is an $m \times n$ matrix. Then $\mathcal{L}(A)$ is a subspace of \mathbb{C}^{m}.

Suppose V is a vector space. Then a subset $S \subseteq V$ is a basis of V if it is linearly independent and spans V.

The set of standard unit vectors for \mathbb{C}^{m} (Definition SUV), $B=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{m}\right\}=$ $\left\{\mathbf{e}_{i} \mid 1 \leq i \leq m\right\}$ is a basis for the vector space \mathbb{C}^{m}.

Suppose that A is a square matrix of size m. Then the columns of A are a basis of \mathbb{C}^{m} if and only if A is nonsingular.

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.

Theorem COB Coordinates and Orthonormal Bases

Suppose that $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ is an orthonormal basis of the subspace W of \mathbb{C}^{m}. For any $\mathbf{w} \in W$,

$$
\mathbf{w}=\left\langle\mathbf{w}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\langle\mathbf{w}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}+\left\langle\mathbf{w}, \mathbf{v}_{3}\right\rangle \mathbf{v}_{3}+\cdots+\left\langle\mathbf{w}, \mathbf{v}_{p}\right\rangle \mathbf{v}_{p}
$$

Suppose that V is a vector space and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}\right\}$ is a basis of V. Then the dimension of V is defined by $\operatorname{dim}(V)=t$. If V has no finite bases, we say V has infinite dimension.

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}\right\}$ is a finite set of vectors which spans the vector space V. Then any set of $t+1$ or more vectors from V is linearly dependent.

Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C have the same size.

The dimension of \mathbb{C}^{m} (Example VSCV) is m.

The dimension of P_{n} (Example VSP) is $n+1$.

The dimension of $M_{m n}$ (Example VSM) is $m n$.

Suppose that A is an $m \times n$ matrix. Then the nullity of A is the dimension of the null space of $A, n(A)=\operatorname{dim}(\mathcal{N}(A))$.

Suppose that A is an $m \times n$ matrix. Then the rank of A is the dimension of the column space of $A, r(A)=\operatorname{dim}(\mathcal{C}(A))$.

Suppose that A is an $m \times n$ matrix and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then $r(A)=r$ and $n(A)=n-r$.

Suppose that A is an $m \times n$ matrix. Then $r(A)+n(A)=n$.

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. The rank of A is $n, r(A)=n$.
3. The nullity of A is zero, $n(A)=0$.

Theorem NME6 Nonsingular Matrix Equivalences, Round 6

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.

Suppose V is vector space and S is a linearly independent set of vectors from V. Suppose \mathbf{w} is a vector such that $\mathbf{w} \notin\langle S\rangle$. Then the set $S^{\prime}=S \cup\{\mathbf{w}\}$ is linearly independent.

Theorem G Goldilocks

Suppose that V is a vector space of dimension t. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ be a set of vectors from V. Then

1. If $m>t$, then S is linearly dependent.
2. If $m<t$, then S does not span V.
3. If $m=t$ and S is linearly independent, then S spans V.
4. If $m=t$ and S spans V, then S is linearly independent.

Suppose that U and V are subspaces of the vector space W, such that $U \subseteq V$ and $\operatorname{dim}(U)=$ $\operatorname{dim}(V)$. Then $U=V$.

Suppose A is an $m \times n$ matrix. Then $r(A)=r\left(A^{t}\right)$.

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then

1. $\operatorname{dim}(\mathcal{N}(A))=n-r$
2. $\operatorname{dim}(\mathcal{C}(A))=r$
3. $\operatorname{dim}(\mathcal{R}(A))=r$
4. $\operatorname{dim}(\mathcal{L}(A))=m-r$

Definition ELEM Elementary Matrices

1. $E_{i, j}$ is the square matrix of size n with

$$
\left[E_{i, j}\right]_{k \ell}= \begin{cases}0 & k \neq i, k \neq j, \ell \neq k \\ 1 & k \neq i, k \neq j, \ell=k \\ 0 & k=i, \ell \neq j \\ 1 & k=i, \ell=j \\ 0 & k=j, \ell \neq i \\ 1 & k=j, \ell=i\end{cases}
$$

2. $E_{i}(\alpha)$, for $\alpha \neq 0$, is the square matrix of size n with

$$
\left[E_{i}(\alpha)\right]_{k \ell}= \begin{cases}0 & k \neq i, \ell \neq k \\ 1 & k \neq i, \ell=k \\ \alpha & k=i, \ell=i\end{cases}
$$

3. $E_{i, j}(\alpha)$ is the square matrix of size n with

$$
\left[E_{i, j}(\alpha)\right]_{k \ell}= \begin{cases}0 & k \neq j, \ell \neq k \\ 1 & k \neq j, \ell=k \\ 0 & k=j, \ell \neq i, \ell \neq j \\ 1 & k=j, \ell=j\end{cases}
$$

Suppose that A is a matrix, and B is a matrix of the same size that is obtained from A by a single row operation (Definition RO).

1. If the row operation swaps rows i and j, then $B=E_{i, j} A$.
2. If the row operation multiplies row i by α, then $B=E_{i}(\alpha) A$.
3. If the row operation multiplies row i by α and adds the result to row j, then $B=E_{i, j}(\alpha) A$.

If E is an elementary matrix, then E is nonsingular.

Theorem NMPEM Nonsingular Matrices are Products of Elementary Matrices 183

Suppose that A is a nonsingular matrix. Then there exists elementary matrices $E_{1}, E_{2}, E_{3}, \ldots, E_{t}$ so that $A=E_{1} E_{2} E_{3} \ldots E_{t}$.

Suppose that A is an $m \times n$ matrix. Then the submatrix $A(i \mid j)$ is the ($m-1$) $\times(n-1)$ matrix obtained from A by removing row i and column j.

Suppose A is a square matrix. Then its determinant, $\operatorname{det}(A)=|A|$, is an element of \mathbb{C} defined recursively by:

If A is a 1×1 matrix, then $\operatorname{det}(A)=[A]_{11}$.
If A is a matrix of size n with $n \geq 2$, then
$\operatorname{det}(A)=[A]_{11} \operatorname{det}(A(1 \mid 1))-[A]_{12} \operatorname{det}(A(1 \mid 2))+[A]_{13} \operatorname{det}(A(1 \mid 3))-\cdots+(-1)^{n+1}[A]_{1 n} \operatorname{det}(A(1 \mid \gamma))$

Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $\operatorname{det}(A)=a d-b c$

Suppose that A is a square matrix of size n. Then

$$
\begin{array}{rlrl}
\operatorname{det}(A)= & (-1)^{i+1}[A]_{i 1} \operatorname{det}(A(i \mid 1))+(-1)^{i+2}[A]_{i 2} \operatorname{det}(A(i \mid 2)) & \\
& +(-1)^{i+3}[A]_{i 3} \operatorname{det}(A(i \mid 3))+\cdots+(-1)^{i+n}[A]_{i n} \operatorname{det}(A(i \mid n)) & & 1 \leq i \leq n
\end{array}
$$

which is known as expansion about row i.

Suppose that A is a square matrix. Then $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.

Suppose that A is a square matrix of size n. Then

$$
\begin{aligned}
\operatorname{det}(A)= & (-1)^{1+j}[A]_{1 j} \operatorname{det}(A(1 \mid j))+(-1)^{2+j}[A]_{2 j} \operatorname{det}(A(2 \mid j)) & \\
& +(-1)^{3+j}[A]_{3 j} \operatorname{det}(A(3 \mid j))+\cdots+(-1)^{n+j}[A]_{n j} \operatorname{det}(A(n \mid j)) & 1 \leq j \leq n
\end{aligned}
$$

which is known as expansion about column j.

Suppose that A is a square matrix with a row where every entry is zero, or a column where every entry is zero. Then $\operatorname{det}(A)=0$.

Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging the location of two rows, or interchanging the location of two columns. Then $\operatorname{det}(B)=-\operatorname{det}(A)$.

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a single row by the scalar α, or by multiplying a single column by the scalar α. Then $\operatorname{det}(B)=$ $\alpha \operatorname{det}(A)$.

Suppose that A is a square matrix with two equal rows, or two equal columns. Then $\operatorname{det}(A)=0$.

Theorem DRCMA Determinant for Row or Column Multiples and Addition 194

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a row by the scalar α and then adding it to another row, or by multiplying a column by the scalar α and then adding it to another column. Then $\operatorname{det}(B)=\operatorname{det}(A)$.

For every $n \geq 1, \operatorname{det}\left(I_{n}\right)=1$.

For the three possible versions of an elementary matrix (Definition ELEM) we have the determinants,

1. $\operatorname{det}\left(E_{i, j}\right)=-1$
2. $\operatorname{det}\left(E_{i}(\alpha)\right)=\alpha$
3. $\operatorname{det}\left(E_{i, j}(\alpha)\right)=1$

Theorem DEMMM Determinants, Elementary Matrices, Matrix Multiplication 197

Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

$$
\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)
$$

Let A be a square matrix. Then A is singular if and only if $\operatorname{det}(A)=0$.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.

5 . The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.

Suppose that A and B are square matrices of the same size. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Suppose that A is a square matrix of size $n, \mathbf{x} \neq \mathbf{0}$ is a vector in \mathbb{C}^{n}, and λ is a scalar in \mathbb{C}. Then we say \mathbf{x} is an eigenvector of A with eigenvalue λ if

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Suppose A is a square matrix. Then A has at least one eigenvalue.

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the polynomial $p_{A}(x)$ defined by

$$
p_{A}(x)=\operatorname{det}\left(A-x I_{n}\right)
$$

Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomials 204

Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if $p_{A}(\lambda)=0$.

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace of A for $\lambda, E_{A}(\lambda)$, is the set of all the eigenvectors of A for λ, together with the inclusion of the zero vector.

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace $E_{A}(\lambda)$ is a subspace of the vector space \mathbb{C}^{n}.

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

$$
E_{A}(\lambda)=\mathcal{N}\left(A-\lambda I_{n}\right)
$$

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multiplicity of $\lambda, \alpha_{A}(\lambda)$, is the highest power of $(x-\lambda)$ that divides the characteristic polynomial, $p_{A}(x)$.

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric multiplicity of $\lambda, \gamma_{A}(\lambda)$, is the dimension of the eigenspace $E_{A}(\lambda)$.

Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent 210

Suppose that A is a square matrix and $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{p}\right\}$ is a set of eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{p}$ such that $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$. Then S is a linearly independent set.

Suppose A is a square matrix. Then A is singular if and only if $\lambda=0$ is an eigenvalue of A.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.
12. $\lambda=0$ is not an eigenvalue of A.

Suppose A is a square matrix and λ is an eigenvalue of A. Then $\alpha \lambda$ is an eigenvalue of αA.

Suppose A is a square matrix, λ is an eigenvalue of A, and $s \geq 0$ is an integer. Then λ^{s} is an eigenvalue of A^{s}.

Suppose A is a square matrix and λ is an eigenvalue of A. Let $q(x)$ be a polynomial in the variable x. Then $q(\lambda)$ is an eigenvalue of the matrix $q(A)$.

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then $\frac{1}{\lambda}$ is an eigenvalue of the matrix A^{-1}.

Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix A^{t}.

Suppose A is a square matrix with real entries and \mathbf{x} is an eigenvector of A for the eigenvalue λ. Then $\overline{\mathrm{x}}$ is an eigenvector of A for the eigenvalue $\bar{\lambda}$.

Suppose that A is a square matrix of size n. Then the characteristic polynomial of $A, p_{A}(x)$, has degree n.

Suppose that A is a square matrix of size n with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}$. Then

$$
\sum_{i=1}^{k} \alpha_{A}\left(\lambda_{i}\right)=n
$$

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

$$
1 \leq \gamma_{A}(\lambda) \leq \alpha_{A}(\lambda) \leq n
$$

Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigenvalues.

Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then $\lambda \in \mathbb{R}$.

Suppose that A is a Hermitian matrix and \mathbf{x} and \mathbf{y} are two eigenvectors of A for different eigenvalues. Then \mathbf{x} and \mathbf{y} are orthogonal vectors.

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a nonsingular matrix of size n, S, such that $A=S^{-1} B S$.

Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)
2. If A is similar to B, then B is similar to A. (Symmetric)
3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is $p_{A}(x)=p_{B}(x)$.

Suppose that A is a square matrix. Then A is a diagonal matrix if $[A]_{i j}=0$ whenever $i \neq j$.

Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix.

Theorem DC Diagonalization Characterization

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a linearly independent set S that contains n eigenvectors of A.

Suppose A is a square matrix. Then A is diagonalizable if and only if $\gamma_{A}(\lambda)=\alpha_{A}(\lambda)$ for every eigenvalue λ of A.

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.

A linear transformation, $T: U \mapsto V$, is a function that carries elements of the vector space U (called the domain) to the vector space V (called the codomain), and which has two additional properties

1. $T\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)=T\left(\mathbf{u}_{1}\right)+T\left(\mathbf{u}_{2}\right)$ for all $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$
2. $T(\alpha \mathbf{u})=\alpha T(\mathbf{u})$ for all $\mathbf{u} \in U$ and all $\alpha \in \mathbb{C}$

Suppose $T: U \mapsto V$ is a linear transformation. Then $T(\mathbf{0})=\mathbf{0}$.

Suppose that A is an $m \times n$ matrix. Define a function $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{m}$ by $T(\mathbf{x})=A \mathbf{x}$. Then T is a linear transformation.

Suppose that $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{m}$ is a linear transformation. Then there is an $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$.

Suppose that $T: U \mapsto V$ is a linear transformation, $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}$ are vectors from U and $a_{1}, a_{2}, a_{3}, \ldots, a_{t}$ are scalars from \mathbb{C}. Then

$$
T\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t}\right)=a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{t} T\left(\mathbf{u}_{t}\right)
$$

Suppose that $T: U \mapsto V$ is a linear transformation, $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a basis for U and \mathbf{w} is a vector from U. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be the scalars from \mathbb{C} such that

$$
\mathbf{w}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{n} \mathbf{u}_{n}
$$

Then

$$
T(\mathbf{w})=a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{n} T\left(\mathbf{u}_{n}\right)
$$

Definition PI Pre-Image

Suppose that $T: U \mapsto V$ is a linear transformation. For each \mathbf{v}, define the pre-image of \mathbf{v} to be the subset of U given by

$$
T^{-1}(\mathbf{v})=\{\mathbf{u} \in U \mid T(\mathbf{u})=\mathbf{v}\}
$$

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then their sum is the function $T+S: U \mapsto V$ whose outputs are defined by

$$
(T+S)(\mathbf{u})=T(\mathbf{u})+S(\mathbf{u})
$$

Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 242

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then $T+S: U \mapsto V$ is a linear transformation.

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then the scalar multiple is the function $\alpha T: U \mapsto V$ whose outputs are defined by

$$
(\alpha T)(\mathbf{u})=\alpha T(\mathbf{u})
$$

Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation 244

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then $(\alpha T): U \mapsto V$ is a linear transformation.

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to $V, \mathrm{LT}(U, V)$ is a vector space when the operations are those given in Definition LTA and Definition LTSM.

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then the composition of S and T is the function $(S \circ T): U \mapsto W$ whose outputs are defined by

$$
(S \circ T)(\mathbf{u})=S(T(\mathbf{u}))
$$

Theorem CLTLT Composition of Linear Transformations is a Linear Transformation

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then $(S \circ T): U \mapsto W$ is a linear transformation.

Suppose $T: U \mapsto V$ is a linear transformation. Then T is injective if whenever $T(\mathbf{x})=T(\mathbf{y})$, then $\mathbf{x}=\mathbf{y}$.

Suppose $T: U \mapsto V$ is a linear transformation. Then the kernel of T is the set

$$
\mathcal{K}(T)=\{\mathbf{u} \in U \mid T(\mathbf{u})=\mathbf{0}\}
$$

Suppose that $T: U \mapsto V$ is a linear transformation. Then the kernel of $T, \mathcal{K}(T)$, is a subspace of U.

Suppose $T: U \mapsto V$ is a linear transformation and $\mathbf{v} \in V$. If the preimage $T^{-1}(\mathbf{v})$ is non-empty, and $\mathbf{u} \in T^{-1}(\mathbf{v})$ then

$$
T^{-1}(\mathbf{v})=\{\mathbf{u}+\mathbf{z} \mid \mathbf{z} \in \mathcal{K}(T)\}=\mathbf{u}+\mathcal{K}(T)
$$

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is injective if and only if the kernel of T is trivial, $\mathcal{K}(T)=\{\mathbf{0}\}$.

Suppose that $T: U \mapsto V$ is an injective linear transformation and $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$ is a linearly independent subset of U. Then $R=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{t}\right)\right\}$ is a linearly independent subset of V.

Suppose that $T: U \mapsto V$ is a linear transformation and $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}$ is a basis of U. Then T is injective if and only if $C=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{m}\right)\right\}$ is a linearly independent subset of V.

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$.

Theorem CILTI Composition of Injective Linear Transformations is Injective 256

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are injective linear transformations. Then $(S \circ T): U \mapsto$ W is an injective linear transformation.

Suppose $T: U \mapsto V$ is a linear transformation. Then T is surjective if for every $\mathbf{v} \in V$ there exists a $\mathbf{u} \in U$ so that $T(\mathbf{u})=\mathbf{v}$.

Suppose $T: U \mapsto V$ is a linear transformation. Then the range of T is the set

$$
\mathcal{R}(T)=\{T(\mathbf{u}) \mid \mathbf{u} \in U\}
$$

Suppose that $T: U \mapsto V$ is a linear transformation. Then the range of $T, \mathcal{R}(T)$, is a subspace of V.

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is surjective if and only if the range of T equals the codomain, $\mathcal{R}(T)=V$.

Suppose that $T: U \mapsto V$ is a linear transformation and $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$ spans U. Then $R=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{t}\right)\right\}$ spans $\mathcal{R}(T)$.

Suppose that $T: U \mapsto V$ is a linear transformation. Then

$$
\mathbf{v} \in \mathcal{R}(T) \text { if and only if } T^{-1}(\mathbf{v}) \neq \emptyset
$$

Suppose that $T: U \mapsto V$ is a linear transformation and $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}$ is a basis of U. Then T is surjective if and only if $C=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{m}\right)\right\}$ is a spanning set for V.

Suppose that $T: U \mapsto V$ is a surjective linear transformation. Then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$.

Theorem CSLTS Composition of Surjective Linear Transformations is Surjective 265

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are surjective linear transformations. Then $(S \circ$ $T): U \mapsto W$ is a surjective linear transformation.

The identity linear transformation on the vector space W is defined as

$$
I_{W}: W \mapsto W, \quad I_{W}(\mathbf{w})=\mathbf{w}
$$

Suppose that $T: U \mapsto V$ is a linear transformation. If there is a function $S: V \mapsto U$ such that

$$
S \circ T=I_{U} \quad T \circ S=I_{V}
$$

then T is invertible. In this case, we call S the inverse of T and write $S=T^{-1}$.

Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation 268

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then the function $T^{-1}: V \mapsto U$ is a linear transformation.

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then T^{-1} is an invertible linear transformation and $\left(T^{-1}\right)^{-1}=T$.

Theorem ILTIS Invertible Linear Transformations are Injective and Surjective270

Suppose $T: U \mapsto V$ is a linear transformation. Then T is invertible if and only if T is injective and surjective.

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then the composition, $(S \circ T): U \mapsto W$ is an invertible linear transformation.

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then $S \circ T$ is invertible and $(S \circ T)^{-1}=T^{-1} \circ S^{-1}$.

Two vector spaces U and V are isomorphic if there exists an invertible linear transformation T with domain U and codomain $V, T: U \mapsto V$. In this case, we write $U \cong V$, and the linear transformation T is known as an isomorphism between U and V.

Suppose U and V are isomorphic vector spaces. Then $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Suppose that $T: U \mapsto V$ is a linear transformation. Then the $\mathbf{r a n k}$ of $T, r(T)$, is the dimension of the range of T,

$$
r(T)=\operatorname{dim}(\mathcal{R}(T))
$$

Suppose that $T: U \mapsto V$ is a linear transformation. Then the nullity of $T, n(T)$, is the dimension of the kernel of T,

$$
n(T)=\operatorname{dim}(\mathcal{K}(T))
$$

Suppose that $T: U \mapsto V$ is a linear transformation. Then the rank of T is the dimension of V, $r(T)=\operatorname{dim}(V)$, if and only if T is surjective.

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then the nullity of T is zero, $n(T)=0$, if and only if T is injective.

Suppose that $T: U \mapsto V$ is a linear transformation. Then

$$
r(T)+n(T)=\operatorname{dim}(U)
$$

Definition VR Vector Representation

Suppose that V is a vector space with a basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$. Define a function $\rho_{B}: V \mapsto \mathbb{C}^{n}$ as follows. For $\mathbf{w} \in V$, find scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ so that

$$
\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{n} \mathbf{v}_{n}
$$

then

$$
\left[\rho_{B}(\mathbf{w})\right]_{i}=a_{i} \quad 1 \leq i \leq n
$$

The function ρ_{B} (Definition VR) is a linear transformation.

The function ρ_{B} (Definition VR) is an injective linear transformation.

The function ρ_{B} (Definition VR) is a surjective linear transformation.

Theorem VRILT Vector Representation is an Invertible Linear Transformation 284

The function ρ_{B} (Definition VR) is an invertible linear transformation.

Suppose that V is a vector space with dimension n. Then V is isomorphic to \mathbb{C}^{n}.

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if and only if $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Suppose that U is a vector space with a basis B of size n. Then $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent subset of U if and only if $R=\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}$ is a linearly independent subset of \mathbb{C}^{n}.

Suppose that U is a vector space with a basis B of size n. Then $\mathbf{u} \in\left\langle\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}\right\rangle$ if and only if $\rho_{B}(\mathbf{u}) \in\left\langle\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}\right\rangle$.

Suppose that $T: U \mapsto V$ is a linear transformation, $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a basis for U of size n, and C is a basis for V of size m. Then the matrix representation of T relative to B and C is the $m \times n$ matrix,

$$
M_{B, C}^{T}=\left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right)\left|\rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right)\right| \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right)|\ldots| \rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]
$$

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U, C is a basis for V and $M_{B, C}^{T}$ is the matrix representation of T relative to B and C. Then, for any $\mathbf{u} \in U$,

$$
\rho_{C}(T(\mathbf{u}))=M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)
$$

or equivalently

$$
T(\mathbf{u})=\rho_{C}^{-1}\left(M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)\right)
$$

Theorem MRSLT Matrix Representation of a Sum of Linear Transformations291

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are linear transformations, B is a basis of U and C is a basis of V. Then

$$
M_{B, C}^{T+S}=M_{B, C}^{T}+M_{B, C}^{S}
$$

Theorem MRMLT Matrix Representation of a Multiple of a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation, $\alpha \in \mathbb{C}, B$ is a basis of U and C is a basis of V. Then

$$
M_{B, C}^{\alpha T}=\alpha M_{B, C}^{T}
$$

Theorem MRCLT Matrix Representation of a Composition of Linear Transformations

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

$$
M_{B, D}^{S \circ T}=M_{C, D}^{S} M_{B, C}^{T}
$$

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the kernel of T is isomorphic to the null space of $M_{B, C}^{T}$,

$$
\mathcal{K}(T) \cong \mathcal{N}\left(M_{B, C}^{T}\right)
$$

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V of size m. Then the range of T is isomorphic to the column space of $M_{B, C}^{T}$,

$$
\mathcal{R}(T) \cong \mathcal{C}\left(M_{B, C}^{T}\right)
$$

Suppose that $T: U \mapsto V$ is an invertible linear transformation, B is a basis for U and C is a basis for V. Then the matrix representation of T relative to B and $C, M_{B, C}^{T}$ is an invertible matrix, and

$$
M_{C, B}^{T^{-1}}=\left(M_{B, C}^{T}\right)^{-1}
$$

Suppose that A is a square matrix of size n and $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{n}$ is the linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$. Then A is invertible matrix if and only if T is an invertible linear transformation.

Theorem NME9 Nonsingular Matrix Equivalences, Round 9

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.
12. $\lambda=0$ is not an eigenvalue of A.
13. The linear transformation $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{n}$ defined by $T(\mathbf{x})=A \mathbf{x}$ is invertible.
(C)2005, 2006 Robert A. Beezer

Suppose that $T: V \mapsto V$ is a linear transformation. Then a nonzero vector $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if $T(\mathbf{v})=\lambda \mathbf{v}$.

Definition CBM Change-of-Basis Matrix

Suppose that V is a vector space, and $I_{V}: V \mapsto V$ is the identity linear transformation on V. Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ and C be two bases of V. Then the change-of-basis matrix from B to C is the matrix representation of I_{V} relative to B and C,

$$
\begin{aligned}
C_{B, C} & =M_{B, C}^{I_{V}} \\
& =\left[\rho_{C}\left(I_{V}\left(\mathbf{v}_{1}\right)\right)\left|\rho_{C}\left(I_{V}\left(\mathbf{v}_{2}\right)\right)\right| \rho_{C}\left(I_{V}\left(\mathbf{v}_{3}\right)\right)|\ldots| \rho_{C}\left(I_{V}\left(\mathbf{v}_{n}\right)\right)\right] \\
& =\left[\rho_{C}\left(\mathbf{v}_{1}\right)\left|\rho_{C}\left(\mathbf{v}_{2}\right)\right| \rho_{C}\left(\mathbf{v}_{3}\right)|\ldots| \rho_{C}\left(\mathbf{v}_{n}\right)\right]
\end{aligned}
$$

Suppose that \mathbf{v} is a vector in the vector space V and B and C are bases of V. Then

$$
\rho_{C}(\mathbf{v})=C_{B, C} \rho_{B}(\mathbf{v})
$$

Suppose that V is a vector space, and B and C are bases of V. Then the change-of-basis matrix $C_{B, C}$ is nonsingular and

$$
C_{B, C}^{-1}=C_{C, B}
$$

Suppose that $T: U \mapsto V$ is a linear transformation, B and C are bases for U, and D and E are bases for V. Then

$$
M_{B, D}^{T}=C_{E, D} M_{C, E}^{T} C_{B, C}
$$

Suppose that $T: V \mapsto V$ is a linear transformation and B and C are bases of V. Then

$$
M_{B, B}^{T}=C_{B, C}^{-1} M_{C, C}^{T} C_{B, C}
$$

Suppose that $T: V \mapsto V$ is a linear transformation and B is a basis of V. Then $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if and only if $\rho_{B}(\mathbf{v})$ is an eigenvector of $M_{B, B}^{T}$ for the eigenvalue λ.

The complex numbers $\alpha=a+b i$ and $\beta=c+d i$ are equal, denoted $\alpha=\beta$, if $a=c$ and $b=d$.

The sum of the complex numbers $\alpha=a+b i$ and $\beta=c+d i$, denoted $\alpha+\beta$, is $(a+c)+(b+d) i$.

The product of the complex numbers $\alpha=a+b i$ and $\beta=c+d i$, denoted $\alpha \beta$, is $(a c-b d)+$ $(a d+b c) i$.

The operations of addition and multiplication of complex numbers have the following properties.

- ACCN Additive Commutativity, Complex Numbers For any $\alpha, \beta \in \mathbb{C}, \alpha+\beta=$ $\beta+\alpha$.
- MCCN Multiplicative Commutativity, Complex Numbers For any $\alpha, \beta \in \mathbb{C}$, $\alpha \beta=\beta \alpha$.
- AACN Additive Associativity, Complex Numbers For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha+$ $(\beta+\gamma)=(\alpha+\beta)+\gamma$.
- MACN Multiplicative Associativity, Complex Numbers For any $\alpha, \beta, \gamma \in \mathbb{C}$, $\alpha(\beta \gamma)=(\alpha \beta) \gamma$.
- DCN Distributivity, Complex Numbers For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$.
- ZCN Zero, Complex Numbers There is a complex number $0=0+0 i$ so that for any $\alpha \in \mathbb{C}, 0+\alpha=\alpha$.
- OCN One, Complex Numbers There is a complex number $1=1+0 i$ so that for any $\alpha \in \mathbb{C}, 1 \alpha=\alpha$.
- AICN Additive Inverse, Complex Numbers For every $\alpha \in \mathbb{C}$ there exists $-\alpha \in \mathbb{C}$ so that $\alpha+(-\alpha)=0$.
- MICN Multiplicative Inverse, Complex Numbers For every $\alpha \in \mathbb{C}, \alpha \neq 0$ there exists $\frac{1}{\alpha} \in \mathbb{C}$ so that $\frac{1}{\alpha} \alpha=1$.
(c)2005, 2006 Robert A. Beezer

Definition CCN Conjugate of a Complex Number

The conjugate of the complex number $c=a+b i \in \mathbb{C}$ is the complex number $\bar{c}=a-b i$.

Suppose that c and d are complex numbers. Then $\overline{c+d}=\bar{c}+\bar{d}$.

Suppose that c and d are complex numbers. Then $\overline{c d}=\bar{c} \bar{d}$.

Suppose that c is a complex number. Then $\overline{\bar{c}}=c$.

The modulus of the complex number $c=a+b i \in \mathbb{C}$, is the nonnegative real number

$$
|c|=\sqrt{c \bar{c}}=\sqrt{a^{2}+b^{2}} .
$$

A set is an unordered collection of objects. If S is a set and x is an object that is in the set S, we write $x \in S$. If x is not in S, then we write $x \notin S$. We refer to the objects in a set as its elements.

If S and T are two sets, then S is a subset of T, written $S \subseteq T$ if whenever $x \in S$ then $x \in T$.

The empty set is the set with no elements. Its is denoted by \emptyset.

Two sets, S and T, are equal, if $S \subseteq T$ and $T \subseteq S$. In this case, we write $S=T$.

Suppose S is a finite set. Then the number of elements in S is called the cardinality or size of S, and is denoted $|S|$.

Suppose S and T are sets. Then the union of S and T, denoted $S \cup T$, is the set whose elements are those that are elements of S or of T, or both. More formally,

$$
x \in S \cup T \text { if and only if } x \in S \text { or } x \in T
$$

Suppose S and T are sets. Then the intersection of S and T, denoted $S \cap T$, is the set whose elements are only those that are elements of S and of T. More formally,
$x \in S \cap T$ if and only if $x \in S$ and $x \in T$

Definition SC Set Complement

Suppose S is a set that is a subset of a universal set U. Then the complement of S, denoted \bar{S}, is the set whose elements are those that are elements of U and not elements of S. More formally,

$$
x \in \bar{S} \text { if and only if } x \in U \text { and } x \notin S
$$

