A First Course in Linear Algebra

A First Course in Linear Algebra

by
Robert A. Beezer
Department of Mathematics and Computer Science
University of Puget Sound

Version 1.05

Robert A. Beezer is a Professor of Mathematics at the University of Puget Sound, where he has been on the faculty since 1984. He received a B.S. in Mathematics (with an Emphasis in Computer Science) from the University of Santa Clara in 1978, a M.S. in Statistics from the University of Illinois at UrbanaChampaign in 1982 and a Ph.D. in Mathematics from the University of Illinois at Urbana-Champaign in 1984. He teaches calculus, linear algebra and abstract algebra regularly, while his research interests include the applications of linear algebra to graph theory. His professional website is at http://buzzard.ups.edu.

Edition

Version 1.05.
February 27, 2007.

Publisher

Robert A. Beezer
Department of Mathematics and Computer Science
University of Puget Sound
1500 North Warner
Tacoma, Washington 98416-1043
USA
(c) 2004 by Robert A. Beezer.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being "Preface", no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the appendix entitled "GNU Free Documentation License".

The most recent version of this work can always be found at http://linear.ups.edu.

To my wife, Pat.

Contents

Table of Contents vii
Contributors ix
Definitions xi
Theorems xiii
Notation xv
Examples xvii
Preface xix
Acknowledgements XXV
Part C Core
Chapter SLE Systems of Linear Equations 3
WILA What is Linear Algebra? 3
LA "Linear" + "Algebra" 3
AA An Application. 4
READ Reading Questions 7
EXC Exercises 8
SOL Solutions. 9
SSLE Solving Systems of Linear Equations 11
SLE Systems of Linear Equations 11
PSS Possibilities for Solution Sets. 12
ESEO Equivalent Systems and Equation Operations 13
READ Reading Questions 19
EXC Exercises 20
SOL Solutions. 22
RREF Reduced Row-Echelon Form 25
MVNSE Matrix and Vector Notation for Systems of Equations 25
RO Row Operations 28
RREF Reduced Row-Echelon Form 30
READ Reading Questions 37
EXC Exercises 38
SOL Solutions. 41
TSS Types of Solution Sets 47
CS Consistent Systems 47
FV Free Variables 51
READ Reading Questions 54
EXC Exercises 55
SOL Solutions. 56
HSE Homogeneous Systems of Equations 57
SHS Solutions of Homogeneous Systems 57
NSM Null Space of a Matrix 59
READ Reading Questions 61
EXC Exercises 62
SOL Solutions. 64
NM Nonsingular Matrices 67
NM Nonsingular Matrices 67
NSNM Null Space of a Nonsingular Matrix 69
READ Reading Questions 73
EXC Exercises 74
SOL Solutions 76
Chapter V Vectors 79
VO Vector Operations 79
VEASM Vector Equality, Addition, Scalar Multiplication 80
VSP Vector Space Properties 82
READ Reading Questions 83
EXC Exercises 84
SOL Solutions. 85
LC Linear Combinations 87
LC Linear Combinations 87
VFSS Vector Form of Solution Sets 91
PSHS Particular Solutions, Homogeneous Solutions 102
URREF Uniqueness of Reduced Row-Echelon Form 104
READ Reading Questions 106
EXC Exercises 107
SOL Solutions. 109
SS Spanning Sets 111
SSV Span of a Set of Vectors 111
SSNS Spanning Sets of Null Spaces 116
READ Reading Questions 121
EXC Exercises 122
SOL Solutions. 125
LI Linear Independence 131
LISV Linearly Independent Sets of Vectors 131
LINM Linear Independence and Nonsingular Matrices 136
NSSLI Null Spaces, Spans, Linear Independence 137
READ Reading Questions 140
EXC Exercises 141
SOL Solutions. 144
LDS Linear Dependence and Spans 149
LDSS Linearly Dependent Sets and Spans 149
COV Casting Out Vectors 151
READ Reading Questions 157
EXC Exercises 158
SOL Solutions. 159
O Orthogonality 163
CAV Complex Arithmetic and Vectors 163
IP Inner products. 164
N Norm 166
OV Orthogonal Vectors 168
GSP Gram-Schmidt Procedure 170
READ Reading Questions 173
EXC Exercises 175
Chapter M Matrices 177
MO Matrix Operations 177
MEASM Matrix Equality, Addition, Scalar Multiplication 177
VSP Vector Space Properties 179
TSM Transposes and Symmetric Matrices 180
MCC Matrices and Complex Conjugation 182
AM Adjoint of a Matrix 184
READ Reading Questions 185
EXC Exercises 186
SOL Solutions. 188
MM Matrix Multiplication 189
MVP Matrix-Vector Product 189
MM Matrix Multiplication 192
MMEE Matrix Multiplication, Entry-by-Entry 193
PMM Properties of Matrix Multiplication 195
HM Hermitian Matrices 199
READ Reading Questions 201
EXC Exercises 202
SOL Solutions. 204
MISLE Matrix Inverses and Systems of Linear Equations 207
IM Inverse of a Matrix 208
CIM Computing the Inverse of a Matrix 209
PMI Properties of Matrix Inverses 214
READ Reading Questions 216
EXC Exercises 217
SOL Solutions 219
MINM Matrix Inverses and Nonsingular Matrices 221
NMI Nonsingular Matrices are Invertible 221
UM Unitary Matrices 224
READ Reading Questions 227
EXC Exercises 228
SOL Solutions. 229
CRS Column and Row Spaces 231
CSSE Column Spaces and Systems of Equations 231
CSSOC Column Space Spanned by Original Columns 233
CSNM Column Space of a Nonsingular Matrix 235
RSM Row Space of a Matrix 237
READ Reading Questions 243
EXC Exercises 244
SOL Solutions 248
FS Four Subsets 253
LNS Left Null Space 253
CRS Computing Column Spaces 254
EEF Extended echelon form 257
FS Four Subsets 259
READ Reading Questions 267
EXC Exercises 268
SOL Solutions. 270
Chapter VS Vector Spaces 275
VS Vector Spaces 275
VS Vector Spaces 275
EVS Examples of Vector Spaces 276
VSP Vector Space Properties 281
RD Recycling Definitions 285
READ Reading Questions 286
EXC Exercises 287
S Subspaces 289
TS Testing Subspaces 290
TSS The Span of a Set 294
SC Subspace Constructions 299
READ Reading Questions 300
EXC Exercises 301
SOL Solutions. 302
LISS Linear Independence and Spanning Sets 305
LI Linear Independence 305
SS Spanning Sets 309
VR Vector Representation 313
READ Reading Questions 315
EXC Exercises 316
SOL Solutions. 318
B Bases 321
B Bases 321
BSCV Bases for Spans of Column Vectors 324
BNM Bases and Nonsingular Matrices 326
OBC Orthonormal Bases and Coordinates 327
READ Reading Questions 330
EXC Exercises 331
SOL Solutions. 332
D Dimension 335
D Dimension 335
DVS Dimension of Vector Spaces 339
RNM Rank and Nullity of a Matrix 341
RNNM Rank and Nullity of a Nonsingular Matrix 342
READ Reading Questions 344
EXC Exercises 345
SOL Solutions. 347
PD Properties of Dimension 349
GT Goldilocks' Theorem 349
RT Ranks and Transposes 352
DFS Dimension of Four Subspaces 354
DS Direct Sums. 355
READ Reading Questions 359
EXC Exercises 360
SOL Solutions. 361
Chapter D Determinants 363
DM Determinant of a Matrix 363
EM Elementary Matrices 363
DD Definition of the Determinant 367
CD Computing Determinants 369
READ Reading Questions 372
EXC Exercises 374
SOL Solutions. 375
PDM Properties of Determinants of Matrices 377
DRO Determinants and Row Operations 377
DROEM Determinants, Row Operations, Elementary Matrices 381
DNMMM Determinants, Nonsingular Matrices, Matrix Multiplication 383
READ Reading Questions 386
EXC Exercises 387
SOL Solutions. 388
Chapter E Eigenvalues 389
EE Eigenvalues and Eigenvectors 389
EEM Eigenvalues and Eigenvectors of a Matrix 389
PM Polynomials and Matrices. 391
EEE Existence of Eigenvalues and Eigenvectors 392
CEE Computing Eigenvalues and Eigenvectors 396
ECEE Examples of Computing Eigenvalues and Eigenvectors 399
READ Reading Questions 406
EXC Exercises 407
SOL Solutions. 408
PEE Properties of Eigenvalues and Eigenvectors 413
ME Multiplicities of Eigenvalues 418
EHM Eigenvalues of Hermitian Matrices 421
READ Reading Questions 422
EXC Exercises 423
SOL Solutions 424
SD Similarity and Diagonalization 425
SM Similar Matrices 425
PSM Properties of Similar Matrices 426
D Diagonalization 428
READ Reading Questions 436
EXC Exercises 437
SOL Solutions 438
Chapter LT Linear Transformations 441
LT Linear Transformations 441
LT Linear Transformations 441
MLT Matrices and Linear Transformations 445
LTLC Linear Transformations and Linear Combinations 449
PI Pre-Images 452
NLTFO New Linear Transformations From Old 454
READ Reading Questions 457
EXC Exercises 459
SOL Solutions. 461
ILT Injective Linear Transformations 465
EILT Examples of Injective Linear Transformations 465
KLT Kernel of a Linear Transformation 468
ILTLI Injective Linear Transformations and Linear Independence 472
ILTD Injective Linear Transformations and Dimension 473
CILT Composition of Injective Linear Transformations 474
READ Reading Questions 474
EXC Exercises 475
SOL Solutions 477
SLT Surjective Linear Transformations 479
ESLT Examples of Surjective Linear Transformations 479
RLT Range of a Linear Transformation 483
SSSLT Spanning Sets and Surjective Linear Transformations 487
SLTD Surjective Linear Transformations and Dimension 489
CSLT Composition of Surjective Linear Transformations 490
READ Reading Questions 490
EXC Exercises 491
SOL Solutions. 493
IVLT Invertible Linear Transformations 495
IVLT Invertible Linear Transformations 495
IV Invertibility 498
SI Structure and Isomorphism 500
RNLT Rank and Nullity of a Linear Transformation 502
SLELT Systems of Linear Equations and Linear Transformations 505
READ Reading Questions 507
EXC Exercises 508
SOL Solutions. 510
Chapter R Representations 513
VR Vector Representations 513
CVS Characterization of Vector Spaces 519
CP Coordinatization Principle 520
READ Reading Questions 523
EXC Exercises 524
SOL Solutions. 525
MR Matrix Representations 527
NRFO New Representations from Old 533
PMR Properties of Matrix Representations 537
IVLT Invertible Linear Transformations 542
READ Reading Questions 546
EXC Exercises 547
SOL Solutions. 550
CB Change of Basis 559
EELT Eigenvalues and Eigenvectors of Linear Transformations 559
CBM Change-of-Basis Matrix 560
MRS Matrix Representations and Similarity 566
CELT Computing Eigenvectors of Linear Transformations 572
READ Reading Questions 580
EXC Exercises 581
SOL Solutions. 582
OD Orthonormal Diagonalization 587
TM Triangular Matrices 587
UTMR Upper Triangular Matrix Representation 588
NM Normal Matrices 592
OD Orthonormal Diagonalization 593
NLT Nilpotent Linear Transformations 597
NLT Nilpotent Linear Transformations 597
PNLT Properties of Nilpotent Linear Transformations 602
CFNLT Canonical Form for Nilpotent Linear Transformations 606
IS Invariant Subspaces 615
IS Invariant Subspaces 615
GEE Generalized Eigenvectors and Eigenspaces 618
RLT Restrictions of Linear Transformations 623
JCF Jordan Canonical Form 633
UTMR Upper Triangular Matrix Representation 633
GESD Generalized Eigenspace Decomposition 635
JCF Jordan Canonical Form 641
CHT Cayley-Hamilton Theorem 654
Appendix CN Computation Notes 657
MMA Mathematica 657
ME.MMA Matrix Entry 657
RR.MMA Row Reduce 657
LS.MMA Linear Solve 658
VLC.MMA Vector Linear Combinations 658
NS.MMA Null Space 659
VFSS.MMA Vector Form of Solution Set 659
GSP.MMA Gram-Schmidt Procedure 660
TM.MMA Transpose of a Matrix 661
MM.MMA Matrix Multiplication 661
MI.MMA Matrix Inverse 661
TI86 Texas Instruments 86 662
ME.TI86 Matrix Entry 662
RR.TI86 Row Reduce 662
VLC.TI86 Vector Linear Combinations 662
TM.TI86 Transpose of a Matrix 663
TI83 Texas Instruments 83 663
ME.TI83 Matrix Entry 663
RR.TI83 Row Reduce 663
VLC.TI83 Vector Linear Combinations 664
Appendix P Preliminaries 665
CNO Complex Number Operations 665
CNA Arithmetic with complex numbers 665
CCN Conjugates of Complex Numbers 667
MCN Modulus of a Complex Number 668
SET Sets 669
SC Set Cardinality 670
SO Set Operations 671
PT Proof Techniques 673
D Definitions 673
T Theorems 674
L Language 674
GS Getting Started 675
C Constructive Proofs 675
E Equivalences 676
N Negation 676
CP Contrapositives 677
CV Converses 677
CD Contradiction. 678
U Uniqueness 678
ME Multiple Equivalences 679
PI Proving Identities 679
DC Decompositions 680
I Induction 680
P Practice 681
LC Lemmas and Corollaries 682
Appendix A Archetypes 685
A 689
B 694
C 699
D 703
E 707
F 711
G 716
H 720
\square 724
J 728
K 733
L 737
M 741
N 744
0 747
P 750
Q 752
R 756
S 759
T 762
\square 764
V 766
W 768
X 770
Appendix GFDL GNU Free Documentation License 773

1. APPLICABILITY AND DEFINITIONS 773
2. VERBATIM COPYING 774
3. COPYING IN QUANTITY 774
4. MODIFICATIONS 775
5. COMBINING DOCUMENTS 776
6. COLLECTIONS OF DOCUMENTS 777
7. AGGREGATION WITH INDEPENDENT WORKS 777
8. TRANSLATION 777
9. TERMINATION 777
10. FUTURE REVISIONS OF THIS LICENSE 777
ADDENDUM: How to use this License for your documents 778
Part T Topics
F Fields 781
F Fields 781
FF Finite Fields 782
EXC Exercises 787
SOL Solutions 789
Chapter MD Matrix Decompositions 791
ROD Rank One Decomposition 791
TD Triangular Decomposition. 797
TD Triangular Decomposition 797
TDSSE Triangular Decomposition and Solving Systems of Equations 800
CTD Computing Triangular Decompositions 801
xvi CONTENTS

Contributors

Beezer, David. St. Charles Borromeo School
Beezer, Robert. University of Puget Sound http://buzzard.ups.edu/
Fellez, Sarah. University of Puget Sound
Fickenscher, Eric. University of Puget Sound
Jackson, Martin. University of Puget Sound http://www.math.ups.edu/~martinj
Linenthal, Jacob. University of Puget Sound
Osborne, Travis. University of Puget Sound
Riegsecker, Joe. Middlebury, Indiana joepye (at) pobox (dot) com
Phelps, Douglas. University of Puget Sound
Shoemaker, Mark. University of Puget Sound
Zimmer, Andy. University of Puget Sound

Definitions

Section WILASection SSLE
SLE System of Linear Equations 11
ESYS Equivalent Systems 13
EO Equation Operations 13
Section RREF
M Matrix 25
CV Column Vector 25
ZCV Zero Column Vector 26
CM Coefficient Matrix 26
VOC Vector of Constants 26
SV Solution Vector 27
LSMR Matrix Representation of a Linear System 27
AM Augmented Matrix 28
RO Row Operations 28
REM Row-Equivalent Matrices 29
RREF Reduced Row-Echelon Form 31
RR Row-Reducing 36
Section TSS
CS Consistent System 47
IDV Independent and Dependent Variables 49 49
Section HSE
HS Homogeneous System 57
TSHSE Trivial Solution to Homogeneous Systems of Equations 57
NSM Null Space of a Matrix 59
Section NM
SQM Square Matrix 67
NM Nonsingular Matrix 67
IM Identity Matrix 68
Section VO
VSCV Vector Space of Column Vectors 79
CVE Column Vector Equality 80
CVA Column Vector Addition 80
CVSM Column Vector Scalar Multiplication 81
Section LC
LCCV Linear Combination of Column Vectors 87
Section SS
SSCV Span of a Set of Column Vectors 111
Section LI
RLDCV Relation of Linear Dependence for Column Vectors 131
LICV Linear Independence of Column Vectors. 131
Section LDS
Section O
CCCV Complex Conjugate of a Column Vector 163
IP Inner Product 164
NV Norm of a Vector 167
OV Orthogonal Vectors 168
OSV Orthogonal Set of Vectors 169
ONS OrthoNormal Set 172
Section MO
VSM Vector Space of $m \times n$ Matrices 177
ME Matrix Equality 177
MA Matrix Addition 177
MSM Matrix Scalar Multiplication 178
ZM Zero Matrix 180
TM Transpose of a Matrix 180
SYM Symmetric Matrix 181
CCM Complex Conjugate of a Matrix 182
A Adjoint 184
Section MM
MVP Matrix-Vector Product 189
MM Matrix Multiplication 192
HM Hermitian Matrix 200
Section MISLE
MI Matrix Inverse 208
SUV Standard Unit Vectors 210
Section MINM
UM Unitary Matrices 224
Section CRS
CSM Column Space of a Matrix 231
RSM Row Space of a Matrix 237
Section FS
LNS Left Null Space 253
EEF Extended Echelon Form 257
Section VS
VS Vector Space 275
Section S
S Subspace 289
TS Trivial Subspaces 293
LC Linear Combination 294
SS Span of a Set 295
Section LISS
RLD Relation of Linear Dependence 305
LI Linear Independence 305
TSVS To Span a Vector Space 310
Section B
B Basis 321
Section D
D Dimension 335
NOM Nullity Of a Matrix 341
ROM Rank Of a Matrix 341
Section PD
DS Direct Sum 355
Section DM
ELEM Elementary Matrices 363
SM SubMatrix 367
DM Determinant of a Matrix 368
Section PDM
Section EE
EEM Eigenvalues and Eigenvectors of a Matrix 389
CP Characteristic Polynomial 396
EM Eigenspace of a Matrix 397
AME Algebraic Multiplicity of an Eigenvalue 399
GME Geometric Multiplicity of an Eigenvalue 399
Section PEE
Section SD
SIM Similar Matrices 425
DIM Diagonal Matrix 428
DZM Diagonalizable Matrix 428
Section LT
LT Linear Transformation 441
PI Pre-Image 452
LTA Linear Transformation Addition 454
LTSM Linear Transformation Scalar Multiplication 455
LTC Linear Transformation Composition 456
Section ILT
ILT Injective Linear Transformation 465
KLT Kernel of a Linear Transformation 468
Section SLT
SLT Surjective Linear Transformation 479
RLT \quad Range of a Linear Transformation 483
Section IVLT
IDLT Identity Linear Transformation. 495
IVLT Invertible Linear Transformations 495
IVS Isomorphic Vector Spaces 501
ROLT Rank Of a Linear Transformation 502
NOLT Nullity Of a Linear Transformation 502
Section VR
VR Vector Representation 513
Section MR
MR Matrix Representation 527
Section CB
EELT Eigenvalue and Eigenvector of a Linear Transformation 559
CBM Change-of-Basis Matrix 560
Section OD
UTM Upper Triangular Matrix 587
LTM Lower Triangular Matrix 587
NRML Normal Matrix 592
Section NLT
NLT Nilpotent Linear Transformation 597
JB Jordan Block 599
Section IS
IS Invariant Subspace 615
GEV Generalized Eigenvector 618
GES Generalized Eigenspace 619
LTR Linear Transformation Restriction 623
IE Index of an Eigenvalue 629
Section JCF
JCF Jordan Canonical Form641
Section CNO
CNE Complex Number Equality 666
CNA Complex Number Addition 666
CNM Complex Number Multiplication 666
CCN Conjugate of a Complex Number 667
MCN Modulus of a Complex Number 668
Section SET
SET Set 669
SSET Subset 669
ES Empty Set 669
SE Set Equality 670
C Cardinality 670
SU Set Union 671
SI Set Intersection 671
SC Set Complement 671
Section PT
Section F
F Field 781
IMP Integers Modulo a Prime 782
Section ROD
Section TD
xxiv DEFINITIONS

Theorems

Section WILASection SSLE
EOPSS Equation Operations Preserve Solution Sets 14
Section RREF
REMES Row-Equivalent Matrices represent Equivalent Systems 29
REMEF Row-Equivalent Matrix in Echelon Form 31
Section TSS
RCLS Recognizing Consistency of a Linear System 50
ISRN Inconsistent Systems, r and n 51
CSRN Consistent Systems, r and n 51
FVCS Free Variables for Consistent Systems 51
PSSLS Possible Solution Sets for Linear Systems 52
CMVEI Consistent, More Variables than Equations, Infinite solutions 52
Section HSE
HSC Homogeneous Systems are Consistent 57
HMVEI Homogeneous, More Variables than Equations, Infinite solutions 59
Section NM
NMRRI Nonsingular Matrices Row Reduce to the Identity matrix 68
NMTNS Nonsingular Matrices have Trivial Null Spaces 70
NMUS Nonsingular Matrices and Unique Solutions 70
NME1 Nonsingular Matrix Equivalences, Round 1 73
Section VO
VSPCV Vector Space Properties of Column Vectors 82
Section LC
SLSLC Solutions to Linear Systems are Linear Combinations 90
VFSLS Vector Form of Solutions to Linear Systems 96
PSPHS Particular Solution Plus Homogeneous Solutions 102
RREFU Reduced Row-Echelon Form is Unique 104
Section SS
SSNS Spanning Sets for Null Spaces 117
Section LI
LIVHS Linearly Independent Vectors and Homogeneous Systems 133
LIVRN Linearly Independent Vectors, r and n 135
MVSLD More Vectors than Size implies Linear Dependence 136
NMLIC Nonsingular Matrices have Linearly Independent Columns 137
NME2 Nonsingular Matrix Equivalences, Round 2 137
BNS Basis for Null Spaces 138
Section LDS
DLDS Dependency in Linearly Dependent Sets 149
BS Basis of a Span 154
Section O
CRVA Conjugation Respects Vector Addition 163
CRSM Conjugation Respects Vector Scalar Multiplication 163
IPVA Inner Product and Vector Addition 165
IPSM Inner Product and Scalar Multiplication 165
IPAC Inner Product is Anti-Commutative 166
IPN Inner Products and Norms 167
PIP Positive Inner Products 168
OSLI Orthogonal Sets are Linearly Independent 170
GSPCV Gram-Schmidt Procedure, Column Vectors 170
Section MO
VSPM Vector Space Properties of Matrices 179
SMS Symmetric Matrices are Square 181
TMA Transpose and Matrix Addition 181
TMSM Transpose and Matrix Scalar Multiplication 182
TT Transpose of a Transpose 182
CRMA Conjugation Respects Matrix Addition 183
CRMSM Conjugation Respects Matrix Scalar Multiplication 183
CCM Conjugate of the Conjugate of a Matrix 183
MCT Matrix Conjugation and Transposes 184
AMA Adjoint and Matrix Addition. 184
AMSM Adjoint and Matrix Scalar Multiplication 184
AA Adjoint of an Adjoint 185
Section MM
SLEMM Systems of Linear Equations as Matrix Multiplication 190
EMMVP Equal Matrices and Matrix-Vector Products 191
EMP Entries of Matrix Products 193
MMZM Matrix Multiplication and the Zero Matrix 195
MMIM Matrix Multiplication and Identity Matrix 195
MMDAA Matrix Multiplication Distributes Across Addition 196
MMSMM Matrix Multiplication and Scalar Matrix Multiplication 196
MMA Matrix Multiplication is Associative 196
MMIP Matrix Multiplication and Inner Products 197
MMCC Matrix Multiplication and Complex Conjugation 198
MMT Matrix Multiplication and Transposes 198
MMAD Matrix Multiplication and Adjoints 199
AIP Adjoint and Inner Product 199
HMIP Hermitian Matrices and Inner Products 200
Section MISLE
TTMI Two-by-Two Matrix Inverse 210
CINM Computing the Inverse of a Nonsingular Matrix 213
MIU Matrix Inverse is Unique 214
SS Socks and Shoes 214
MIMI Matrix Inverse of a Matrix Inverse 215
MIT Matrix Inverse of a Transpose 215
MISM Matrix Inverse of a Scalar Multiple 216
Section MINM
NPNT Nonsingular Product has Nonsingular Terms 221
OSIS One-Sided Inverse is Sufficient 222
NI Nonsingularity is Invertibility 223
NME3 Nonsingular Matrix Equivalences, Round 3 223
SNCM Solution with Nonsingular Coefficient Matrix 223
UMI Unitary Matrices are Invertible 225
CUMOS Columns of Unitary Matrices are Orthonormal Sets 225
UMPIP Unitary Matrices Preserve Inner Products 226
Section CRS
CSCS Column Spaces and Consistent Systems 232
BCS Basis of the Column Space 234
CSNM Column Space of a Nonsingular Matrix 236
NME4 Nonsingular Matrix Equivalences, Round 4 237
REMRS Row-Equivalent Matrices have equal Row Spaces 239
BRS Basis for the Row Space 240
CSRST Column Space, Row Space, Transpose 241
Section FS
PEEF Properties of Extended Echelon Form 258
FS Four Subsets 259
Section VS
ZVU Zero Vector is Unique 281
AIU Additive Inverses are Unique 282
ZSSM Zero Scalar in Scalar Multiplication 282
ZVSM Zero Vector in Scalar Multiplication 282
AISM Additive Inverses from Scalar Multiplication 283
SMEZV Scalar Multiplication Equals the Zero Vector 284
VAC Vector Addition Cancellation 284
CSSM Canceling Scalars in Scalar Multiplication 284
CVSM Canceling Vectors in Scalar Multiplication 285
Section S
TSS Testing Subsets for Subspaces 290
NSMS Null Space of a Matrix is a Subspace 293
SSS Span of a Set is a Subspace 295
CSMS Column Space of a Matrix is a Subspace 299
RSMS Row Space of a Matrix is a Subspace 299
LNSMS Left Null Space of a Matrix is a Subspace 300
Section LISS
VRRB Vector Representation Relative to a Basis 314
Section B
SUVB Standard Unit Vectors are a Basis 321
CNMB Columns of Nonsingular Matrix are a Basis 326
NME5 Nonsingular Matrix Equivalences, Round 5 327
COB Coordinates and Orthonormal Bases. 328
Section D
SSLD Spanning Sets and Linear Dependence 335
BIS Bases have Identical Sizes 338
DCM Dimension of \mathbb{C}^{m} 339
DP Dimension of P_{n} 339
DM Dimension of $M_{m n}$ 339
CRN Computing Rank and Nullity 341
RPNC Rank Plus Nullity is Columns 342
RNNM Rank and Nullity of a Nonsingular Matrix 343
NME6 Nonsingular Matrix Equivalences, Round 6 343
Section PD
ELIS Extending Linearly Independent Sets 349
G Goldilocks 349
PSSD Proper Subspaces have Smaller Dimension 352
EDYES Equal Dimensions Yields Equal Subspaces 352
RMRT Rank of a Matrix is the Rank of the Transpose 353
DFS Dimensions of Four Subspaces 354
DSFB Direct Sum From a Basis 355
DSFOS Direct Sum From One Subspace 356
DSZV Direct Sums and Zero Vectors 356
DSZI Direct Sums and Zero Intersection 357
DSLI Direct Sums and Linear Independence 358
DSD Direct Sums and Dimension 358
RDS Repeated Direct Sums 359
Section DM
EMDRO Elementary Matrices Do Row Operations 365
EMN Elementary Matrices are Nonsingular 367
NMPEM Nonsingular Matrices are Products of Elementary Matrices 367
DMST Determinant of Matrices of Size Two 369
DER Determinant Expansion about Rows 369
DT Determinant of the Transpose 370
DEC Determinant Expansion about Columns 370
Section PDM
DZRC Determinant with Zero Row or Column 377
DRCS Determinant for Row or Column Swap 377
DRCM Determinant for Row or Column Multiples 378
DERC Determinant with Equal Rows or Columns 379
DRCMA Determinant for Row or Column Multiples and Addition 379
DIM Determinant of the Identity Matrix 381
DEM Determinants of Elementary Matrices 382
DEMMM Determinants, Elementary Matrices, Matrix Multiplication 383
SMZD Singular Matrices have Zero Determinants 383
NME7 Nonsingular Matrix Equivalences, Round 7 384
DRMM Determinant Respects Matrix Multiplication 385
Section EE
EMHE Every Matrix Has an Eigenvalue 393
EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomials 397
EMS Eigenspace for a Matrix is a Subspace 397
EMNS Eigenspace of a Matrix is a Null Space 398
Section PEE
EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent 413
SMZE Singular Matrices have Zero Eigenvalues 414
NME8 Nonsingular Matrix Equivalences, Round 8 414
ESMM Eigenvalues of a Scalar Multiple of a Matrix 415
EOMP Eigenvalues Of Matrix Powers 415
EPM Eigenvalues of the Polynomial of a Matrix 415
EIM Eigenvalues of the Inverse of a Matrix 416
ETM Eigenvalues of the Transpose of a Matrix 417
ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs 417
DCP Degree of the Characteristic Polynomial 418
NEM Number of Eigenvalues of a Matrix 419
ME Multiplicities of an Eigenvalue 419
MNEM Maximum Number of Eigenvalues of a Matrix 421
HMRE Hermitian Matrices have Real Eigenvalues 421
HMOE Hermitian Matrices have Orthogonal Eigenvectors 422
Section SD
SER Similarity is an Equivalence Relation 426
SMEE Similar Matrices have Equal Eigenvalues 427
DC Diagonalization Characterization. 429
DMFE Diagonalizable Matrices have Full Eigenspaces 431
DED Distinct Eigenvalues implies Diagonalizable 433
Section LT
LTTZZ Linear Transformations Take Zero to Zero 445
MBLT Matrices Build Linear Transformations 446
MLTCV Matrix of a Linear Transformation, Column Vectors 448
LTLC Linear Transformations and Linear Combinations 449
LTDB Linear Transformation Defined on a Basis 450
SLTLT Sum of Linear Transformations is a Linear Transformation 454
MLTLT Multiple of a Linear Transformation is a Linear Transformation 455
VSLT Vector Space of Linear Transformations 456
CLTLT Composition of Linear Transformations is a Linear Transformation 456
Section ILT
KLTS Kernel of a Linear Transformation is a Subspace 469
KPI Kernel and Pre-Image 470
KILT Kernel of an Injective Linear Transformation 471
ILTLI Injective Linear Transformations and Linear Independence 472
ILTB Injective Linear Transformations and Bases 473
ILTD Injective Linear Transformations and Dimension 473
CILTI Composition of Injective Linear Transformations is Injective 474
Section SLT
RLTS Range of a Linear Transformation is a Subspace 484
RSLT Range of a Surjective Linear Transformation 485
SSRLT \quad Spanning Set for Range of a Linear Transformation 487
RPI Range and Pre-Image 488
SLTB Surjective Linear Transformations and Bases 488
SLTD Surjective Linear Transformations and Dimension 489
CSLTS Composition of Surjective Linear Transformations is Surjective 490
Section IVLT
ILTLT Inverse of a Linear Transformation is a Linear Transformation 498
IILT Inverse of an Invertible Linear Transformation 498
ILTIS Invertible Linear Transformations are Injective and Surjective 498
CIVLT Composition of Invertible Linear Transformations 499
ICLT Inverse of a Composition of Linear Transformations 500
IVSED Isomorphic Vector Spaces have Equal Dimension 502
ROSLT Rank Of a Surjective Linear Transformation 503
NOILT Nullity Of an Injective Linear Transformation 503
RPNDD Rank Plus Nullity is Domain Dimension 503
Section VR
VRLT Vector Representation is a Linear Transformation 513
VRI Vector Representation is Injective 518
VRS Vector Representation is Surjective 518
VRILT Vector Representation is an Invertible Linear Transformation. 519
CFDVS Characterization of Finite Dimensional Vector Spaces 519
IFDVS Isomorphism of Finite Dimensional Vector Spaces 519
CLI Coordinatization and Linear Independence 520
CSS Coordinatization and Spanning Sets 520
Section MR
FTMR Fundamental Theorem of Matrix Representation 529
MRSLT Matrix Representation of a Sum of Linear Transformations 533
MRMLT Matrix Representation of a Multiple of a Linear Transformation 533
MRCLT Matrix Representation of a Composition of Linear Transformations 534
KNSI Kernel and Null Space Isomorphism 537
RCSI Range and Column Space Isomorphism 540
IMR Invertible Matrix Representations 542
IMILT Invertible Matrices, Invertible Linear Transformation 544
NME9 Nonsingular Matrix Equivalences, Round 9 545
Section CB
CB Change-of-Basis 561
ICBM Inverse of Change-of-Basis Matrix 561
MRCB Matrix Representation and Change of Basis 566
SCB Similarity and Change of Basis 568
EER Eigenvalues, Eigenvectors, Representations 571
Section OD
PTMT Product of Triangular Matrices is Triangular 587
ITMT Inverse of a Triangular Matrix is Triangular 588
UTMR Upper Triangular Matrix Representation 588
OBUTR Orthonormal Basis for Upper Triangular Representation 591
OD Orthonormal Diagonalization 593
OBNM Orthonormal Bases and Normal Matrices 595
Section NLT
NJB Nilpotent Jordan Blocks 601
ENLT Eigenvalues of Nilpotent Linear Transformations 602
DNLT Diagonalizable Nilpotent Linear Transformations 603
KPLT Kernels of Powers of Linear Transformations 603
KPNLT Kernels of Powers of Nilpotent Linear Transformations 604
CFNLT Canonical Form for Nilpotent Linear Transformations 606
Section IS
EIS Eigenspaces are Invariant Subspaces 616
KPIS Kernels of Powers are Invariant Subspaces 617
GESIS Generalized Eigenspace is an Invariant Subspace 619
GEK Generalized Eigenspace as a Kernel 620
RGEN Restriction to Generalized Eigenspace is Nilpotent 628
MRRGE Matrix Representation of a Restriction to a Generalized Eigenspace 631
Section JCF
UTMR Upper Triangular Matrix Representation 633
GESD Generalized Eigenspace Decomposition 635
DGES Dimension of Generalized Eigenspaces 641
JCFLT Jordan Canonical Form for a Linear Transformation 642
CHT Cayley-Hamilton Theorem 655
Section CNO
PCNA Properties of Complex Number Arithmetic 666
CCRA Complex Conjugation Respects Addition 667
CCRM Complex Conjugation Respects Multiplication 667
CCT Complex Conjugation Twice 668
Section SET
Section PT
Section F
FIMP Field of Integers Modulo a Prime 783
Section ROD
ROD Rank One Decomposition 791
Section TD
TD Triangular Decomposition 797
TDEE Triangular Decomposition, Entry by Entry 801

Notation

M	A : Matrix	25		
MC	$[A]_{i j}$: Matrix Components	25		
CV	v: Column Vector	26		
CVC	$[\mathbf{v}]_{i}$: Column Vector Components	26		
ZCV	0: Zero Column Vector	26		
LSMR	$\mathcal{L S}(A, \mathbf{b})$: Matrix Representation of a Linear System	27		
AM	$A \mid \mathbf{b]}$: Augmented Matrix	28		
RO	$R_{i} \leftrightarrow R_{j}, \alpha R_{i}, \alpha R_{i}+R_{j}$: Row Operations	29		
RREFA	r, D, F : Reduced Row-Echelon Form Analysis	31		
NSM	$\mathcal{N}(A)$: Null Space of a Matrix	59		
IM	I_{m} : Identity Matrix	68		
VSCV	\mathbb{C}^{m} : Vector Space of Column Vectors	79		
CVE	$\mathbf{u}=\mathbf{v}$: Column Vector Equality	80		
CVA	$\mathbf{u}+\mathbf{v}$: Column Vector Addition	81		
CVSM	$\alpha \mathbf{u}$: Column Vector Scalar Multiplication	81		
SSV	$\langle S\rangle$: Span of a Set of Vectors.	111		
CCCV	$\overline{\mathbf{u}}$: Complex Conjugate of a Column Vector	163		
IP	$\langle\mathbf{u}, \mathbf{v}\rangle$: Inner Product	164		
NV	$\\|\mathbf{v}\\|$: Norm of a Vector	167		
VSM	$M_{m n}$: Vector Space of Matrices	177		
ME	$A=B$: Matrix Equality .	177		
MA	$A+B$: Matrix Addition	178		
MSM	αA : Matrix Scalar Multiplication	178		
ZM	O: Zero Matrix .	180		
TM	A^{t} : Transpose of a Matrix	180		
CCM	\bar{A} : Complex Conjugate of a Matrix	182		
A	A^{*} : Adjoint.	184		
MVP	Au: Matrix-Vector Product	189		
MI	A^{-1} : Matrix Inverse	208		
CSM	$\mathcal{C}(A)$: Column Space of a Matrix	231		
RSM	$\mathcal{R}(A)$: Row Space of a Matrix	237		
LNS	$\mathcal{L}(A)$: Left Null Space	253		
D	$\operatorname{dim}(V)$: Dimension	335		
NOM	$n(A)$: Nullity of a Matrix	341		
ROM	$r(A)$: Rank of a Matrix	341		
DS	$V=U \oplus W:$ Direct Sum	355		
ELEM	$E_{i, j}, E_{i}(\alpha), E_{i, j}(\alpha)$: Elementary Matrix	364		
SM	$A(i \mid j):$ SubMatrix	367		
DM	$\operatorname{det}(A),\|A\|$: Determinant of a Matrix	368		

LT $\quad T: U \mapsto V$: Linear Transformation 441
KLT $\mathcal{K}(T)$: Kernel of a Linear Transformation 468
RLT $\quad \mathcal{R}(T)$: Range of a Linear Transformation 483
ROLT $\quad r(T)$: Rank of a Linear Transformation. 502
NOLT $n(T)$: Nullity of a Linear Transformation 502
JB $\quad J_{n}(\lambda):$ Jordan Block 599
GES $\quad \mathcal{G}_{T}(\lambda):$ Generalized Eigenspace 619
LTR $\left.\quad T\right|_{U}$: Linear Transformation Restriction 623
IE $\quad \iota_{T}(\lambda)$: Index of an Eigenvalue 629
CNE $\quad \alpha=\beta$: Complex Number Equality 666
CNA $\quad \alpha+\beta$: Complex Number Addition 666
CNM $\quad \alpha \beta$: Complex Number Multiplication 666
CCN \bar{c} : Conjugate of a Complex Number 667
SETM $\quad x \in S$: Set Membership 669
SSET $\quad S \subseteq T:$ Subset 669
ES \emptyset : Empty Set 669
SE $\quad S=T$: Set Equality 670
C $\quad|S|:$ Cardinality 670
SU $S \cup T$: Set Union 671
SI $S \cap T$: Set Intersection 671
SC $\bar{S}:$ Set Complement 671

Examples

Section WILA
TMP Trail Mix Packaging 4
Section SSLE
STNE Solving two (nonlinear) equations 11
NSE Notation for a system of equations 12
TTS Three typical systems 12
US Three equations, one solution 16
IS Three equations, infinitely many solutions 17
Section RREF
AM A matrix 25
NSLE Notation for systems of linear equations 27
AMAA Augmented matrix for Archetype A 28
TREM Two row-equivalent matrices 29
USR Three equations, one solution, reprised 30
RREF A matrix in reduced row-echelon form 31
NRREF A matrix not in reduced row-echelon form 31
SAB Solutions for Archetype B 33
SAA Solutions for Archetype A 34
SAE Solutions for Archetype E 35
Section TSS
RREFN Reduced row-echelon form notation 47
ISSI Describing infinite solution sets, Archetype I 48
FDV Free and dependent variables 49
CFV Counting free variables 52
OSGMD One solution gives many, Archetype D 53
Section HSE
AHSAC Archetype C as a homogeneous system 57
HUSAB Homogeneous, unique solution, Archetype B 58
HISAA Homogeneous, infinite solutions, Archetype A 58
HISAD Homogeneous, infinite solutions, Archetype D 58
NSEAI Null space elements of Archetype I 60
CNS1 Computing a null space, \#1 60
CNS2 Computing a null space, \#2 61
S A singular matrix, Archetype A 67
NM A nonsingular matrix, Archetype B 68
IM An identity matrix 68
SRR Singular matrix, row-reduced 69
NSR Nonsingular matrix, row-reduced 69
NSS Null space of a singular matrix 69
NSNM Null space of a nonsingular matrix 70
Section VO
VESE Vector equality for a system of equations 80
VA Addition of two vectors in \mathbb{C}^{4} 81
CVSM \quad Scalar multiplication in \mathbb{C}^{5} 82
Section LC
TLC Two linear combinations in \mathbb{C}^{6} 87
ABLC Archetype B as a linear combination 88
AALC Archetype A as a linear combination 89
VFSAD Vector form of solutions for Archetype D 92
VFS Vector form of solutions 93
VFSAI Vector form of solutions for Archetype I 98
VFSAL Vector form of solutions for Archetype L 100
PSHS Particular solutions, homogeneous solutions, Archetype D 103
Section SS
ABS A basic span 111
SCAA Span of the columns of Archetype A 113
SCAB Span of the columns of Archetype B 115
SSNS Spanning set of a null space 117
NSDS Null space directly as a span 118
SCAD Span of the columns of Archetype D 119
Section LI
LDS \quad Linearly dependent set in \mathbb{C}^{5} 131
LIS Linearly independent set in \mathbb{C}^{5} 132
LIHS Linearly independent, homogeneous system 133
LDHS Linearly dependent, homogeneous system 134
LDRN \quad Linearly dependent, $r<n$ 135
LLDS \quad Large linearly dependent set in \mathbb{C}^{4} 135
LDCAA Linearly dependent columns in Archetype A 136
LICAB Linearly independent columns in Archetype B 136
LINSB Linearly independence of null space basis 137
NSLIL Null space spanned by linearly independent set, Archetype L 139
Section LDS
RSC5 Reducing a span in \mathbb{C}^{5} 150
COV Casting out vectors 151
RSSC4 \quad Reducing a span in \mathbb{C}^{4} 155
RES Reworking elements of a span 156

Section O

CSIP Computing some inner products 164
CNSV Computing the norm of some vectors 167
TOV Two orthogonal vectors 168
SUVOS Standard Unit Vectors are an Orthogonal Set 169
AOS An orthogonal set 169
GSTV Gram-Schmidt of three vectors 172
ONTV Orthonormal set, three vectors 173
ONFV Orthonormal set, four vectors 173
Section MO
MA \quad Addition of two matrices in M_{23} 178
MSM \quad Scalar multiplication in M_{32} 178
TM Transpose of a 3×4 matrix 180
SYM A symmetric 5×5 matrix 181
CCM Complex conjugate of a matrix 182
Section MM
MTV A matrix times a vector. 189
MNSLE Matrix notation for systems of linear equations. 190
MBC Money's best cities 190
PTM Product of two matrices 192
MMNC Matrix multiplication is not commutative 193
PTMEE Product of two matrices, entry-by-entry 194
Section MISLE
SABMI Solutions to Archetype B with a matrix inverse 207
MWIAA A matrix without an inverse, Archetype A 208
MI Matrix inverse 209
CMI Computing a matrix inverse 211
CMIAB Computing a matrix inverse, Archetype B 213
Section MINM
UM3 Unitary matrix of size 3 224
UPM Unitary permutation matrix 224
OSMC Orthonormal set from matrix columns. 225
Section CRS
CSMCS Column space of a matrix and consistent systems 231
MCSM Membership in the column space of a matrix 232
CSTW Column space, two ways 233
CSOCD Column space, original columns, Archetype D 234
CSAA Column space of Archetype A 235
CSAB Column space of Archetype B 236
RSAI Row space of Archetype I. 237
RSREM Row spaces of two row-equivalent matrices 240
IAS Improving a span 241
CSROI Column space from row operations, Archetype I 242
Section FS
LNS Left null space253
CSANS Column space as null space 254
SEEF Submatrices of extended echelon form 257
FS1 Four subsets, \#1. 263
FS2 Four subsets, \#2. 264
FSAG Four subsets, Archetype G 265
Section VS
VSCV The vector space \mathbb{C}^{m}. 277
VSM \quad The vector space of matrices, $M_{m n}$ 277
VSP The vector space of polynomials, P_{n} 277
VSIS The vector space of infinite sequences 278
VSF The vector space of functions 278
VSS The singleton vector space 279
CVS The crazy vector space 279
PCVS Properties for the Crazy Vector Space 283
Section S
SC3 A subspace of \mathbb{C}^{3} 289
SP4 A subspace of P_{4} 291
NSC2Z A non-subspace in \mathbb{C}^{2}, zero vector 292
NSC2A A non-subspace in \mathbb{C}^{2}, additive closure 292
NSC2S A non-subspace in \mathbb{C}^{2}, scalar multiplication closure 292
RSNS Recasting a subspace as a null space 294
LCM A linear combination of matrices 294
SSP Span of a set of polynomials 296
SM32 A subspace of M_{32} 297
Section LISS
LIP4 Linear independence in P_{4} 305
LIM32 Linear independence in M_{32} 307
LIC Linearly independent set in the crazy vector space 309
SSP4 Spanning set in P_{4} 310
SSM22 \quad Spanning set in M_{22} 311
SSC Spanning set in the crazy vector space 312
AVR A vector representation 313
Section B
BP \quad Bases for P_{n} 322
BM \quad A basis for the vector space of matrices 322
BSP4 A basis for a subspace of P_{4} 322
BSM22 A basis for a subspace of M_{22} 323
BC Basis for the crazy vector space 324
RSB Row space basis 324
RS Reducing a span 325
CABAK Columns as Basis, Archetype K 326
CROB4 Coordinatization relative to an orthonormal basis, \mathbb{C}^{4} 328
CROB3 Coordinatization relative to an orthonormal basis, \mathbb{C}^{3} 329
Section D
LDP4 Linearly dependent set in P_{4}338
DSM22 Dimension of a subspace of M_{22} 339
DSP4 Dimension of a subspace of P_{4} 340
DC Dimension of the crazy vector space 340
VSPUD Vector space of polynomials with unbounded degree 340
RNM Rank and nullity of a matrix 341
RNSM Rank and nullity of a square matrix 342
Section PD
BPR Bases for P_{n}, reprised 350
BDM22 Basis by dimension in M_{22} 351
SVP4 Sets of vectors in P_{4} 351
RRTI Rank, rank of transpose, Archetype I 353
SDS Simple direct sum 355
Section DM
EMRO Elementary matrices and row operations 364
SS Some submatrices 367
D33M Determinant of a 3×3 matrix 368
TCSD Two computations, same determinant 371
DUTM Determinant of an upper triangular matrix 372
Section PDM
DRO Determinant by row operations 380
ZNDAB Zero and nonzero determinant, Archetypes A and B 384
Section EE
SEE Some eigenvalues and eigenvectors 389
PM Polynomial of a matrix 391
CAEHW Computing an eigenvalue the hard way 394
CPMS3 Characteristic polynomial of a matrix, size 3 396
EMS3 Eigenvalues of a matrix, size 3 397
ESMS3 Eigenspaces of a matrix, size 3 398
EMMS4 Eigenvalue multiplicities, matrix of size 4 399
ESMS4 Eigenvalues, symmetric matrix of size 4 400
HMEM5 High multiplicity eigenvalues, matrix of size 5 401
CEMS6 Complex eigenvalues, matrix of size 6 402
DEMS5 Distinct eigenvalues, matrix of size 5 404
Section PEE
BDE Building desired eigenvalues 416
Section SD
SMS5 Similar matrices of size 5 425
SMS3 Similar matrices of size 3 426
EENS Equal eigenvalues, not similar 428
DAB Diagonalization of Archetype B 428
DMS3 Diagonalizing a matrix of size 3 430
NDMS4 A non-diagonalizable matrix of size 4 433
DEHD Distinct eigenvalues, hence diagonalizable 433
HPDM High power of a diagonalizable matrix 434
Section LT
ALT A linear transformation 442
NLT Not a linear transformation 443
LTPM Linear transformation, polynomials to matrices 444
LTPP Linear transformation, polynomials to polynomials 444
LTM Linear transformation from a matrix 445
MFLT Matrix from a linear transformation 447
MOLT Matrix of a linear transformation 448
LTDB1 Linear transformation defined on a basis 450
LTDB2 Linear transformation defined on a basis 451
LTDB3 Linear transformation defined on a basis 451
SPIAS Sample pre-images, Archetype S 452
STLT Sum of two linear transformations 454
SMLT Scalar multiple of a linear transformation 455
CTLT Composition of two linear transformations 457
Section ILT
NIAQ Not injective, Archetype Q 465
IAR Injective, Archetype R 466
IAV Injective, Archetype V 467
NKAO Nontrivial kernel, Archetype O 468
TKAP Trivial kernel, Archetype P 469
NIAQR Not injective, Archetype Q, revisited 471
NIAO Not injective, Archetype O 472
IAP Injective, Archetype P 472
NIDAU Not injective by dimension, Archetype U 473
Section SLT
NSAQ Not surjective, Archetype Q 479
SAR Surjective, Archetype R 480
SAV Surjective, Archetype V 481
RAO Range, Archetype O 483
FRAN Full range, Archetype N 484
NSAQR Not surjective, Archetype Q, revisited 486
NSAO Not surjective, Archetype O 486
SAN Surjective, Archetype N 487
BRLT A basis for the range of a linear transformation 488
NSDAT Not surjective by dimension, Archetype T 489
Section IVLT
AIVLT An invertible linear transformation 495
ANILT A non-invertible linear transformation 496
IVSAV Isomorphic vector spaces, Archetype V 501
Section VR
VRC4 Vector representation in \mathbb{C}^{4}. 515
VRP2 Vector representations in P_{2} 516
TIVS Two isomorphic vector spaces 519
CVSR Crazy vector space revealed 519
ASC A subspace characterized 519
MIVS Multiple isomorphic vector spaces 520
CP2 Coordinatizing in P_{2} 521
CM32 Coordinatization in M_{32} 522
Section MR
OLTTR One linear transformation, three representations 527
ALTMM A linear transformation as matrix multiplication 531
MPMR Matrix product of matrix representations 534
KVMR Kernel via matrix representation 538
RVMR Range via matrix representation 541
ILTVR Inverse of a linear transformation via a representation 543
Section CB
ELTBM Eigenvectors of linear transformation between matrices 559
ELTBP Eigenvectors of linear transformation between polynomials 560
CBP Change of basis with polynomials 561
CBCV Change of basis with column vectors 564
MRCM Matrix representations and change-of-basis matrices 566
MRBE Matrix representation with basis of eigenvectors 569
ELTT Eigenvectors of a linear transformation, twice 572
CELT Complex eigenvectors of a linear transformation 577
Section ODANM A normal matrix.592
Section NLT
NM64 Nilpotent matrix, size 6, index 4 597
NM62 Nilpotent matrix, size 6, index 2 598
JB4 Jordan block, size 4 599
NJB5 Nilpotent Jordan block, size 5 600
NM83 Nilpotent matrix, size 8, index 3 601
KPNLT Kernels of powers of a nilpotent linear transformation 605
CFNLT Canonical form for a nilpotent linear transformation 610
Section IS
TIS Two invariant subspaces 615
EIS Eigenspaces as invariant subspaces 617
ISJB Invariant subspaces and Jordan blocks 618
GE4 Generalized eigenspaces, dimension 4 domain 620
GE6 Generalized eigenspaces, dimension 6 domain 621
LTRGE Linear transformation restriction on generalized eigenspace 623
ISMR4 Invariant subspaces, matrix representation, dimension 4 domain 626
ISMR6 Invariant subspaces, matrix representation, dimension 6 domain 627
GENR6 Generalized eigenspaces and nilpotent restrictions, dimension 6 domain 629
Section JCF
JCF10 Jordan canonical form, size 10643
Section CNO
ACN Arithmetic of complex numbers 665
CSCN Conjugate of some complex numbers 667
MSCN Modulus of some complex numbers 668
Section SET
SETM Set membership 669
SSET Subset 669
CS Cardinality and Size 670
SU Set union 671
SI Set intersection 671
SC Set complement 672
Section PT
Section F
IM11 Integers mod 11 783
VSIM5 Vector space over integers mod 5 783
SM2Z7 \quad Symmetric matrices of size 2 over \mathbb{Z}_{7} 784
FF8 Finite field of size 8 784
Section ROD
ROD2 Rank one decomposition, size 2 793
ROD4 Rank one decomposition, size 4 794
Section TD
TD4 Triangular decomposition, size 4 799
TDSSE Triangular decomposition solves a system of equations 800
TDEE6 Triangular decomposition, entry by entry, size 6 803

Preface

This textbook is designed to teach the university mathematics student the basics of the subject of linear algebra and the techniques of formal mathematics. There are no prerequisites other than ordinary algebra, but it is probably best used by a student who has the "mathematical maturity" of a sophomore or junior. The text has two goals: to teach the fundamental concepts and techniques of matrix algebra and abstract vector spaces, and to teach the techniques associated with understanding the definitions and theorems forming a coherent area of mathematics. So there is an emphasis on worked examples of nontrivial size and on proving theorems carefully.

This book is copyrighted. This means that governments have granted the author a monopoly - the exclusive right to control the making of copies and derivative works for many years (too many years in some cases). It also gives others limited rights, generally referred to as "fair use," such as the right to quote sections in a review without seeking permission. However, the author licenses this book to anyone under the terms of the GNU Free Documentation License (GFDL), which gives you more rights than most copyrights (see Appendix GFDL 773). Loosely speaking, you may make as many copies as you like at no cost, and you may distribute these unmodified copies if you please. You may modify the book for your own use. The catch is that if you make modifications and you distribute the modified version, or make use of portions in excess of fair use in another work, then you must also license the new work with the GFDL. So the book has lots of inherent freedom, and no one is allowed to distribute a derivative work that restricts these freedoms. (See the license itself in the appendix for the exact details of the additional rights you have been given.)

Notice that initially most people are struck by the notion that this book is free (the French would say gratis, at no cost). And it is. However, it is more important that the book has freedom (the French would say liberté, liberty). It will never go "out of print" nor will there ever be trivial updates designed only to frustrate the used book market. Those considering teaching a course with this book can examine it thoroughly in advance. Adding new exercises or new sections has been purposely made very easy, and the hope is that others will contribute these modifications back for incorporation into the book, for the benefit of all.

Depending on how you received your copy, you may want to check for the latest version (and other news) at http://linear.ups.edu/.

Topics The first half of this text (through Chapter M 177) is basically a course in matrix algebra, though the foundation of some more advanced ideas is also being formed in these early sections. Vectors are presented exclusively as column vectors (since we also have the typographic freedom to avoid writing a column vector inline as the transpose of a row vector), and linear combinations are presented very early. Spans, null spaces and column spaces are also presented early, simply as sets, saving most of their vector space properties for later, so they are familiar objects before being scrutinized carefully.

You cannot do everything early, so in particular matrix multiplication comes later than usual. However, with a definition built on linear combinations of column vectors, it should seem more natural than the more frequent definition using dot products of rows with columns. And this delay emphasizes that linear algebra is built upon vector addition and scalar multiplication. Of course, matrix inverses must wait for matrix multiplication, but this does not prevent nonsingular matrices from occurring sooner. Vector space
properties are hinted at when vector and matrix operations are first defined, but the notion of a vector space is saved for a more axiomatic treatment later Chapter VS 275). Once bases and dimension have been explored in the context of vector spaces, linear transformations and their matrix representations follow. The goal of the book is to go as far as Jordan canonical form in the Core (Part C] [3]), with less central topics collected in the Topics (Part T 781). A third part will contain contributed applications, with notation and theorems integrated witht he earlier two parts (Part A [??]).

Linear algebra is an ideal subject for the novice mathematics student to learn how to develop a topic precisely, with all the rigor mathematics requires. Unfortunately, much of this rigor seems to have escaped the standard calculus curriculum, so for many university students this is their first exposure to careful definitions and theorems, and the expectation that they fully understand them, to say nothing of the expectation that they become proficient in formulating their own proofs. We have tried to make this text as helpful as possible with this transition. Every definition is stated carefully, set apart from the text. Likewise, every theorem is carefully stated, and almost every one has a complete proof. Theorems usually have just one conclusion, so they can be referenced precisely later. Definitions and theorems are cataloged in order of their appearance in the front of the book (Definitions xi, Theorems xiii), and alphabetical order in the index at the back. Along the way, there are discussions of some more important ideas relating to formulating proofs Proof Techniques [??]), which is part advice and part logic.

Origin and History This book is the result of the confluence of several related events and trends.

- At the University of Puget Sound we teach a one-semester, post-calculus linear algebra course to students majoring in mathematics, computer science, physics, chemistry and economics. Between January 1986 and June 2002, I taught this course seventeen times. For the Spring 2003 semester, I elected to convert my course notes to an electronic form so that it would be easier to incorporate the inevitable and nearly-constant revisions. Central to my new notes was a collection of stock examples that would be used repeatedly to illustrate new concepts. (These would become the Archetypes, Appendix A 685.) It was only a short leap to then decide to distribute copies of these notes and examples to the students in the two sections of this course. As the semester wore on, the notes began to look less like notes and more like a textbook.
- I used the notes again in the Fall 2003 semester for a single section of the course. Simultaneously, the textbook I was using came out in a fifth edition. A new chapter was added toward the start of the book, and a few additional exercises were added in other chapters. This demanded the annoyance of reworking my notes and list of suggested exercises to conform with the changed numbering of the chapters and exercises. I had an almost identical experience with the third course I was teaching that semester. I also learned that in the next academic year I would be teaching a course where my textbook of choice had gone out of print. I felt there had to be a better alternative to having the organization of my courses buffeted by the economics of traditional textbook publishing.
- I had used $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and the Internet for many years, so there was little to stand in the way of typesetting, distributing and "marketing" a free book. With recreational and professional interests in software development, I had long been fascinated by the open-source software movement, as exemplified by the success of GNU and Linux, though public-domain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ might also deserve mention. Obviously, this book is an attempt to carry over that model of creative endeavor to textbook publishing.
- As a sabbatical project during the Spring 2004 semester, I embarked on the current project of creating a freely-distributable linear algebra textbook. (Notice the implied financial support of the University of Puget Sound to this project.) Most of the material was written from scratch since changes in notation and approach made much of my notes of little use. By August 2004 I had written half the material necessary for our Math 232 course. The remaining half was written during the Fall 2004 semester as I taught another two sections of Math 232.
- While in early 2005 the book was complete enough to build a course around, work continued for the next two years to fill out the narrative, exercises and supplements. In this time, I taught four sections of the course, while three of my colleagues at the University of Puget Sound taught another four sections.

However, much of my motivation for writing this book is captured by the sentiments expressed by H.M. Cundy and A.P. Rollet in their Preface to the First Edition of Mathematical Models (1952), especially the final sentence,

This book was born in the classroom, and arose from the spontaneous interest of a Mathematical Sixth in the construction of simple models. A desire to show that even in mathematics one could have fun led to an exhibition of the results and attracted considerable attention throughout the school. Since then the Sherborne collection has grown, ideas have come from many sources, and widespread interest has been shown. It seems therefore desirable to give permanent form to the lessons of experience so that others can benefit by them and be encouraged to undertake similar work.

How To Use This Book Chapters, Theorems, etc. are not numbered in this book, but are instead referenced by acronyms. This means that Theorem XYZ will always be Theorem XYZ, no matter if new sections are added, or if an individual decides to remove certain other sections. Within sections, the subsections are acronyms that begin with the acronym of the section. So Subsection XYZ.AB is the subsection AB in Section XYZ. Acronyms are unique within their type, so for example there is just one Definition B 321, but there is also a Section B 321. At first, all the letters flying around may be confusing, but with time, you will begin to recognize the more important ones on sight. Furthermore, there are lists of theorems, examples, etc. in the front of the book, and an index that contains every acronym. If you are reading this in an electronic version (PDF or XML), you will see that all of the cross-references are hyperlinks, allowing you to click to a definition or example, and then use the back button to return. In printed versions, you must rely on the page numbers. However, note that page numbers are not permanent! Different editions, different margins, or different sized paper will affect what content is on each page. And in time, the addition of new material will affect the page numbering.

Chapter divisions are not critical to the organization of the book, as Sections are the main organizational unit. Sections are designed to be the subject of a single lecture or classroom session, though there is frequently more material than can be discussed and illustrated in a fifty-minute session. Consequently, the instructor will need to be selective about which topics to illustrate with other examples and which topics to leave to the student's reading. Many of the examples are meant to be large, such as using five or six variables in a system of equations, so the instructor may just want to "walk" a class through these examples. The book has been written with the idea that some may work through it independently, so the hope is that students can learn some of the more mechanical ideas on their own.

The highest level division of the book is the three Parts: Core, Topics, Applications. The Core is meant to carefully describe the basic ideas required of a first exposure to linear algebra. In the final sections of the Core, one should ask the question: which previous Sections could be removed without destroying the logical development of the subject? Hopefully, the answer is "none." The goal of the book is to finish the Core with the most general representations of linear transformations (Jordan and perhaps rational canonical forms). Of course, there will not be universal agreement on what should, or should not, constitute the Core, but the main idea will be to limit it to about forty sections. Topics is meant to contain those subjects that are important in linear algebra, and which would make profitable detours from the Core for those interested in pursuing them. Applications should illustrate the power and widespread applicability of linear algebra to as many fields as possible. The Archetypes Appendix A 685) cover many of the computational aspects of systems of linear equations, matrices and linear transformations. The student should consult them often, and this is encouraged by exercises that simply suggest the right properties to examine at the right time. But what is more important, they are a repository that contains enough variety to provide
abundant examples of key theorems, while also providing counterexamples to hypotheses or converses of theorems. The summary table at the start of this appendix should be especially useful.

I require my students to read each Section prior to the day's discussion on that section. For some students this is a novel idea, but at the end of the semester a few always report on the benefits, both for this course and other courses where they have adopted the habit. To make good on this requirement, each section contains three Reading Questions. These sometimes only require parroting back a key definition or theorem, or they require performing a small example of a key computation, or they ask for musings on key ideas or new relationships between old ideas. Answers are emailed to me the evening before the lecture. Given the flavor and purpose of these questions, including solutions seems foolish.

Formulating interesting and effective exercises is as difficult, or more so, than building a narrative. But it is the place where a student really learns the material. As such, for the student's benefit, complete solutions should be given. As the list of exercises expands, over time solutions will also be provided. Exercises and their solutions are referenced with a section name, followed by a dot, then a letter (C,M, or T) and a number. The letter ' C ' indicates a problem that is mostly computational in nature, while the letter ' T ' indicates a problem that is more theoretical in nature. A problem with a letter ' M ' is somewhere in between (middle, mid-level, median, middling), probably a mix of computation and applications of theorems. So Solution MO.T13 188 is a solution to an exercise in Section MO 177 that is theoretical in nature. The number ' 13 ' has no intrinsic meaning.

More on Freedom This book is freely-distributable under the terms of the GFDL, along with the underlying $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code from which the book is built. This arrangement provides many benefits unavailable with traditional texts.

- No cost, or low cost, to students. With no physical vessel (i.e. paper, binding), no transportation costs (Internet bandwidth being a negligible cost) and no marketing costs (evaluation and desk copies are free to all), anyone with an Internet connection can obtain it, and a teacher could make available paper copies in sufficient quantities for a class. The cost to print a copy is not insignificant, but is just a fraction of the cost of a traditional textbook when printing is handled by a print-on-demand service over the Internet. Students will not feel the need to sell back their book (nor should there be much of a market for used copies), and in future years can even pick up a newer edition freely.
- The book will not go out of print. No matter what, a teacher can maintain their own copy and use the book for as many years as they desire. Further, the naming schemes for chapters, sections, theorems, etc. is designed so that the addition of new material will not break any course syllabi or assignment list.
- With many eyes reading the book and with frequent postings of updates, the reliability should become very high. Please report any errors you find that persist into the latest version.
- For those with a working installation of the popular typesetting program $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, the book has been designed so that it can be customized. Page layouts, presence of exercises, solutions, sections or chapters can all be easily controlled. Furthermore, many variants of mathematical notation are achieved via $\mathrm{T}_{\mathrm{E}} \mathrm{m}$ macros. So by changing a single macro, one's favorite notation can be reflected throughout the text. For example, every transpose of a matrix is coded in the source as \transpose\{A\}, which when printed will yield A^{t}. However by changing the definition of \backslash transpose\{ \}, any desired alternative notation will then appear throughout the text instead.
- The book has also been designed to make it easy for others to contribute material. Would you like to see a section on symmetric bilinear forms? Consider writing one and contributing it to one of the Topics chapters. Does there need to be more exercises about the null space of a matrix? Send me some. Historical Notes? Contact me, and we will see about adding those in also.
- You have no legal obligation to pay for this book. It has been licensed with no expectation that you pay for it. You do not even have a moral obligation to pay for the book. Thomas Jefferson (1743 1826), the author of the United States Declaration of Independence, wrote,

If nature has made any one thing less susceptible than all others of exclusive property, it is the action of the thinking power called an idea, which an individual may exclusively possess as long as he keeps it to himself; but the moment it is divulged, it forces itself into the possession of every one, and the receiver cannot dispossess himself of it. Its peculiar character, too, is that no one possesses the less, because every other possesses the whole of it. He who receives an idea from me, receives instruction himself without lessening mine; as he who lights his taper at mine, receives light without darkening me. That ideas should freely spread from one to another over the globe, for the moral and mutual instruction of man, and improvement of his condition, seems to have been peculiarly and benevolently designed by nature, when she made them, like fire, expansible over all space, without lessening their density in any point, and like the air in which we breathe, move, and have our physical being, incapable of confinement or exclusive appropriation.

Letter to Isaac McPherson
August 13, 1813
However, if you feel a royalty is due the author, or if you would like to encourage the author, or if you wish to show others that this approach to textbook publishing can also bring financial compensation, then donations are gratefully received. Moreover, non-financial forms of help can often be even more valuable. A simple note of encouragement, submitting a report of an error, or contributing some exercises or perhaps an entire section for the Topics or Applications are all important ways you can acknowledge the freedoms accorded to this work by the copyright holder and other contributors.

Conclusion Foremost, I hope that students find their time spent with this book profitable. I hope that instructors find it flexible enough to fit the needs of their course. And I hope that everyone will send me their comments and suggestions, and also consider the myriad ways they can help (as listed on the book's website at http://linear.ups.edu).

Robert A. Beezer
Tacoma, Washington
December 2006

Acknowledgements

Many people have helped to make this book, and its freedoms, possible.
First, the time to create, edit and distribute the book has been provided implicitly and explicitly by the University of Puget Sound. A sabbatical leave Spring 2004 and a course release in Spring 2007 are two obvious examples of explicit support. The latter was provided by support from the Lind-VanEnkevort Fund. The university has also provided clerical support, computer hardware, network servers and bandwidth. Thanks to Dean Kris Bartanen and the chair of the Mathematics and Computer Science Department, Professor Martin Jackson, for their support, encouragement and flexibility.

My colleagues in the Mathematics and Computer Science Department have graciously taught our introductory linear algebra course using preliminary versions and have provided valuable suggestions that have improved the book immeasurably. Thanks to Professor Martin Jackson (v0.30), Professor David Scott (v0.70) and Professor Bryan Smith (v0.70, 0.80, v1.00).

University of Puget Sound librarians Lori Ricigliano, Elizabeth Knight and Jeanne Kimura provided valuable advice on production, and interesting conversations about copyrights.

Many aspects of the book have been influenced by insightful questions and creative suggestions from the students who have labored through the book in our courses. For example, the flashcards with theorems and definitions are a direct result of a student suggestion. I will single out a handful of students have been especially adept at finding and reporting mathematically significant typographical errors: Jake Linenthal, Christie Su, Kim Le, Sarah McQuate, Andy Zimmer, Travis Osborne, Andrew Tapay, Mark Shoemaker, Tasha Underhill, and Tim Zitzer.

I have tried to be as original as possible in the organization and presentation of this beautiful subject. However, I have been influenced by many years of teaching from another excellent textbook, Introduction to Linear Algebra by L.W. Johnson, R.D. Reiss and J.T. Arnold. When I have needed inspiration for the correct approach to particularly important proofs, I have learned to eventually consult two other textbooks. Sheldon Axler's Linear Algebra Done Right is a highly original exposition, while Ben Noble's Applied Linear Algebra frequently strikes just the right note between rigor and intuition. Noble's excellent book is highly recommended, even though its publication dates to 1969.

Finally, in every possible case, the production and distribution of this book has been accomplished with open-source software. The range of individuals and projects is far too great to pretend to list them all. The book's web site will maintain pointers to as many of these projects as possible.

Part C
 Core

Chapter SLE Systems of Linear Equations

We will motivate our study of linear algebra by studying solutions to systems of linear equations. While the focus of this chapter is on the practical matter of how to find, and describe, these solutions, we will also be setting ourselves up for more theoretical ideas that will appear later.

Section WILA
 What is Linear Algebra?

Subsection LA
 "Linear" + "Algebra"

The subject of linear algebra can be partially explained by the meaning of the two terms comprising the title. "Linear" is a term you will appreciate better at the end of this course, and indeed, attaining this appreciation could be taken as one of the primary goals of this course. However for now, you can understand it to mean anything that is "straight" or "flat." For example in the $x y$-plane you might be accustomed to describing straight lines (is there any other kind?) as the set of solutions to an equation of the form $y=m x+b$, where the slope m and the y-intercept b are constants that together describe the line. In multivariate calculus, you may have discussed planes. Living in three dimensions, with coordinates described by triples (x, y, z), they can be described as the set of solutions to equations of the form $a x+b y+c z=d$, where a, b, c, d are constants that together determine the plane. While we might describe planes as "flat," lines in three dimensions might be described as "straight." From a multivariate calculus course you will recall that lines are sets of points described by equations such as $x=3 t-4$, $y=-7 t+2, z=9 t$, where t is a parameter that can take on any value.

Another view of this notion of "flatness" is to recognize that the sets of points just described are solutions to equations of a relatively simple form. These equations involve addition and multiplication only. We will have a need for subtraction, and occasionally we will divide, but mostly you can describe "linear" equations as involving only addition and multiplication. Here are some examples of typical equations we will see in the next few sections:

$$
2 x+3 y-4 z=13 \quad 4 x_{1}+5 x_{2}-x_{3}+x_{4}+x_{5}=0 \quad 9 a-2 b+7 c+2 d=-7
$$

What we will not see are equations like:

$$
x y+5 y z=13 \quad x_{1}+x_{2}^{3} / x_{4}-x_{3} x_{4} x_{5}^{2}=0 \quad \tan (a b)+\log (c-d)=-7
$$

The exception will be that we will on occasion need to take a square root.

You have probably heard the word "algebra" frequently in your mathematical preparation for this course. Most likely, you have spent a good ten to fifteen years learning the algebra of the real numbers, along with some introduction to the very similar algebra of complex numbers (see Section CNO 665). However, there are many new algebras to learn and use, and likely linear algebra will be your second algebra. Like learning a second language, the necessary adjustments can be challenging at times, but the rewards are many. And it will make learning your third and fourth algebras even easier. Perhaps you have heard of "groups" and "rings" (or maybe you have studied them already), which are excellent examples of other algebras with very interesting properties and applications. In any event, prepare yourself to learn a new algebra and realize that some of the old rules you used for the real numbers may no longer apply to this new algebra you will be learning!

The brief discussion above about lines and planes suggests that linear algebra has an inherently geometric nature, and this is true. Examples in two and three dimensions can be used to provide valuable insight into important concepts of this course. However, much of the power of linear algebra will be the ability to work with "flat" or "straight" objects in higher dimensions, without concerning ourselves with visualizing the situation. While much of our intuition will come from examples in two and three dimensions, we will maintain an algebraic approach to the subject, with the geometry being secondary. Others may wish to switch this emphasis around, and that can lead to a very fruitful and beneficial course, but here and now we are laying our bias bare.

Subsection AA
 An Application
 -

We conclude this section with a rather involved example that will highlight some of the power and techniques of linear algebra. Work through all of the details with pencil and paper, until you believe all the assertions made. However, in this introductory example, do not concern yourself with how some of the results are obtained or how you might be expected to solve a similar problem. We will come back to this example later and expose some of the techniques used and properties exploited. For now, use your background in mathematics to convince yourself that everything said here really is correct.

Example TMP

Trail Mix Packaging

Suppose you are the production manager at a food-packaging plant and one of your product lines is trail mix, a healthy snack popular with hikers and backpackers, containing raisins, peanuts and hard-shelled chocolate pieces. By adjusting the mix of these three ingredients, you are able to sell three varieties of this item. The fancy version is sold in half-kilogram packages at outdoor supply stores and has more chocolate and fewer raisins, thus commanding a higher price. The standard version is sold in one kilogram packages in grocery stores and gas station mini-markets. Since the standard version has roughly equal amounts of each ingredient, it is not as expensive as the fancy version. Finally, a bulk version is sold in bins at grocery stores for consumers to load into plastic bags in amounts of their choosing. To appeal to the shoppers that like bulk items for their economy and healthfulness, this mix has many more raisins (at the expense of chocolate) and therefore sells for less.

Your production facilities have limited storage space and early each morning you are able to receive and store 380 kilograms of raisins, 500 kilograms of peanuts and 620 kilograms of chocolate pieces. As production manager, one of your most important duties is to decide how much of each version of trail mix to make every day. Clearly, you can have up to 1500 kilograms of raw ingredients available each day, so to be the most productive you will likely produce 1500 kilograms of trail mix each day. Also, you would prefer not to have any ingredients leftover each day, so that your final product is as fresh as possible and so that you can receive the maximum delivery the next morning. But how should these ingredients be allocated to the mixing of the bulk, standard and fancy versions?

First, we need a little more information about the mixes. Workers mix the ingredients in 15 kilogram batches, and each row of the table below gives a recipe for a 15 kilogram batch. There is some additional information on the costs of the ingredients and the price the manufacturer can charge for the different versions of the trail mix.

	Raisins $(\mathrm{kg} / \mathrm{batch})$	Peanuts $(\mathrm{kg} /$ batch $)$	Chocolate $(\mathrm{kg} / \mathrm{batch})$	Cost $(\$ / \mathrm{kg})$	Sale Price $(\$ / \mathrm{kg})$
Bulk	7	6	2	3.69	4.99
Standard	6	4	5	3.86	5.50
Fancy	2	5	8	4.45	6.50
Storage (kg)	380	500	620		
Cost $(\$ / \mathrm{kg})$	2.55	4.65	4.80		

As production manager, it is important to realize that you only have three decisions to make - the amount of bulk mix to make, the amount of standard mix to make and the amount of fancy mix to make. Everything else is beyond your control or is handled by another department within the company. Principally, you are also limited by the amount of raw ingredients you can store each day. Let us denote the amount of each mix to produce each day, measured in kilograms, by the variable quantities b, s and f. Your production schedule can be described as values of b, s and f that do several things. First, we cannot make negative quantities of each mix, so

$$
b \geq 0 \quad s \geq 0 \quad f \geq 0
$$

Second, if we want to consume all of our ingredients each day, the storage capacities lead to three (linear) equations, one for each ingredient,

$$
\begin{aligned}
\frac{7}{15} b+\frac{6}{15} s+\frac{2}{15} f & =380 \\
\frac{6}{15} b+\frac{4}{15} s+\frac{5}{15} f & =500 \\
\frac{2}{15} b+\frac{5}{15} s+\frac{8}{15} f & =620
\end{aligned}
$$

It happens that this system of three equations has just one solution. In other words, as production manager, your job is easy, since there is but one way to use up all of your raw ingredients making trail mix. This single solution is

$$
b=300 \mathrm{~kg} \quad s=300 \mathrm{~kg} \quad f=900 \mathrm{~kg} .
$$

We do not yet have the tools to explain why this solution is the only one, but it should be simple for you to verify that this is indeed a solution. (Go ahead, we will wait.) Determining solutions such as this, and establishing that they are unique, will be the main motivation for our initial study of linear algebra.

So we have solved the problem of making sure that we make the best use of our limited storage space, and each day use up all of the raw ingredients that are shipped to us. Additionally, as production manager, you must report weekly to the CEO of the company, and you know he will be more interested in the profit derived from your decisions than in the actual production levels. So you compute,

$$
300(4.99-3.69)+300(5.50-3.86)+900(6.50-4.45)=2727.00
$$

for a daily profit of $\$ 2,727$ from this production schedule. The computation of the daily profit is also beyond our control, though it is definitely of interest, and it too looks like a "linear" computation.

As often happens, things do not stay the same for long, and now the marketing department has suggested that your company's trail mix products standardize on every mix being one-third peanuts. Adjusting the peanut portion of each recipe by also adjusting the chocolate portion, leads to revised recipes, and slightly different costs for the bulk and standard mixes, as given in the following table.

	Raisins $(\mathrm{kg} / \mathrm{batch})$	Peanuts $(\mathrm{kg} / \mathrm{batch})$	Chocolate $(\mathrm{kg} / \mathrm{batch})$	Cost $(\$ / \mathrm{kg})$	Sale Price $(\$ / \mathrm{kg})$
Bulk	7	5	3	3.70	4.99
Standard	6	5	4	3.85	5.50
Fancy	2	5	8	4.45	6.50
Storage (kg)	380	500	620		
Cost $(\$ / \mathrm{kg})$	2.55	4.65	4.80		

In a similar fashion as before, we desire values of b, s and f so that

$$
b \geq 0 \quad s \geq 0 \quad f \geq 0
$$

and

$$
\begin{array}{rlrl}
\frac{7}{15} b+\frac{6}{15} s+\frac{2}{15} f & =380 & & \text { (raisins) } \tag{raisins}\\
\frac{5}{15} b+\frac{5}{15} s+\frac{5}{15} f=500 & & \text { (peanuts) } \\
\frac{3}{15} b+\frac{4}{15} s+\frac{8}{15} f=620 & & \text { (chocolate) }
\end{array}
$$

It now happens that this system of equations has infinitely many solutions, as we will now demonstrate. Let f remain a variable quantity. Then if we make f kilograms of the fancy mix, we will make $4 f-3300$ kilograms of the bulk mix and $-5 f+4800$ kilograms of the standard mix. Let us now verify that, for any choice of f, the values of $b=4 f-3300$ and $s=-5 f+4800$ will yield a production schedule that exhausts all of the day's supply of raw ingredients (right now, do not be concerned about how you might derive expressions like these for b and s). Grab your pencil and paper and play along.

$$
\begin{aligned}
& \frac{7}{15}(4 f-3300)+\frac{6}{15}(-5 f+4800)+\frac{2}{15} f=0 f+\frac{5700}{15} \\
&=380 \\
& \frac{5}{15}(4 f-3300)+\frac{5}{15}(-5 f+4800)+\frac{5}{15} f=0 f+\frac{7500}{15}=500 \\
& \frac{3}{15}(4 f-3300)+\frac{4}{15}(-5 f+4800)+\frac{8}{15} f=0 f+\frac{9300}{15}
\end{aligned}=620
$$

Convince yourself that these expressions for b and s allow us to vary f and obtain an infinite number of possibilities for solutions to the three equations that describe our storage capacities. As a practical matter, there really are not an infinite number of solutions, since we are unlikely to want to end the day with a fractional number of bags of fancy mix, so our allowable values of f should probably be integers. More importantly, we need to remember that we cannot make negative amounts of each mix! Where does this lead us? Positive quantities of the bulk mix requires that

$$
b \geq 0 \quad \Rightarrow \quad 4 f-3300 \geq 0 \quad \Rightarrow \quad f \geq 825
$$

Similarly for the standard mix,

$$
s \geq 0 \Rightarrow-5 f+4800 \geq 0 \Rightarrow f \leq 960
$$

So, as production manager, you really have to choose a value of f from the finite set

$$
\{825,826, \ldots, 960\}
$$

leaving you with 136 choices, each of which will exhaust the day's supply of raw ingredients. Pause now and think about which you would choose.

Recalling your weekly meeting with the CEO suggests that you might want to choose a production schedule that yields the biggest possible profit for the company. So you compute an expression for the profit based on your as yet undetermined decision for the value of f,

$$
(4 f-3300)(4.99-3.70)+(-5 f+4800)(5.50-3.85)+(f)(6.50-4.45)=-1.04 f+3663
$$

Since f has a negative coefficient it would appear that mixing fancy mix is detrimental to your profit and should be avoided. So you will make the decision to set daily fancy mix production at $f=825$. This has the effect of setting $b=4(825)-3300=0$ and we stop producing bulk mix entirely. So the remainder of your daily production is standard mix at the level of $s=-5(825)+4800=675$ kilograms and the resulting daily profit is $(-1.04)(825)+3663=2805$. It is a pleasant surprise that daily profit has risen to $\$ 2,805$, but this is not the most important part of the story. What is important here is that there are a large number of ways to produce trail mix that use all of the day's worth of raw ingredients and you were able to easily choose the one that netted the largest profit. Notice too how all of the above computations look "linear."

In the food industry, things do not stay the same for long, and now the sales department says that increased competition has led to the decision to stay competitive and charge just $\$ 5.25$ for a kilogram of the standard mix, rather than the previous $\$ 5.50$ per kilogram. This decision has no effect on the possibilities for the production schedule, but will affect the decision based on profit considerations. So you revisit just the profit computation, suitably adjusted for the new selling price of standard mix,

$$
(4 f-3300)(4.99-3.70)+(-5 f+4800)(5.25-3.85)+(f)(6.50-4.45)=0.21 f+2463
$$

Now it would appear that fancy mix is beneficial to the company's profit since the value of f has a positive coefficient. So you take the decision to make as much fancy mix as possible, setting $f=960$. This leads to $s=-5(960)+4800=0$ and the increased competition has driven you out of the standard mix market all together. The remainder of production is therefore bulk mix at a daily level of $b=4(960)-3300=540$ kilograms and the resulting daily profit is $0.21(960)+2463=2664.60$. A daily profit of $\$ 2,664.60$ is less than it used to be, but as production manager, you have made the best of a difficult situation and shown the sales department that the best course is to pull out of the highly competitive standard mix market completely.

This example is taken from a field of mathematics variously known by names such as operations research, systems science, or management science. More specifically, this is a perfect example of problems that are solved by the techniques of "linear programming."

There is a lot going on under the hood in this example. The heart of the matter is the solution to systems of linear equations, which is the topic of the next few sections, and a recurrent theme throughout this course. We will return to this example on several occasions to reveal some of the reasons for its behavior.

Subsection READ
 Reading Questions

1. Is the equation $x^{2}+x y+\tan \left(y^{3}\right)=0$ linear or not? Why or why not?
2. Find all solutions to the system of two linear equations $2 x+3 y=-8, x-y=6$.
3. Explain the importance of the procedures described in the trail mix application Subsection WILA.AA (4) from the point-of-view of the production manager.

Subsection EXC Exercises

C10 In Example TMP 4 the first table lists the cost (per kilogram) to manufacture each of the three varieties of trail mix (bulk, standard, fancy). For example, it costs $\$ 3.70$ to make one kilogram of the bulk variety. Re-compute each of these three costs and notice that the computations are linear in character. Contributed by Robert Beezer

M70 In Example TMP (4) two different prices were considered for marketing standard mix with the revised recipes (one-third peanuts in each recipe). Selling standard mix at $\$ 5.50$ resulted in selling the minimum amount of the fancy mix and no bulk mix. At $\$ 5.25$ it was best for profits to sell the maximum amount of fancy mix and then sell no standard mix. Determine a selling price for standard mix that allows for maximum profits while still selling some of each type of mix.
Contributed by Robert Beezer Solution 9

Subsection SOL Solutions

M70 Contributed by Robert Beezer Statement 8
If the price of standard mix is set at $\$ 5.292$, then the profit function has a zero coefficient on the variable quantity f. So, we can set f to be any integer quantity in $\{825,826, \ldots, 960\}$. All but the extreme values ($f=825, f=960$) will result in production levels where some of every mix is manufactured. No matter what value of f is chosen, the resulting profit will be the same, at $\$ 2,664.60$.

Section SSLE
 Solving Systems of Linear Equations

We will motivate our study of linear algebra by considering the problem of solving several linear equations simultaneously. The word "solve" tends to get abused somewhat, as in "solve this problem." When talking about equations we understand a more precise meaning: find all of the values of some variable quantities that make an equation, or several equations, true.

Subsection SLE
 Systems of Linear Equations

Example STNE

Solving two (nonlinear) equations

Suppose we desire the simultaneous solutions of the two equations,

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
-x+\sqrt{3} y & =0
\end{aligned}
$$

You can easily check by substitution that $x=\frac{\sqrt{3}}{2}, y=\frac{1}{2}$ and $x=-\frac{\sqrt{3}}{2}, y=-\frac{1}{2}$ are both solutions. We need to also convince ourselves that these are the only solutions. To see this, plot each equation on the $x y$-plane, which means to plot (x, y) pairs that make an individual equation true. In this case we get a circle centered at the origin with radius 1 and a straight line through the origin with slope $\frac{1}{\sqrt{3}}$. The intersections of these two curves are our desired simultaneous solutions, and so we believe from our plot that the two solutions we know already are indeed the only ones. We like to write solutions as sets, so in this case we write the set of solutions as

$$
S=\left\{\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)\right\}
$$

In order to discuss systems of linear equations carefully, we need a precise definition. And before we do that, we will introduce our periodic discussions about "Proof Techniques." Linear algebra is an excellent setting for learning how to read, understand and formulate proofs. But this is a difficult step in your development as a mathematician, so we have included a series of vignettes containing advice and explanations to help you along. These can be found back in Section PT 673 of Appendix P 665, and we will reference them as they become appropriate. Be sure to head back to the appendix to read this as they are introduced. With a definition next, now is the time for the first of our proof techniques. Head back to Section PT 673 of Appendix P 665 and study Technique D 673. We'll be right here when you get back. See you in a bit.

Definition SLE

System of Linear Equations

A system of linear equations is a collection of m equations in the variable quantities $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ of the form,

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
\begin{aligned}
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

where the values of $a_{i j}, b_{i}$ and x_{j} are from the set of complex numbers, \mathbb{C}.
Don't let the mention of the complex numbers, \mathbb{C}, rattle you. We will stick with real numbers exclusively for many more sections, and it will sometimes seem like we only work with integers! However, we want to leave the possibility of complex numbers open, and there will be occasions in subsequent sections where they are necessary. You can review the basic properties of complex numbers in Section CNO 665, but these facts will not be critical until we reach Section O 163. For now, here is an example to illustrate using the notation introduced in Definition SLE [11].

Example NSE

Notation for a system of equations

Given the system of linear equations,

$$
\begin{aligned}
x_{1}+2 x_{2}+\quad x_{4} & =7 \\
x_{1}+x_{2}+x_{3}-x_{4} & =3 \\
3 x_{1}+x_{2}+5 x_{3}-7 x_{4} & =1
\end{aligned}
$$

we have $n=4$ variables and $m=3$ equations. Also,

$$
\begin{array}{lllll}
a_{11}=1 & a_{12}=2 & a_{13}=0 & a_{14}=1 & b_{1}=7 \\
a_{21}=1 & a_{22}=1 & a_{23}=1 & a_{24}=-1 & b_{2}=3 \\
a_{31}=3 & a_{32}=1 & a_{33}=5 & a_{34}=-7 & b_{3}=1
\end{array}
$$

Additionally, convince yourself that $x_{1}=-2, x_{2}=4, x_{3}=2, x_{4}=1$ is one solution (but it is not the only one!).

We will often shorten the term "system of linear equations" to "system of equations" leaving the linear aspect implied.

Subsection PSS
 Possibilities for Solution Sets

The next example illustrates the possibilities for the solution set of a system of linear equations. We will not be too formal here, and the necessary theorems to back up our claims will come in subsequent sections. So read for feeling and come back later to revisit this example.

Example TTS

Three typical systems
Consider the system of two equations with two variables,

$$
\begin{aligned}
2 x_{1}+3 x_{2} & =3 \\
x_{1}-x_{2} & =4
\end{aligned}
$$

If we plot the solutions to each of these equations separately on the $x_{1} x_{2}$-plane, we get two lines, one with negative slope, the other with positive slope. They have exactly one point in common, $\left(x_{1}, x_{2}\right)=(3,-1)$, which is the solution $x_{1}=3, x_{2}=-1$. From the geometry, we believe that this is the only solution to the system of equations, and so we say it is unique.

Now adjust the system with a different second equation,

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=3 \\
& 4 x_{1}+6 x_{2}=6
\end{aligned}
$$

A plot of the solutions to these equations individually results in two lines, one on top of the other! There are infinitely many pairs of points that make both equations true. We will learn shortly how to describe this infinite solution set precisely (see Example SAA 34, Theorem VFSLS 96). Notice now how the second equation is just a multiple of the first.

One more minor adjustment provides a third system of linear equations,

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=3 \\
& 4 x_{1}+6 x_{2}=10
\end{aligned}
$$

A plot now reveals two lines with identical slopes, i.e. parallel lines. They have no points in common, and so the system has a solution set that is empty, $S=\emptyset$.

This example exhibits all of the typical behaviors of a system of equations. A subsequent theorem will tell us that every system of linear equations has a solution set that is empty, contains a single solution or contains infinitely many solutions (Theorem PSSLS [52). Example STNE [11 yielded exactly two solutions, but this does not contradict the forthcoming theorem. The equations in Example STNE [11] are not linear because they do not match the form of Definition SLE 11, and so we cannot apply Theorem PSSLS 52 in this case.

Subsection ESEO
 Equivalent Systems and Equation Operations

With all this talk about finding solution sets for systems of linear equations, you might be ready to begin learning how to find these solution sets yourself. We begin with our first definition that takes a common word and gives it a very precise meaning in the context of systems of linear equations.

Definition ESYS

Equivalent Systems

Two systems of linear equations are equivalent if their solution sets are equal.
Notice here that the two systems of equations could look very different (i.e. not be equal), but still have equal solution sets, and we would then call the systems equivalent. Two linear equations in two variables might be plotted as two lines that intersect in a single point. A different system, with three equations in two variables might have a plot that is three lines, all intersecting at a common point, with this common point identical to the intersection point for the first system. By our definition, we could then say these two very different looking systems of equations are equivalent, since they have identical solution sets. It is really like a weaker form of equality, where we allow the systems to be different in some respects, but we use the term equivalent to highlight the situation when their solution sets are equal.

With this definition, we can begin to describe our strategy for solving linear systems. Given a system of linear equations that looks difficult to solve, we would like to have an equivalent system that is easy to solve. Since the systems will have equal solution sets, we can solve the "easy" system and get the solution set to the "difficult" system. Here come the tools for making this strategy viable.

Definition EO

Equation Operations

Given a system of linear equations, the following three operations will transform the system into a different one, and each operation is known as an equation operation.

1. Swap the locations of two equations in the list of equations.
2. Multiply each term of an equation by a nonzero quantity.
3. Multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. Leave the first equation the same after this operation, but replace the second equation by the new one.

These descriptions might seem a bit vague, but the proof or the examples that follow should make it clear what is meant by each. We will shortly prove a key theorem about equation operations and solutions to linear systems of equations. We are about to give a rather involved proof, so a discussion about just what a theorem really is would be timely. Head back and read Technique T 674. In the theorem we are about to prove, the conclusion is that two systems are equivalent. By Definition ESYS 13 this translates to requiring that solution sets be equal for the two systems. So we are being asked to show that two sets are equal. How do we do this? Well, there is a very standard technique, and we will use it repeatedly through the course. If you have not done so already, head to Section SET 669 and familiarize yourself with sets, their operations, and especially the notion of set equality, Definition SE 670 and the nearby discussion about its use.

Theorem EOPSS

Equation Operations Preserve Solution Sets

If we apply one of the three equation operations of Definition EO 13 to a system of linear equations (Definition SLE 11), then the original system and the transformed system are equivalent.
Proof We take each equation operation in turn and show that the solution sets of the two systems are equal, using the definition of set equality (Definition SE 670).

1. It will not be our habit in proofs to resort to saying statements are "obvious," but in this case, it should be. There is nothing about the order in which we write linear equations that affects their solutions, so the solution set will be equal if the systems only differ by a rearrangement of the order of the equations.
2. Suppose $\alpha \neq 0$ is a number. Let's choose to multiply the terms of equation i by α to build the new system of equations,

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \\
& \vdots \\
& \alpha a_{i 1} x_{1}+\alpha a_{i 2} x_{2}+\alpha a_{i 3} x_{3}+\cdots+\alpha a_{i n} x_{n}=\alpha b_{i} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

Let S denote the solutions to the system in the statement of the theorem, and let T denote the solutions to the transformed system.
(a) Show $S \subseteq T$. Suppose $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n}\right) \in S$ is a solution to the original system. Ignoring the i-th equation for a moment, we know it makes all the other equations of the transformed system true. We also know that

$$
a_{i 1} \beta_{1}+a_{i 2} \beta_{2}+a_{i 3} \beta_{3}+\cdots+a_{i n} \beta_{n}=b_{i}
$$

which we can multiply by α to get

$$
\alpha a_{i 1} \beta_{1}+\alpha a_{i 2} \beta_{2}+\alpha a_{i 3} \beta_{3}+\cdots+\alpha a_{i n} \beta_{n}=\alpha b_{i}
$$

This says that the i-th equation of the transformed system is also true, so we have established that $\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n}\right) \in T$, and therefore $S \subseteq T$.
(b) Now show $T \subseteq S$. Suppose $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n}\right) \in T$ is a solution to the transformed system. Ignoring the i-th equation for a moment, we know it makes all the other equations of the original system true. We also know that

$$
\alpha a_{i 1} \beta_{1}+\alpha a_{i 2} \beta_{2}+\alpha a_{i 3} \beta_{3}+\cdots+\alpha a_{i n} \beta_{n}=\alpha b_{i}
$$

which we can multiply by $\frac{1}{\alpha}$, since $\alpha \neq 0$, to get

$$
a_{i 1} \beta_{1}+a_{i 2} \beta_{2}+a_{i 3} \beta_{3}+\cdots+a_{i n} \beta_{n}=b_{i}
$$

This says that the i-th equation of the original system is also true, so we have established that $\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n}\right) \in S$, and therefore $T \subseteq S$. Locate the key point where we required that $\alpha \neq 0$, and consider what would happen if $\alpha=0$.
3. Suppose α is a number. Let's choose to multiply the terms of equation i by α and add them to equation j in order to build the new system of equations,

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+\cdots+a_{3 n} x_{n}=b_{3} \\
\vdots \\
\left(\alpha a_{i 1}+a_{j 1}\right) x_{1}+\left(\alpha a_{i 2}+a_{j 2}\right) x_{2}+\cdots+\left(\alpha a_{i n}+a_{j n}\right) x_{n}=\alpha b_{i}+b_{j} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Let S denote the solutions to the system in the statement of the theorem, and let T denote the solutions to the transformed system.
(a) Show $S \subseteq T$. Suppose $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n}\right) \in S$ is a solution to the original system. Ignoring the j-th equation for a moment, we know this solution makes all the other equations of the transformed system true. Using the fact that the solution makes the i-th and j-th equations of the original system true, we find

$$
\begin{aligned}
\left(\alpha a_{i 1}\right. & \left.+a_{j 1}\right) \beta_{1}+\left(\alpha a_{i 2}+a_{j 2}\right) \beta_{2}+\cdots+\left(\alpha a_{i n}+a_{j n}\right) \beta_{n} \\
& =\left(\alpha a_{i 1} \beta_{1}+\alpha a_{i 2} \beta_{2}+\cdots+\alpha a_{i n} \beta_{n}\right)+\left(a_{j 1} \beta_{1}+a_{j 2} \beta_{2}+\cdots+a_{j n} \beta_{n}\right) \\
& =\alpha\left(a_{i 1} \beta_{1}+a_{i 2} \beta_{2}+\cdots+a_{i n} \beta_{n}\right)+\left(a_{j 1} \beta_{1}+a_{j 2} \beta_{2}+\cdots+a_{j n} \beta_{n}\right) \\
& =\alpha b_{i}+b_{j}
\end{aligned}
$$

This says that the j-th equation of the transformed system is also true, so we have established that $\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n}\right) \in T$, and therefore $S \subseteq T$.
(b) Now show $T \subseteq S$. Suppose $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n}\right) \in T$ is a solution to the transformed system. Ignoring the j-th equation for a moment, we know it makes all the other equations of the original system true. We then find

$$
\begin{aligned}
& a_{j 1} \beta_{1}+a_{j 2} \beta_{2}+\cdots+a_{j n} \beta_{n} \\
& \quad=a_{j 1} \beta_{1}+a_{j 2} \beta_{2}+\cdots+a_{j n} \beta_{n}+\alpha b_{i}-\alpha b_{i} \\
& \quad=a_{j 1} \beta_{1}+a_{j 2} \beta_{2}+\cdots+a_{j n} \beta_{n}+\left(\alpha a_{i 1} \beta_{1}+\alpha a_{i 2} \beta_{2}+\cdots+\alpha a_{i n} \beta_{n}\right)-\alpha b_{i} \\
& \quad=a_{j 1} \beta_{1}+\alpha a_{i 1} \beta_{1}+a_{j 2} \beta_{2}+\alpha a_{i 2} \beta_{2}+\cdots+a_{j n} \beta_{n}+\alpha a_{i n} \beta_{n}-\alpha b_{i} \\
& \quad=\left(\alpha a_{i 1}+a_{j 1}\right) \beta_{1}+\left(\alpha a_{i 2}+a_{j 2}\right) \beta_{2}+\cdots+\left(\alpha a_{i n}+a_{j n}\right) \beta_{n}-\alpha b_{i} \\
& \quad=\alpha b_{i}+b_{j}-\alpha b_{i} \\
& \quad=b_{j}
\end{aligned}
$$

This says that the j-th equation of the original system is also true, so we have established that $\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n}\right) \in S$, and therefore $T \subseteq S$.

Why didn't we need to require that $\alpha \neq 0$ for this row operation? In other words, how does the third statement of the theorem read when $\alpha=0$? Does our proof require some extra care when $\alpha=0$? Compare your answers with the similar situation for the second row operation. (See Exercise SSLE.T20 21.)

Theorem EOPSS 14 is the necessary tool to complete our strategy for solving systems of equations. We will use equation operations to move from one system to another, all the while keeping the solution set the same. With the right sequence of operations, we will arrive at a simpler equation to solve. The next two examples illustrate this idea, while saving some of the details for later.

Example US

Three equations, one solution

We solve the following system by a sequence of equation operations.

$$
\begin{array}{r}
x_{1}+2 x_{2}+2 x_{3}=4 \\
x_{1}+3 x_{2}+3 x_{3}=5 \\
2 x_{1}+6 x_{2}+5 x_{3}=6
\end{array}
$$

$\alpha=-1$ times equation 1 , add to equation 2 :

$$
\begin{array}{r}
x_{1}+2 x_{2}+2 x_{3}=4 \\
0 x_{1}+1 x_{2}+1 x_{3}=1 \\
2 x_{1}+6 x_{2}+5 x_{3}=6
\end{array}
$$

$\alpha=-2$ times equation 1 , add to equation 3:

$$
\begin{aligned}
x_{1}+2 x_{2}+2 x_{3} & =4 \\
0 x_{1}+1 x_{2}+1 x_{3} & =1 \\
0 x_{1}+2 x_{2}+1 x_{3} & =-2
\end{aligned}
$$

$\alpha=-2$ times equation 2 , add to equation 3:

$$
x_{1}+2 x_{2}+2 x_{3}=4
$$

$$
\begin{aligned}
& 0 x_{1}+1 x_{2}+1 x_{3}=1 \\
& 0 x_{1}+0 x_{2}-1 x_{3}=-4
\end{aligned}
$$

$\alpha=-1$ times equation 3 :

$$
\begin{aligned}
x_{1}+2 x_{2}+2 x_{3} & =4 \\
0 x_{1}+1 x_{2}+1 x_{3} & =1 \\
0 x_{1}+0 x_{2}+1 x_{3} & =4
\end{aligned}
$$

which can be written more clearly as

$$
\begin{array}{r}
x_{1}+2 x_{2}+2 x_{3}=4 \\
x_{2}+x_{3}=1 \\
x_{3}=4
\end{array}
$$

This is now a very easy system of equations to solve. The third equation requires that $x_{3}=4$ to be true. Making this substitution into equation 2 we arrive at $x_{2}=-3$, and finally, substituting these values of x_{2} and x_{3} into the first equation, we find that $x_{1}=2$. Note too that this is the only solution to this final system of equations, since we were forced to choose these values to make the equations true. Since we performed equation operations on each system to obtain the next one in the list, all of the systems listed here are all equivalent to each other by Theorem EOPSS 14 . Thus $\left(x_{1}, x_{2}, x_{3}\right)=(2,-3,4)$ is the unique solution to the original system of equations (and all of the other intermediate systems of equations listed as we transfomed one into another).

Example IS

Three equations, infinitely many solutions
The following system of equations made an appearance earlier in this section (Example NSE 12), where we listed one of its solutions. Now, we will try to find all of the solutions to this system. Don't concern yourself too much about why we choose this particular sequence of equation operations, just believe that the work we do is all correct.

$$
\begin{array}{r}
x_{1}+2 x_{2}+0 x_{3}+x_{4}=7 \\
x_{1}+x_{2}+x_{3}-x_{4}=3 \\
3 x_{1}+x_{2}+5 x_{3}-7 x_{4}=1
\end{array}
$$

$\alpha=-1$ times equation 1 , add to equation 2 :

$$
\begin{aligned}
x_{1}+2 x_{2}+0 x_{3}+x_{4} & =7 \\
0 x_{1}-x_{2}+x_{3}-2 x_{4} & =-4 \\
3 x_{1}+x_{2}+5 x_{3}-7 x_{4} & =1
\end{aligned}
$$

$\alpha=-3$ times equation 1 , add to equation 3 :

$$
\begin{aligned}
x_{1}+2 x_{2}+0 x_{3}+x_{4} & =7 \\
0 x_{1}-x_{2}+x_{3}-2 x_{4} & =-4 \\
0 x_{1}-5 x_{2}+5 x_{3}-10 x_{4} & =-20
\end{aligned}
$$

$\alpha=-5$ times equation 2 , add to equation 3 :

$$
x_{1}+2 x_{2}+0 x_{3}+x_{4}=7
$$

$$
\begin{aligned}
0 x_{1}-x_{2}+x_{3}-2 x_{4} & =-4 \\
0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4} & =0
\end{aligned}
$$

$\alpha=-1$ times equation 2 :

$$
\begin{aligned}
x_{1}+2 x_{2}+0 x_{3}+x_{4} & =7 \\
0 x_{1}+x_{2}-x_{3}+2 x_{4} & =4 \\
0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4} & =0
\end{aligned}
$$

$\alpha=-2$ times equation 2 , add to equation 1 :

$$
\begin{aligned}
x_{1}+0 x_{2}+2 x_{3}-3 x_{4} & =-1 \\
0 x_{1}+x_{2}-x_{3}+2 x_{4} & =4 \\
0 x_{1}+0 x_{2}+0 x_{3}+0 x_{4} & =0
\end{aligned}
$$

which can be written more clearly as

$$
\begin{aligned}
x_{1}+2 x_{3}-3 x_{4} & =-1 \\
x_{2}-x_{3}+2 x_{4} & =4 \\
0 & =0
\end{aligned}
$$

What does the equation $0=0$ mean? We can choose any values for $x_{1}, x_{2}, x_{3}, x_{4}$ and this equation will be true, so we only need to consider further the first two equations, since the third is true no matter what. We can analyze the second equation without consideration of the variable x_{1}. It would appear that there is considerable latitude in how we can choose x_{2}, x_{3}, x_{4} and make this equation true. Let's choose x_{3} and x_{4} to be anything we please, say $x_{3}=a$ and $x_{4}=b$.

Now we can take these arbitrary values for x_{3} and x_{4}, substitute them in equation 1 , to obtain

$$
\begin{aligned}
x_{1}+2 a-3 b & =-1 \\
x_{1} & =-1-2 a+3 b
\end{aligned}
$$

Similarly, equation 2 becomes

$$
\begin{aligned}
x_{2}-a+2 b & =4 \\
x_{2} & =4+a-2 b
\end{aligned}
$$

So our arbitrary choices of values for x_{3} and $x_{4}(a$ and $b)$ translate into specific values of x_{1} and x_{2}. The lone solution given in Example NSE [12 was obtained by choosing $a=2$ and $b=1$. Now we can easily and quickly find many more (infinitely more). Suppose we choose $a=5$ and $b=-2$, then we compute

$$
\begin{aligned}
& x_{1}=-1-2(5)+3(-2)=-17 \\
& x_{2}=4+5-2(-2)=13
\end{aligned}
$$

and you can verify that $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(-17,13,5,-2)$ makes all three equations true. The entire solution set is written as

$$
S=\{(-1-2 a+3 b, 4+a-2 b, a, b) \mid a \in \mathbb{C}, b \in \mathbb{C}\}
$$

It would be instructive to finish off your study of this example by taking the general form of the solutions given in this set and substituting them into each of the three equations and verify that they are true in each case Exercise SSLE.M40 21).

In the next section we will describe how to use equation operations to systematically solve any system of linear equations. But first, read one of our more important pieces of advice about speaking and writing mathematics. See Technique L 674.

Before attacking the exercises in this section, it will be helpful to read some advice on getting started on the construction of a proof. See Technique GS 675.

Subsection READ
 Reading Questions

1. How many solutions does the system of equations $3 x+2 y=4,6 x+4 y=8$ have? Explain your answer.
2. How many solutions does the system of equations $3 x+2 y=4,6 x+4 y=-2$ have? Explain your answer.
3. What do we mean when we say mathematics is a language?

Subsection EXC Exercises

C10 Find a solution to the system in Example IS 17 where $x_{3}=6$ and $x_{4}=2$. Find two other solutions to the system. Find a solution where $x_{1}=-17$ and $x_{2}=14$. How many possible answers are there to each of these questions?
Contributed by Robert Beezer
C20 Each archetype Appendix A 685) that is a system of equations begins by listing some specific solutions. Verify the specific solutions listed in the following archetypes by evaluating the system of equations with the solutions listed.
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703
Archetype E 707
Archetype F 711
Archetype G 716

Archetype H	720

Archetype I 724
Archetype J 728
Contributed by Robert Beezer
C50 A three-digit number has two properties. The tens-digit and the ones-digit add up to 5 . If the number is written with the digits in the reverse order, and then subtracted from the original number, the result is 792 . Use a system of equations to find all of the three-digit numbers with these properties.
Contributed by Robert Beezer Solution 22
M10 Each sentence below has at least two meanings. Identify the source of the double meaning, and rewrite the sentence (at least twice) to clearly convey each meaning.

1. They are baking potatoes.
2. He bought many ripe pears and apricots.
3. She likes his sculpture.
4. I decided on the bus.

Contributed by Robert Beezer Solution 22
M11 Discuss the diffence in meaning of each of the following three almost identical sentences, which all have the same grammatical structure. (These are due to Keith Devlin.)

1. She saw him in the park with a dog.
2. She saw him in the park with a fountain.
3. She saw him in the park with a telescope.

Contributed by Robert Beezer Solution 22

M12 The following sentence, due to Noam Chomsky, has a correct grammatical structure, but is meaningless. Critique its faults. "Colorless green ideas sleep furiously." (Chomsky, Noam. 1957. Syntactic Structures. The Hague/Paris: Mouton. p. 15)
Contributed by Robert Beezer Solution 22
M13 Read the following sentence and form a mental picture of the situation.
The baby cried and the mother picked it up.
What assumptions did you make about the situation?
Contributed by Robert Beezer Solution 23
M30 This problem appears in a middle-school mathematics textbook: Together Dan and Diane have $\$ 20$. Together Diane and Donna have $\$ 15$. How much do the three of them have in total? Problem 5-1.19, Transistion Mathematics, Second Edition, Scott Foresman Addison Wesley, 1998.
Contributed by David Beezer Solution 23
M40 Solutions to the system in Example IS 17 are given as

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(-1-2 a+3 b, 4+a-2 b, a, b)
$$

Evaluate the three equations of the original system with these expressions in a and b and verify that each equation is true, no matter what values are chosen for a and b.
Contributed by Robert Beezer
M70 We have seen in this section that systems of linear equations have limited possibilities for solution sets, and we will shortly prove Theorem PSSLS 52 that describes these possibilities exactly. This exercise will show that if we relax the requirement that our equations be linear, then the possibilities expand greatly. Consider a system of two equations in the two variables x and y, where the departure from linearity involves simply squaring the variables.

$$
\begin{aligned}
& x^{2}-y^{2}=1 \\
& x^{2}+y^{2}=4
\end{aligned}
$$

After solving this system of non-linear equations, replace the second equation in turn by $x^{2}+2 x+y^{2}=3$, $x^{2}+y^{2}=1, x^{2}-x+y^{2}=0,4 x^{2}+4 y^{2}=1$ and solve each resulting system of two equations in two variables.
Contributed by Robert Beezer Solution 23
T10 Technique D 673 asks you to formulate a definition of what it means for a whole number to be odd. What is your definition? (Don't say "the opposite of even.") Is 6 odd? Is 11 odd? Justify your answers by using your definition.
Contributed by Robert Beezer Solution 23
T20 Explain why the second equation operation in Definition EO 13 requires that the scalar be nonzero, while in the third equation operation this restriction on the scalar is not present.
Contributed by Robert Beezer Solution 23

Subsection SOL Solutions

C50 Contributed by Robert Beezer Statement 20
Let a be the hundreds digit, b the tens digit, and c the ones digit. Then the first condition says that $b+c=5$. The original number is $100 a+10 b+c$, while the reversed number is $100 c+10 b+a$. So the second condition is

$$
792=(100 a+10 b+c)-(100 c+10 b+a)=99 a-99 c
$$

So we arrive at the system of equations

$$
\begin{aligned}
b+c & =5 \\
99 a-99 c & =792
\end{aligned}
$$

Using equation operations, we arrive at the equivalent system

$$
\begin{aligned}
& a-c=8 \\
& b+c=5
\end{aligned}
$$

We can vary c and obtain infinitely many solutions. However, c must be a digit, restricting us to ten values ($0-9$). Furthermore, if $c>1$, then the first equation forces $a>9$, an impossibility. Setting $c=0$, yields 850 as a solution, and setting $c=1$ yields 941 as another solution.
M10 Contributed by Robert Beezer Statement 20

1. Is "baking" a verb or an adjective?

Potatoes are being baked.
Those are baking potatoes.
2. Are the apricots ripe, or just the pears? Parentheses could indicate just what the adjective "ripe" is meant to modify. Were there many apricots as well, or just many pears?
He bought many pears and many ripe apricots.
He bought apricots and many ripe pears.
3. Is "sculpture" a single physical object, or the sculptor's style expressed over many pieces and many years?
She likes his sculpture of the girl.
She likes his sculptural style.
4. Was a decision made while in the bus, or was the outcome of a decision to choose the bus. Would the sentence "I decided on the car," have a similar double meaning?
I made my decision while on the bus.
I decided to ride the bus.

M11 Contributed by Robert Beezer Statement 20
We know the dog belongs to the man, and the fountain belongs to the park. It is not clear if the telescope belongs to the man, the woman, or the park.
M12 Contributed by Robert Beezer Statement 21
In adjacent pairs the words are contradictory or inappropriate. Something cannot be both green and colorless, ideas do not have color, ideas do not sleep, and it is hard to sleep furiously.

M13 Contributed by Robert Beezer Statement 21
Did you assume that the baby and mother are human?
Did you assume that the baby is the child of the mother?
Did you assume that the mother picked up the baby as an attempt to stop the crying?
M30 Contributed by Robert Beezer Statement 21
If x, y and z represent the money held by Dan, Diane and Donna, then $y=15-z$ and $x=20-y=$ $20-(15-z)=5+z$. We can let z take on any value from 0 to 15 without any of the three amounts being negative, since presumably middle-schoolers are too young to assume debt.

Then the total capital held by the three is $x+y+z=(5+z)+(15-z)+z=20+z$. So their combined holdings can range anywhere from $\$ 20$ (Donna is broke) to $\$ 35$ (Donna is flush).

We will have more to say about this situation in Section TSS 47, and specifically Theorem CMVEI 52.

M70 Contributed by Robert Beezer Statement 21
The equation $x^{2}-y^{2}=1$ has a solution set by itself that has the shape of a hyperbola when plotted. The five different second equations have solution sets that are circles when plotted individually. Where the hyperbola and circle intersect are the solutions to the system of two equations. As the size and location of the circle varies, the number of intersections varies from four to none (in the order given). Sketching the relevant equations would be instructive, as was discussed in Example STNE 11.

The exact solution sets are (according to the choice of the second equation),

$$
\begin{array}{rll}
x^{2}+y^{2}=4: & \left\{\left(\sqrt{\frac{5}{2}}, \sqrt{\frac{3}{2}}\right),\left(-\sqrt{\frac{5}{2}}, \sqrt{\frac{3}{2}}\right),\left(\sqrt{\frac{5}{2}},-\sqrt{\frac{3}{2}}\right),\left(-\sqrt{\frac{5}{2}},-\sqrt{\frac{3}{2}}\right)\right\} \\
x^{2}+2 x+y^{2}=3: & \{(1,0),(-2, \sqrt{3}),(-2,-\sqrt{3})\} \\
x^{2}+y^{2}=1: & \{(1,0),(-1,0)\} \\
x^{2}-x+y^{2}=0: & \{(1,0)\} \\
4 x^{2}+4 y^{2}=1: & \}
\end{array}
$$

T10 Contributed by Robert Beezer Statement 21
We can say that an integer is odd if when it is divided by 2 there is a remainder of 1 . So 6 is not odd since $6=3 \times 2+0$, while 11 is odd since $11=5 \times 2+1$.
T20 Contributed by Robert Beezer Statement 21
Definition EO 13 is engineered to make Theorem EOPSS 14 true. If we were to allow a zero scalar to multiply an equation then that equation would be transformed to the equation $0=0$, which is true for any possible values of the variables. Any restrictions on the solution set imposed by the original equation would be lost.

However, in the third operation, it is allowed to choose a zero scalar, multiply an equation by this scalar and add the transformed equation to a second equation (leaving the first unchanged). The result? Nothing. The second equation is the same as it was before. So the theorem is true in this case, the two systems are equivalent. But in practice, this would be a silly thing to actually ever do! We still allow it though, in order to keep our theorem as general as possible.

Notice the location in the proof of Theorem EOPSS 14 where the expression $\frac{1}{\alpha}$ appears - this explains the prohibition on $\alpha=0$ in the second equation operation.

Section RREF
 Reduced Row-Echelon Form
 ■

After solving a few systems of equations, you will recognize that it doesn't matter so much what we call our variables, as opposed to what numbers act as their coefficients. A system in the variables x_{1}, x_{2}, x_{3} would behave the same if we changed the names of the variables to a, b, c and kept all the constants the same and in the same places. In this section, we will isolate the key bits of information about a system of equations into something called a matrix, and then use this matrix to systematically solve the equations. Along the way we will obtain one of our most important and useful computational tools.

Subsection MVNSE
 Matrix and Vector Notation for Systems of Equations

Definition M
 Matrix

An $m \times n$ matrix is a rectangular layout of numbers from \mathbb{C} having m rows and n columns. We will use upper-case Latin letters from the start of the alphabet (A, B, C, \ldots) to denote matrices and squared-off brackets to delimit the layout. Many use large parentheses instead of brackets - the distinction is not important. Rows of a matrix will be referenced starting at the top and working down (i.e. row 1 is at the top) and columns will be referenced starting from the left (i.e. column 1 is at the left). For a matrix A, the notation $[A]_{i j}$ will refer to the complex number in row i and column j of A.
(This definition contains Notation M.)
(This definition contains Notation MC.)
Be careful with this notation for individual entries, since it is easy to think that $[A]_{i j}$ refers to the whole matrix. It does not. It is just a number, but is a convenient way to talk about all the entries at once. This notation will get a heavy workout once we get to Chapter M 177.

Example AM
 A matrix

$$
B=\left[\begin{array}{cccc}
-1 & 2 & 5 & 3 \\
1 & 0 & -6 & 1 \\
-4 & 2 & 2 & -2
\end{array}\right]
$$

is a matrix with $m=3$ rows and $n=4$ columns. We can say that $[B]_{2,3}=-6$ while $[B]_{3,4}=-2$.
A calculator or computer language can be a convenient way to perform calculations with matrices. But first you have to enter the matrix. See: Computation ME.MMA 657 Computation ME.TI86 662 Computation ME.TI83 663] . When we do equation operations on system of equations, the names of the variables really aren't very important. x_{1}, x_{2}, x_{3}, or a, b, c, or x, y, z, it really doesn't matter. In this subsection we will describe some notation that will make it easier to describe linear systems, solve the systems and describe the solution sets. Here is a list of definitions, laden with notation.

Definition CV

Column Vector

A column vector of size m is an ordered list of m numbers, which is written in order vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column vector as simply a vector. Column vectors will be written in bold, usually with lower case Latin letter from the end of the alphabet such as $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}$. Some books like to write vectors with arrows, such as \vec{u}. Writing by hand, some
like to put arrows on top of the symbol, or a tilde underneath the symbol, as in u. To refer to the entry or component that is number i in the list that is the vector \mathbf{v} we write $[\mathbf{v}]_{i}$.
(This definition contains Notation CV.)
(This definition contains Notation CVC.)
Be careful with this notation. While the symbols $[\mathbf{v}]_{i}$ might look somewhat substantial, as an object this represents just one component of a vector, which is just a single complex number.

Definition ZCV

Zero Column Vector

The zero vector of size m is the column vector of size m where each entry is the number zero,

$$
\mathbf{0}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

or more compactly, $[\mathbf{0}]_{i}=0$ for $1 \leq i \leq m$.
(This definition contains Notation ZCV.)

Definition CM

Coefficient Matrix

For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the coefficient matrix is the $m \times n$ matrix

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & & & & \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]
$$

Definition VOC

Vector of Constants

For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the vector of constants is the column vector of size m

$$
\mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Definition SV

Solution Vector
For a system of linear equations,

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

the solution vector is the column vector of size n

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]
$$

The solution vector may do double-duty on occasion. It might refer to a list of variable quantities at one point, and subsequently refer to values of those variables that actually form a particular solution to that system.

Definition LSMR

Matrix Representation of a Linear System

If A is the coefficient matrix of a system of linear equations and \mathbf{b} is the vector of constants, then we will write $\mathcal{L S}(A, \mathbf{b})$ as a shorthand expression for the system of linear equations, which we will refer to as the matrix representation of the linear system.
(This definition contains Notation LSMR.)

Example NSLE

Notation for systems of linear equations

The system of linear equations

$$
\begin{aligned}
2 x_{1}+4 x_{2}-3 x_{3}+5 x_{4}+x_{5} & =9 \\
3 x_{1}+x_{2}+\quad x_{4}-3 x_{5} & =0 \\
-2 x_{1}+7 x_{2}-5 x_{3}+2 x_{4}+2 x_{5} & =-3
\end{aligned}
$$

has coefficient matrix

$$
A=\left[\begin{array}{ccccc}
2 & 4 & -3 & 5 & 1 \\
3 & 1 & 0 & 1 & -3 \\
-2 & 7 & -5 & 2 & 2
\end{array}\right]
$$

and vector of constants

$$
\mathbf{b}=\left[\begin{array}{c}
9 \\
0 \\
-3
\end{array}\right]
$$

and so will be referenced as $\mathcal{L S}(A, \mathbf{b})$.

Definition AM
 Augmented Matrix

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector of constants b. Then the augmented matrix of the system of equations is the $m \times(n+1)$ matrix whose first n columns are the columns of A and whose last column (number $n+1$) is the column vector \mathbf{b}. This matrix will be written as $[A \mid \mathbf{b}]$.
(This definition contains Notation AM.)
The augmented matrix represents all the important information in the system of equations, since the names of the variables have been ignored, and the only connection with the variables is the location of their coefficients in the matrix. It is important to realize that the augmented matrix is just that, a matrix, and not a system of equations. In particular, the augmented matrix does not have any "solutions," though it will be useful for finding solutions to the system of equations that it is associated with. (Think about your objects, and review Technique L 674.) However, notice that an augmented matrix always belongs to some system of equations, and vice versa, so it is tempting to try and blur the distinction between the two. Here's a quick example.

Example AMAA

Augmented matrix for Archetype A

Archetype A 689 is the following system of 3 equations in 3 variables.

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =1 \\
2 x_{1}+x_{2}+x_{3} & =8 \\
x_{1}+x_{2} & =5
\end{aligned}
$$

Here is its augmented matrix.

$$
\left[\begin{array}{cccc}
1 & -1 & 2 & 1 \\
2 & 1 & 1 & 8 \\
1 & 1 & 0 & 5
\end{array}\right]
$$

Subsection RO
 Row Operations

An augmented matrix for a system of equations will save us the tedium of continually writing down the names of the variables as we solve the system. It will also release us from any dependence on the actual names of the variables. We have seen how certain operations we can perform on equations Definition EO (13) will preserve their solutions (Theorem EOPSS (14). The next two definitions and the following theorem carry over these ideas to augmented matrices.

Definition RO
 Row Operations

The following three operations will transform an $m \times n$ matrix into a different matrix of the same size, and each is known as a row operation.

1. Swap the locations of two rows.
2. Multiply each entry of a single row by a nonzero quantity.
3. Multiply each entry of one row by some quantity, and add these values to the entries in the same columns of a second row. Leave the first row the same after this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

1. $R_{i} \leftrightarrow R_{j}$: Swap the location of rows i and j.
2. αR_{i} : Multiply row i by the nonzero scalar α.
3. $\alpha R_{i}+R_{j}$: Multiply row i by the scalar α and add to row j.
(This definition contains Notation RO.)

Definition REM

Row-Equivalent Matrices

Two matrices, A and B, are row-equivalent if one can be obtained from the other by a sequence of row operations.

Example TREM

Two row-equivalent matrices

The matrices

$$
A=\left[\begin{array}{cccc}
2 & -1 & 3 & 4 \\
5 & 2 & -2 & 3 \\
1 & 1 & 0 & 6
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 1 & 0 & 6 \\
3 & 0 & -2 & -9 \\
2 & -1 & 3 & 4
\end{array}\right]
$$

are row-equivalent as can be seen from

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & -1 & 3 & 4 \\
5 & 2 & -2 & 3 \\
1 & 1 & 0 & 6
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{cccc}
1 & 1 & 0 & 6 \\
5 & 2 & -2 & 3 \\
2 & -1 & 3 & 4
\end{array}\right] } \\
& \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{cccc}
1 & 1 & 0 & 6 \\
3 & 0 & -2 & -9 \\
2 & -1 & 3 & 4
\end{array}\right]
\end{aligned}
$$

We can also say that any pair of these three matrices are row-equivalent.
Notice that each of the three row operations is reversible (Exercise RREF.T10 40), so we do not have to be careful about the distinction between " A is row-equivalent to B " and " B is row-equivalent to A." (Exercise RREF.T11 40) The preceding definitions are designed to make the following theorem possible. It says that row-equivalent matrices represent systems of linear equations that have identical solution sets.

Theorem REMES

Row-Equivalent Matrices represent Equivalent Systems

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear equations that they represent are equivalent systems.

Proof If we perform a single row operation on an augmented matrix, it will have the same effect as if we did the analogous equation operation on the corresponding system of equations. By exactly the same
methods as we used in the proof of Theorem EOPSS 14 we can see that each of these row operations will preserve the set of solutions for the corresponding system of equations.

So at this point, our strategy is to begin with a system of equations, represent it by an augmented matrix, perform row operations (which will preserve solutions for the corresponding systems) to get a "simpler" augmented matrix, convert back to a "simpler" system of equations and then solve that system, knowing that its solutions are those of the original system. Here's a rehash of Example US 16 as an exercise in using our new tools.

Example USR

Three equations, one solution, reprised

We solve the following system using augmented matrices and row operations. This is the same system of equations solved in Example US 16 using equation operations.

$$
\begin{array}{r}
x_{1}+2 x_{2}+2 x_{3}=4 \\
x_{1}+3 x_{2}+3 x_{3}=5 \\
2 x_{1}+6 x_{2}+5 x_{3}=6
\end{array}
$$

Form the augmented matrix,

$$
A=\left[\begin{array}{llll}
1 & 2 & 2 & 4 \\
1 & 3 & 3 & 5 \\
2 & 6 & 5 & 6
\end{array}\right]
$$

and apply row operations,

$$
\begin{array}{ll}
\xrightarrow{-1 R_{1}+R_{2}}\left[\begin{array}{llll}
1 & 2 & 2 & 4 \\
0 & 1 & 1 & 1 \\
2 & 6 & 5 & 6
\end{array}\right] \\
\xrightarrow{-2 R_{2}+R_{3}}\left[\begin{array}{cccc}
1 & 2 & 2 & 4 \\
0 & 1 & 1 & 1 \\
0 & 0 & -1 & -4
\end{array}\right] & \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{cccc}
1 & 2 & 2 & 4 \\
0 & 1 & 1 & 1 \\
0 & 2 & 1 & -2
\end{array}\right] \\
& \xrightarrow{-1 R_{3}}\left[\begin{array}{cccc}
1 & 2 & 2 & 4 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]
\end{array}
$$

So the matrix

$$
B=\left[\begin{array}{llll}
1 & 2 & 2 & 4 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

is row equivalent to A and by Theorem REMES 29 the system of equations below has the same solution set as the original system of equations.

$$
\begin{aligned}
x_{1}+2 x_{2}+2 x_{3} & =4 \\
x_{2}+x_{3} & =1 \\
x_{3} & =4
\end{aligned}
$$

Solving this "simpler" system is straightforward and is identical to the process in Example US 16.

Subsection RREF

Reduced Row-Echelon Form

The preceding example amply illustrates the definitions and theorems we have seen so far. But it still leaves two questions unanswered. Exactly what is this "simpler" form for a matrix, and just how do we get it? Here's the answer to the first question, a definition of reduced row-echelon form.

Definition RREF

Reduced Row-Echelon Form

A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero lies below any row that contains a nonzero entry.
2. The leftmost nonzero entry of a row is equal to 1 .
3. The leftmost nonzero entry of a row is the only nonzero entry in its column.
4. Consider any two different leftmost nonzero entries, one located in row i, column j and the other located in row s, column t. If $s>i$, then $t>j$.
A row of only zero entries will be called a zero row and the leftmost nonzero entry of a nonzero row will be called a leading 1 . The number of nonzero rows will be denoted by r.

A column containing a leading 1 will be called a pivot column. The set of column indices for all of the pivot columns will be denoted by $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ where $d_{1}<d_{2}<d_{3}<\cdots<d_{r}$, while the columns that are not pivot colums will be denoted as $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ where $f_{1}<f_{2}<f_{3}<$ $\cdots<f_{n-r}$.
(This definition contains Notation RREFA.)
The principal feature of reduced row-echelon form is the pattern of leading 1's guaranteed by conditions (2) and (4), reminiscent of a flight of geese, or steps in a staircase, or water cascading down a mountain stream.

There are a number of new terms and notation introduced in this definition, which should make you suspect that this is an important definition. Given all there is to digest here, we will save the use of D and F until Section TSS 47 .

Example RREF

A matrix in reduced row-echelon form
The matrix C is in reduced row-echelon form.

$$
\left[\begin{array}{cccccccc}
1 & -3 & 0 & 6 & 0 & 0 & -5 & 9 \\
0 & 0 & 0 & 0 & 1 & 0 & 3 & -7 \\
0 & 0 & 0 & 0 & 0 & 1 & 7 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This matrix has two zero rows and three leading 1's. $r=3$. Columns 1,5 , and 6 are pivot columns.

Example NRREF

A matrix not in reduced row-echelon form
The matrix D is not in reduced row-echelon form, as it fails each of the four requirements once.

$$
\left[\begin{array}{ccccccccc}
1 & 0 & -3 & 0 & 6 & 0 & 7 & -5 & 9 \\
0 & 0 & 0 & 5 & 0 & 1 & 0 & 3 & -7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & -4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 7 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Our next theorem has a "constructive" proof. Learn about the meaning of this term in Technique C 675.

Theorem REMEF

Row-Equivalent Matrix in Echelon Form

Suppose A is a matrix. Then there is a matrix B so that

1. A and B are row-equivalent.
2. B is in reduced row-echelon form.

Proof Suppose that A has m rows and n columns. We will describe a process for converting A into B via row operations. This procedure is known as Gauss-Jordan elimination. Tracing through this procedure will be easier if you recognize that i refers to a row that is being converted, j refers to a column that is being converted, and r keeps track of the number of nonzero rows. Here we go.

1. Set $j=0$ and $r=0$.
2. Increase j by 1 . If j now equals $n+1$, then stop.
3. Examine the entries of A in column j located in rows $r+1$ through m.

If all of these entries are zero, then go to Step 2 .
4. Choose a row from rows $r+1$ through m with a nonzero entry in column j.

Let i denote the index for this row.
5 . Increase r by 1 .
6. Use the first row operation to swap rows i and r.
7. Use the second row operation to convert the entry in row r and column j to a 1 .
8. Use the third row operation with row r to convert every other entry of column j to zero.
9. Go to Step 2.

The result of this procedure is that the matrix A is converted to a matrix in reduced row-echelon form, which we will refer to as B. We need to now prove this claim by showing that the converted matrix has the requisite properties of Definition RREF 31. First, the matrix is only converted through row operations (Step 6, Step 7, Step 8), so A and B are row-equivalent (Definition REM 29).

It is a bit more work to be certain that B is in reduced row-echelon form. We claim that as we begin Step 2, the first j columns of the matrix are in reduced row-echelon form with r nonzero rows. Certainly this is true at the start when $j=0$, since the matrix has no columns and so vacuously meets the conditions of Definition RREF 31 with $r=0$ nonzero rows.

In Step 2 we increase j by 1 and begin to work with the next column. There are two possible outcomes for Step 3. Suppose that every entry of column j in rows $r+1$ through m is zero. Then with no changes we recognize that the first j columns of the matrix has its first r rows still in reduced-row echelon form, with the final $m-r$ rows still all zero.

Suppose instead that the entry in row i of column j is nonzero. Notice that since $r+1 \leq i \leq m$, we know the first $j-1$ entries of this row are all zero. Now, in Step 5 we increase r by 1 , and then embark on building a new nonzero row. In Step 6 we swap row r and row i. In the first j columns, the first $r-1$ rows remain in reduced row-echelon form after the swap. In Step 7 we multiply row r by a nonzero scalar, creating a 1 in the entry in column j of row i, and not changing any other rows. This new leading 1 is the first nonzero entry in its row, and is located to the right of all the leading 1's in the preceding $r-1$ rows. With Step 8 we insure that every entry in the column with this new leading 1 is now zero, as required for reduced row-echelon form. Also, rows $r+1$ through m are now all zeros in the first j columns, so we now only have one new nonzero row, consistent with our increase of r by one. Furthermore, since the first $j-1$ entries of row r are zero, the employment of the third row operation does not destroy any of the necessary features of rows 1 through $r-1$ and rows $r+1$ through m, in columns 1 through $j-1$.

So at this stage, the first j columns of the matrix are in reduced row-echelon form. When Step 2 finally increases j to $n+1$, then the procedure is completed and the full n columns of the matrix are in reduced row-echelon form, with the value of r correctly recording the number of nonzero rows.

The procedure given in the proof of Theorem REMEF 31 can be more precisely described using a pseudo-code version of a computer program, as follows:

```
input \(m, n\) and \(A\)
\(r \leftarrow 0\)
for \(j \leftarrow 1\) to \(n\)
    \(i \leftarrow r+1\)
    while \(i \leq m\) and \([A]_{i j}=0\)
        \(i \leftarrow i+1\)
    if \(i \neq m+1\)
        \(r \leftarrow r+1\)
        swap rows \(i\) and \(r\) of \(A\) (row op 1)
        scale entry in row \(r\), column \(j\) of \(A\) to a leading 1 (row op 2)
        for \(k \leftarrow 1\) to \(m, k \neq r\)
            zero out entry in row \(k\), column \(j\) of \(A\) (row op 3 using row \(r\) )
output \(r\) and \(A\)
```

Notice that as a practical matter the "and" used in the conditional statement of the while statement should be of the "short-circuit" variety so that the array access that follows is not out-of-bounds.

So now we can put it all together. Begin with a system of linear equations (Definition SLE (11), and represent the system by its augmented matrix (Definition AM [28]). Use row operations (Definition RO [28) to convert this matrix into reduced row-echelon form (Definition RREF 31), using the procedure outlined in the proof of Theorem REMEF 31]. Theorem REMEF 31] also tells us we can always accomplish this, and that the result is row-equivalent (Definition REM 29]) to the original augmented matrix. Since the matrix in reduced-row echelon form has the same solution set, we can analyze the row-reduced version instead of the original matrix, viewing it as the augmented matrix of a different system of equations. The beauty of augmented matrices in reduced row-echelon form is that the solution sets to their corresponding systems can be easily determined, as we will see in the next few examples and in the next section.

We will see through the course that almost every interesting property of a matrix can be discerned by looking at a row-equivalent matrix in reduced row-echelon form. For this reason it is important to know that the matrix B guaranteed to exist by Theorem REMEF 31 is also unique. We could prove this result right now, but the proof will be much easier to state and understand a few sections from now when we have a few more definitions. However, the proof we will provide does not explicitly require any more theorems than we have right now, so we can, and will, make use of the uniqueness of B between now and then by citing Theorem RREFU [104. You might want to jump forward now to read the statement of this important theorem and save studying its proof for later, once the rest of us get there.

We will now run through some examples of using these definitions and theorems to solve some systems of equations. From now on, when we have a matrix in reduced row-echelon form, we will mark the leading 1's with a small box. In your work, you can box 'em, circle 'em or write 'em in a different color - just identify 'em somehow. This device will prove very useful later and is a very good habit to start developing right now.

Example SAB

Solutions for Archetype B

Let's find the solutions to the following system of equations,

$$
\begin{aligned}
-7 x_{1}-6 x_{2}-12 x_{3} & =-33 \\
5 x_{1}+5 x_{2}+7 x_{3} & =24
\end{aligned}
$$

$$
x_{1}+4 x_{3}=5
$$

First, form the augmented matrix,

$$
\left[\begin{array}{cccc}
-7 & -6 & -12 & -33 \\
5 & 5 & 7 & 24 \\
1 & 0 & 4 & 5
\end{array}\right]
$$

and work to reduced row-echelon form, first with $i=1$,

$$
\begin{array}{ll}
\xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{cccc}
1 & 0 & 4 & 5 \\
5 & 5 & 7 & 24 \\
-7 & -6 & -12 & -33
\end{array}\right] \\
\xrightarrow{7 R_{1}+R_{3}}\left[\begin{array}{cccc}
1 & 0 & 4 & 5 \\
0 & 5 & -13 & -1 \\
0 & -6 & 16 & 2
\end{array}\right]
\end{array}
$$

Now, with $i=2$,

$$
\xrightarrow{\frac{1}{5} R_{2}}\left[\begin{array}{cccc}
11 & 0 & 4 & 5 \\
0 & 1 & \frac{-13}{5} & \frac{-1}{5} \\
0 & -6 & 16 & 2
\end{array}\right] \quad \xrightarrow{6 R_{2}+R_{3}}\left[\begin{array}{cccc}
\hline 1 & 0 & 4 & 5 \\
0 & 1 & \frac{-13}{5} & \frac{-1}{5} \\
0 & 0 & \frac{2}{5} & \frac{4}{5}
\end{array}\right]
$$

And finally, with $i=3$,

$$
\begin{aligned}
\\
\xrightarrow{\frac{5}{2} R_{3}}\left[\begin{array}{cccc}
\boxed{1} & 0 & 4 & 5 \\
0 & \boxed{1} & \frac{-13}{5} & \frac{-1}{5} \\
0 & 0 & 1 & 2
\end{array}\right] \\
\xrightarrow{-4 R_{3}+R_{1}}\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

This is now the augmented matrix of a very simple system of equations, namely $x_{1}=-3, x_{2}=5, x_{3}=2$, which has an obvious solution. Furthermore, we can see that this is the only solution to this system, so we have determined the entire solution set,

$$
S=\left\{\left[\begin{array}{c}
-3 \\
5 \\
2
\end{array}\right]\right\}
$$

You might compare this example with the procedure we used in Example US 16.
Archetypes A and B are meant to contrast each other in many respects. So let's solve Archetype A now.

Example SAA

Solutions for Archetype A
Let's find the solutions to the following system of equations,

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =1 \\
2 x_{1}+x_{2}+x_{3} & =8 \\
x_{1}+x_{2} & =5
\end{aligned}
$$

First, form the augmented matrix,

$$
\left[\begin{array}{cccc}
1 & -1 & 2 & 1 \\
2 & 1 & 1 & 8 \\
1 & 1 & 0 & 5
\end{array}\right]
$$

and work to reduced row-echelon form, first with $i=1$,

$$
\xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{cccc}
1 & -1 & 2 & 1 \\
0 & 3 & -3 & 6 \\
1 & 1 & 0 & 5
\end{array}\right] \quad \xrightarrow{-1 R_{1}+R_{3}}\left[\begin{array}{cccc}
\lfloor 1 & -1 & 2 & 1 \\
0 & 3 & -3 & 6 \\
0 & 2 & -2 & 4
\end{array}\right]
$$

Now, with $i=2$,

$$
\begin{array}{ll}
\xrightarrow{\frac{1}{3} R_{2}}\left[\begin{array}{cccc}
{\left[\begin{array}{ccc}
1 & -1 & 2
\end{array}\right.} & 1 \\
0 & 1 & -1 & 2 \\
0 & 2 & -2 & 4
\end{array}\right] \\
\xrightarrow{-2 R_{2}+R_{3}}\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

The system of equations represented by this augmented matrix needs to be considered a bit differently than that for Archetype B. First, the last row of the matrix is the equation $0=0$, which is always true, so it imposes no restrictions on our possible solutions and therefore we can safely ignore it as we analyze the other two equations. These equations are,

$$
\begin{aligned}
& x_{1}+x_{3}=3 \\
& x_{2}-x_{3}=2 .
\end{aligned}
$$

While this system is fairly easy to solve, it also appears to have a multitude of solutions. For example, choose $x_{3}=1$ and see that then $x_{1}=2$ and $x_{2}=3$ will together form a solution. Or choose $x_{3}=0$, and then discover that $x_{1}=3$ and $x_{2}=2$ lead to a solution. Try it yourself: pick any value of x_{3} you please, and figure out what x_{1} and x_{2} should be to make the first and second equations (respectively) true. We'll wait while you do that. Because of this behavior, we say that x_{3} is a "free" or "independent" variable. But why do we vary x_{3} and not some other variable? For now, notice that the third column of the augmented matrix does not have any leading 1's in its column. With this idea, we can rearrange the two equations, solving each for the variable that corresponds to the leading 1 in that row.

$$
\begin{aligned}
& x_{1}=3-x_{3} \\
& x_{2}=2+x_{3}
\end{aligned}
$$

To write the set of solution vectors in set notation, we have

$$
S=\left\{\left.\left[\begin{array}{c}
3-x_{3} \\
2+x_{3} \\
x_{3}
\end{array}\right] \right\rvert\, x_{3} \in \mathbb{C}\right\}
$$

We'll learn more in the next section about systems with infinitely many solutions and how to express their solution sets. Right now, you might look back at Example IS 17.

Example SAE

Solutions for Archetype \mathbf{E}
Let's find the solutions to the following system of equations,

$$
2 x_{1}+x_{2}+7 x_{3}-7 x_{4}=2
$$

$$
\begin{array}{r}
-3 x_{1}+4 x_{2}-5 x_{3}-6 x_{4}=3 \\
x_{1}+x_{2}+4 x_{3}-5 x_{4}=2
\end{array}
$$

First, form the augmented matrix,

$$
\left[\begin{array}{ccccc}
2 & 1 & 7 & -7 & 2 \\
-3 & 4 & -5 & -6 & 3 \\
1 & 1 & 4 & -5 & 2
\end{array}\right]
$$

and work to reduced row-echelon form, first with $i=1$,

$$
\begin{array}{lll}
\xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{ccccc}
1 & 1 & 4 & -5 & 2 \\
-3 & 4 & -5 & -6 & 3 \\
2 & 1 & 7 & -7 & 2
\end{array}\right] \\
\xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccccc}
1 & 1 & 4 & -5 & 2 \\
0 & 7 & 7 & -21 & 9 \\
0 & -1 & -1 & 3 & -2
\end{array}\right]
\end{array}
$$

Now, with $i=2$,

$$
\begin{aligned}
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccccc}
{\left[\begin{array}{cccc}
1 & 1 & 4 & -5 \\
0 & -1 & -1 & 3 \\
\hline
\end{array}\right.} \\
0 & 7 & 7 & -21 & 9
\end{array}\right] \\
& \xrightarrow{-1 R_{2}+R_{1}}\left[\begin{array}{lllll}
1 & 0 & 3 & -2 & 0 \\
0 & 1 & 1 & -3 & 2 \\
0 & 7 & 7 & -21 & 9
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{-1 R_{2}}\left[\begin{array}{ccccc}
{\left[\begin{array}{cccc}
1 & 1 & 4 & -5 \\
0 & 1 & 1 & -3 \\
2 \\
0 & 7 & 7 & -21
\end{array}\right.} & 9
\end{array}\right] \\
& \xrightarrow{-7 R_{2}+R_{3}}\left[\begin{array}{ccccc}
1 & 0 & 3 & -2 & 0 \\
0 & 1 & 1 & -3 & 2 \\
0 & 0 & 0 & 0 & -5
\end{array}\right]
\end{aligned}
$$

And finally, with $i=3$,

$$
\xrightarrow{-\frac{1}{5} R_{3}}\left[\begin{array}{ccccc}
1 & 0 & 3 & -2 & 0 \\
0 & \boxed{1} & 1 & -3 & 2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \xrightarrow{-2 R_{3}+R_{2}}\left[\begin{array}{ccccc}
\left.\begin{array}{|cccc}
1 & 0 & 3 & -2 \\
0 \\
0 & \boxed{1} & 1 & -3 \\
0 & 0 & 0 & 0 \\
\hline
\end{array}\right]
\end{array}\right]
$$

Let's analyze the equations in the system represented by this augmented matrix. The third equation will read $0=1$. This is patently false, all the time. No choice of values for our variables will ever make it true. We're done. Since we cannot even make the last equation true, we have no hope of making all of the equations simultaneously true. So this system has no solutions, and its solution set is the empty set, $\emptyset=\{ \}$ Definition ES 669).

Notice that we could have reached this conclusion sooner. After performing the row operation $-7 R_{2}+$ R_{3}, we can see that the third equation reads $0=-5$, a false statement. Since the system represented by this matrix has no solutions, none of the systems represented has any solutions. However, for this example, we have chosen to bring the matrix fully to reduced row-echelon form for the practice.

These three examples Example SAB 33, Example SAA 34, Example SAE 35) illustrate the full range of possibilities for a system of linear equations - no solutions, one solution, or infinitely many solutions. In the next section we'll examine these three scenarios more closely.

Definition RR

Row-Reducing

To row-reduce the matrix A means to apply row operations to A and arrive at a row-equivalent matrix B in reduced row-echelon form.

So the term row-reduce is used as a verb. Theorem REMEF 31 tells us that this process will always be successful and Theorem RREFU 104 tells us that the result will be unambiguous. Typically, the analysis
of A will proceed by analyzing B and applying theorems whose hypotheses include the row-equivalence of A and B.

After some practice by hand, you will want to use your favorite computing device to do the computations required to bring a matrix to reduced row-echelon form (Exercise RREF.C30 40). See: Computation RR.MMA 657 Computation RR.TI86 662 Computation RR.TI83 663.

Subsection READ
 Reading Questions

1. Is the matrix below in reduced row-echelon form? Why or why not?

$$
\left[\begin{array}{lllll}
1 & 5 & 0 & 6 & 8 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

2. Use row operations to convert the matrix below to reduced row-echelon form and report the final matrix.

$$
\left[\begin{array}{ccc}
2 & 1 & 8 \\
-1 & 1 & -1 \\
-2 & 5 & 4
\end{array}\right]
$$

3. Find all the solutions to the system below by using an augmented matrix and row operations. Report your final matrix in reduced row-echelon form and the set of solutions.

$$
\begin{aligned}
2 x_{1}+3 x_{2}-x_{3} & =0 \\
x_{1}+2 x_{2}+x_{3} & =3 \\
x_{1}+3 x_{2}+3 x_{3} & =7
\end{aligned}
$$

Subsection EXC
 Exercises

C05 Each archetype below is a system of equations. Form the augmented matrix of the system of equations, convert the matrix to reduced row-echelof form by using equation operations and then describe the solution set of the original system of equations.
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703
Archetype E 707
Archetype F 711
Archetype G 716

Archetype H	720

Archetype I 724
Archetype J 728
Contributed by Robert Beezer
For problems C10-C18, find all solutions to the system of linear equations. Write the solutions as a set, using correct set notation.

C10

$$
\begin{aligned}
2 x_{1}-3 x_{2}+x_{3}+7 x_{4} & =14 \\
2 x_{1}+8 x_{2}-4 x_{3}+5 x_{4} & =-1 \\
x_{1}+3 x_{2}-3 x_{3} & =4 \\
-5 x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =-19
\end{aligned}
$$

Contributed by Robert Beezer Solution 41

C11

$$
\begin{array}{r}
3 x_{1}+4 x_{2}-x_{3}+2 x_{4}=6 \\
x_{1}-2 x_{2}+3 x_{3}+x_{4}=2 \\
10 x_{2}-10 x_{3}-x_{4}=1
\end{array}
$$

Contributed by Robert Beezer Solution 41

C12

$$
\begin{aligned}
2 x_{1}+4 x_{2}+5 x_{3}+7 x_{4} & =-26 \\
x_{1}+2 x_{2}+x_{3}-x_{4} & =-4 \\
-2 x_{1}-4 x_{2}+x_{3}+11 x_{4} & =-10
\end{aligned}
$$

Contributed by Robert Beezer Solution 41
C13

$$
x_{1}+2 x_{2}+8 x_{3}-7 x_{4}=-2
$$

$$
\begin{aligned}
3 x_{1}+2 x_{2}+12 x_{3}-5 x_{4} & =6 \\
-x_{1}+x_{2}+x_{3}-5 x_{4} & =-10
\end{aligned}
$$

Contributed by Robert Beezer Solution 42

C14

$$
\begin{aligned}
2 x_{1}+x_{2}+7 x_{3}-2 x_{4} & =4 \\
3 x_{1}-2 x_{2}+11 x_{4} & =13 \\
x_{1}+x_{2}+5 x_{3}-3 x_{4} & =1
\end{aligned}
$$

Contributed by Robert Beezer Solution 42

C15

$$
\begin{aligned}
2 x_{1}+3 x_{2}-x_{3}-9 x_{4} & =-16 \\
x_{1}+2 x_{2}+x_{3} & =0 \\
-x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =8
\end{aligned}
$$

Contributed by Robert Beezer Solution 42
C16

$$
\begin{aligned}
2 x_{1}+3 x_{2}+19 x_{3}-4 x_{4} & =2 \\
x_{1}+2 x_{2}+12 x_{3}-3 x_{4} & =1 \\
-x_{1}+2 x_{2}+8 x_{3}-5 x_{4} & =1
\end{aligned}
$$

Contributed by Robert Beezer Solution 43
C17

$$
\begin{aligned}
-x_{1}+5 x_{2} & =-8 \\
-2 x_{1}+5 x_{2}+5 x_{3}+2 x_{4} & =9 \\
-3 x_{1}-x_{2}+3 x_{3}+x_{4} & =3 \\
7 x_{1}+6 x_{2}+5 x_{3}+x_{4} & =30
\end{aligned}
$$

Contributed by Robert Beezer Solution 43

C18

$$
\begin{aligned}
x_{1}+2 x_{2}-4 x_{3}-x_{4} & =32 \\
x_{1}+3 x_{2}-7 x_{3}-x_{5} & =33 \\
x_{1}+2 x_{3}-2 x_{4}+3 x_{5} & =22
\end{aligned}
$$

For problems C30-C32, row-reduce the matrix without the aid of a calculator, indicating the row operations you are using at each step using the notation of Definition RO 28.
C30

$$
\left[\begin{array}{cccc}
2 & 1 & 5 & 10 \\
1 & -3 & -1 & -2 \\
4 & -2 & 6 & 12
\end{array}\right]
$$

Contributed by Robert Beezer Solution 44
C31

$$
\left[\begin{array}{ccc}
1 & 2 & -4 \\
-3 & -1 & -3 \\
-2 & 1 & -7
\end{array}\right]
$$

Contributed by Robert Beezer Solution 44
C32

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
-4 & -3 & -2 \\
3 & 2 & 1
\end{array}\right]
$$

Contributed by Robert Beezer Solution 44
M50 A parking lot has 66 vehicles (cars, trucks, motorcycles and bicycles) in it. There are four times as many cars as trucks. The total number of tires (4 per car or truck, 2 per motorcycle or bicycle) is 252 . How many cars are there? How many bicycles?
Contributed by Robert Beezer Solution 44
T10 Prove that each of the three row operations (Definition RO 28) is reversible. More precisely, if the matrix B is obtained from A by application of a single row operation, show that there is a single row operation that will transform B back into A.
Contributed by Robert Beezer Solution 45
T11 Suppose that A, B and C are $m \times n$ matrices. Use the definition of row-equivalence Definition REM 29) to prove the following three facts.

1. A is row-equivalent to A.
2. If A is row-equivalent to B, then B is row-equivalent to A.
3. If A is row-equivalent to B, and B is row-equivalent to C, then A is row-equivalent to C.

A relationship that satisfies these three properties is known as an equivalence relation, an important idea in the study of various algebras. This is a formal way of saying that a relationship behaves like equality, without requiring the relationship to be as strict as equality itself. We'll see it again in Theorem SER 426.
Contributed by Robert Beezer
T12 Suppose that B is an $m \times n$ matrix in reduced row-echelon form. Build a new, likely smaller, $k \times \ell$ matrix C as follows. Keep any collection of k adjacent rows, $k \leq m$. From these rows, keep columns 1 through $\ell, \ell \leq n$. Prove that C is in reduced row-echelon form.
Contributed by Robert Beezer

Subsection SOL
 Solutions

C10 Contributed by Robert Beezer Statement 38
The augmented matrix row-reduces to

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 0 & 1 \\
0 & \boxed{1} & 0 & 0 & -3 \\
0 & 0 & \boxed{1} & 0 & -4 \\
0 & 0 & 0 & \boxed{1} & 1
\end{array}\right]
$$

and we see from the locations of the leading 1's that the system is consistent (Theorem RCLS 50) and that $n-r=4-4=0$ and so the system has no free variables (Theorem CSRN [51]) and hence has a unique solution. This solution is

$$
S=\left\{\left[\begin{array}{c}
1 \\
-3 \\
-4 \\
1
\end{array}\right]\right\}
$$

C11 Contributed by Robert Beezer Statement 38

The augmented matrix row-reduces to

$$
\left[\begin{array}{ccccc}
\hline 1 & 0 & 1 & 4 / 5 & 0 \\
0 & \boxed{1} & -1 & -1 / 10 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and a leading 1 in the last column tells us that the system is inconsistent (Theorem RCLS 50). So the solution set is $\emptyset=\{ \}$.
C12 Contributed by Robert Beezer Statement 38
The augmented matrix row-reduces to

$$
\left[\begin{array}{ccccc}
\boxed{1} & 2 & 0 & -4 & 2 \\
0 & 0 & 1 & 3 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(Theorem RCLS [50) and (Theorem CSRN [51) tells us the system is consistent and the solution set can be described with $n-r=4-2=2$ free variables, namely x_{2} and x_{4}. Solving for the dependent variables ($D=\left\{x_{1}, x_{3}\right\}$) the first and second equations represented in the row-reduced matrix yields,

$$
\begin{aligned}
& x_{1}=2-2 x_{2}+4 x_{4} \\
& x_{3}=-6 \quad-3 x_{4}
\end{aligned}
$$

As a set, we write this as

$$
\left\{\left.\left[\begin{array}{c}
2-2 x_{2}+4 x_{4} \\
x_{2} \\
-6-3 x_{4} \\
x_{4}
\end{array}\right] \right\rvert\, x_{2}, x_{4} \in \mathbb{C}\right\}
$$

C13 Contributed by Robert Beezer Statement 38
The augmented matrix of the system of equations is

$$
\left[\begin{array}{ccccc}
1 & 2 & 8 & -7 & -2 \\
3 & 2 & 12 & -5 & 6 \\
-1 & 1 & 1 & -5 & -10
\end{array}\right]
$$

which row-reduces to

$$
\left[\begin{array}{ccccc}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & 3 & -4 & 0 \\
0 & 0 & 0 & 0 & \boxed{1} \\
\hline
\end{array}\right]
$$

With a leading one in the last column Theorem RCLS 50 tells us the system of equations is inconsistent, so the solution set is the empty set, \emptyset.
C14 Contributed by Robert Beezer Statement 39
The augmented matrix of the system of equations is

$$
\left[\begin{array}{ccccc}
2 & 1 & 7 & -2 & 4 \\
3 & -2 & 0 & 11 & 13 \\
1 & 1 & 5 & -3 & 1
\end{array}\right]
$$

which row-reduces to

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 2 & 1 & 3 \\
0 & \boxed{1} & 3 & -4 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then $D=\{1,2\}$ and $F=\{3,4,5\}$, so the system is consistent ($5 \notin D$) and can be described by the two free variables x_{3} and x_{4}. Rearranging the equations represented by the two nonzero rows to gain expressions for the dependent variables x_{1} and x_{2}, yields the solution set,

$$
S=\left\{\left.\left[\begin{array}{c}
3-2 x_{3}-x_{4} \\
-2-3 x_{3}+4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right] \right\rvert\, x_{3}, x_{4} \in \mathbb{C}\right\}
$$

C15 Contributed by Robert Beezer Statement 39
The augmented matrix of the system of equations is

$$
\left[\begin{array}{ccccc}
2 & 3 & -1 & -9 & -16 \\
1 & 2 & 1 & 0 & 0 \\
-1 & 2 & 3 & 4 & 8
\end{array}\right]
$$

which row-reduces to

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 2 & 3 \\
0 & \boxed{1} & 0 & -3 & -5 \\
0 & 0 & \boxed{1} & 4 & 7
\end{array}\right]
$$

Then $D=\{1,2,3\}$ and $F=\{4,5\}$, so the system is consistent $(5 \notin D)$ and can be described by the one free variable x_{4}. Rearranging the equations represented by the three nonzero rows to gain expressions for the dependent variables x_{1}, x_{2} and x_{3}, yields the solution set,

$$
S=\left\{\left.\left[\begin{array}{c}
3-2 x_{4} \\
-5+3 x_{4} \\
7-4 x_{4} \\
x_{4}
\end{array}\right] \right\rvert\, x_{4} \in \mathbb{C}\right\}
$$

C16 Contributed by Robert Beezer Statement 39
The augmented matrix of the system of equations is

$$
\left[\begin{array}{ccccc}
2 & 3 & 19 & -4 & 2 \\
1 & 2 & 12 & -3 & 1 \\
-1 & 2 & 8 & -5 & 1
\end{array}\right]
$$

which row-reduces to

$$
\left[\begin{array}{ccccc}
\hline 1 & 0 & 2 & 1 & 0 \\
0 & \boxed{1} & 5 & -2 & 0 \\
0 & 0 & 0 & 0 & \boxed{1} \\
\hline
\end{array}\right]
$$

With a leading one in the last column Theorem RCLS 50 tells us the system of equations is inconsistent, so the solution set is the empty set, $\emptyset=\{ \}$.
C17 Contributed by Robert Beezer Statement 39
We row-reduce the augmented matrix of the system of equations,

$$
\left[\begin{array}{ccccc}
-1 & 5 & 0 & 0 & -8 \\
-2 & 5 & 5 & 2 & 9 \\
-3 & -1 & 3 & 1 & 3 \\
7 & 6 & 5 & 1 & 30
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
\hline 1 & 0 & 0 & 0 & 3 \\
0 & \boxed{1} & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 5
\end{array}\right]
$$

The reduced row-echelon form of the matrix is the augmented matrix of the system $x_{1}=3, x_{2}=-1$, $x_{3}=2, x_{4}=5$, which has a unique solution. As a set of column vectors, the solution set is

$$
S=\left\{\left[\begin{array}{c}
3 \\
-1 \\
2 \\
5
\end{array}\right]\right\}
$$

C18 Contributed by Robert Beezer Statement 39
We row-reduce the augmented matrix of the system of equations,

$$
\left[\begin{array}{cccccc}
1 & 2 & -4 & -1 & 0 & 32 \\
1 & 3 & -7 & 0 & -1 & 33 \\
1 & 0 & 2 & -2 & 3 & 22
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
{[1} & 0 & 2 & 0 & 5 & 6 \\
0 & \boxed{1} & -3 & 0 & -2 & 9 \\
0 & 0 & 0 & 1 & 1 & -8
\end{array}\right]
$$

With no leading 1 in the final column, we recognize the system as consistent (Theorem RCLS 50). Since the system is consistent, we compute the number of free variables as $n-r=5-3=2$ (), and we see that columns 3 and 5 are not pivot columns, so x_{3} and x_{5} are free variables. We convert each row of the reduced row-echelon form of the matrix into an equation, and solve it for the lone dependent variable, as in expresdsion in the two free variables.

$$
\begin{aligned}
x_{1}+2 x_{3}+5 x_{5}=6 & \rightarrow \quad x_{1}=6-2 x_{3}-5 x_{5} \\
x_{2}-3 x_{3}-2 x_{5}=9 & \rightarrow \quad x_{2}=9+3 x_{3}+2 x_{5} \\
x_{4}+x_{5}=-8 & \rightarrow \quad x_{4}=-8-x_{5}
\end{aligned}
$$

These expressions give us a convenient way to describe the solution set, S.

$$
S=\left\{\left.\left[\begin{array}{c}
6-2 x_{3}-5 x_{5} \\
9+3 x_{3}+2 x_{5} \\
x_{3} \\
-8-x_{5} \\
x_{5}
\end{array}\right] \right\rvert\, x_{3}, x_{5} \in \mathbb{C}\right\}
$$

C30 Contributed by Robert Beezer Statement 40

$$
\left.\begin{array}{rl}
\xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{cccc}
2 & 1 & 5 & 10 \\
1 & -3 & -1 & -2 \\
4 & -2 & 6 & 12
\end{array}\right] \\
\xrightarrow{\frac{1}{7} R_{2}}\left[\begin{array}{cccc}
1 & -3 & -1 & -2 \\
0 & 7 & 7 & 14 \\
4 & -2 & 6 & 12
\end{array}\right] \\
& \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{cccc}
1 & -3 & -1 & -2 \\
0 & 1 & 1 & 2 \\
0 & 10 & 10 & 20
\end{array}\right]
\end{array} \begin{array}{cccc}
1 & -3 & -1 & -2 \\
2 & 1 & 5 & 10 \\
4 & -2 & 6 & 12
\end{array}\right]
$$

C31 Contributed by Robert Beezer Statement 40

$$
\begin{array}{ll}
{\left[\begin{array}{ccc}
1 & 2 & -4 \\
-3 & -1 & -3 \\
-2 & 1 & -7
\end{array}\right]} & \xrightarrow{3 R_{1}+R_{2}}\left[\begin{array}{ccc}
1 & 2 & -4 \\
0 & 5 & -15 \\
-2 & 1 & -7
\end{array}\right] \\
\xrightarrow{2 R_{1}+R_{3}}\left[\begin{array}{ccc}
1 & 2 & -4 \\
0 & 5 & -15 \\
0 & 5 & -15
\end{array}\right] \\
\xrightarrow{-2 R_{2}+R_{1}}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 5 & -15
\end{array}\right]
\end{array}
$$

C32 Contributed by Robert Beezer Statement 40
Following the algorithm of Theorem REMEF 31, and working to create pivot columns from left to right, we have

$$
\begin{array}{ll}
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
-4 & -3 & -2 \\
3 & 2 & 1
\end{array}\right] \xrightarrow{4 R_{1}+R_{2}}} & {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 2 \\
3 & 2 & 1
\end{array}\right] \xrightarrow{-3 R_{1}+R_{3}}\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & -1 & -2
\end{array}\right] \xrightarrow{-1 R_{2}+R_{1}}} \\
{\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & -1 & -2
\end{array}\right] \xrightarrow{1 R_{2}+R_{3}} \quad\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & \begin{array}{cc}
1 & 2 \\
0 & 0
\end{array} & 0
\end{array}\right]}
\end{array} .\right.}
\end{array}
$$

M50 Contributed by Robert Beezer Statement 40
Let c, t, m, b denote the number of cars, trucks, motorcycles, and bicycles. Then the statements from the problem yield the equations:

$$
\begin{aligned}
c+t+m+b & =66 \\
c-4 t & =0 \\
4 c+4 t+2 m+2 b & =252
\end{aligned}
$$

The augmented matrix for this system is

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 66 \\
1 & -4 & 0 & 0 & 0 \\
4 & 4 & 2 & 2 & 252
\end{array}\right]
$$

which row-reduces to

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 0 & 48 \\
0 & \boxed{1} & 0 & 0 & 12 \\
0 & 0 & \boxed{1} & 1 & 6
\end{array}\right]
$$

$c=48$ is the first equation represented in the row-reduced matrix so there are 48 cars. $m+b=6$ is the third equation represented in the row-reduced matrix so there are anywhere from 0 to 6 bicycles. We can also say that b is a free variable, but the context of the problem limits it to 7 integer values since cannot have a negative number of motorcycles.
T10 Contributed by Robert Beezer Statement 40
If we can reverse each row operation individually, then we can reverse a sequence of row operations. The operations that reverse each operation are listed below, using our shorthand notation,

$$
\begin{aligned}
R_{i} \leftrightarrow R_{j} & R_{i} \leftrightarrow R_{j} \\
\alpha R_{i}, \alpha \neq 0 & \frac{1}{\alpha} R_{i} \\
\alpha R_{i}+R_{j} & -\alpha R_{i}+R_{j}
\end{aligned}
$$

Section TSS
 Types of Solution Sets

We will now be more careful about analyzing the reduced row-echelon form derived from the augmented matrix of a system of linear equations. In particular, we will see how to systematically handle the situation when we have infinitely many solutions to a system, and we will prove that every system of linear equations has either zero, one or infinitely many solutions. With these tools, we will be able to solve any system by a well-described method.

Subsection CS
 Consistent Systems

The computer scientist Donald Knuth said, "Science is what we understand well enough to explain to a computer. Art is everything else." In this section we'll remove solving systems of equations from the realm of art, and into the realm of science. We begin with a definition.

Definition CS

Consistent System

A system of linear equations is consistent if it has at least one solution. Otherwise, the system is called inconsistent.

We will want to first recognize when a system is inconsistent or consistent, and in the case of consistent systems we will be able to further refine the types of solutions possible. We will do this by analyzing the reduced row-echelon form of a matrix, using the value of r, and the sets of column indices, D and F, first defined back in Definition RREF 31 .

Use of the notation for the elements of D and F can be a bit confusing, since we have subscripted variables that are in turn equal to integers used to index the matrix. However, many questions about matrices and systems of equations can be answered once we know r, D and F. The choice of the letters D and F refer to our upcoming definition of dependent and free variables (Definition IDV 49). An example will help us begin to get comfortable with this aspect of reduced row-echelon form.

Example RREFN

Reduced row-echelon form notation

For the 5×9 matrix

$$
B=\left[\begin{array}{ccccccccc}
\begin{array}{|c|cccccc}
1 & 5 & 0 & 0 & 2 & 8 & 0 \\
5 & 5 & -1 \\
0 & 0 & 1 & 0 & 4 & 7 & 0 \\
2 & 0 \\
0 & 0 & 0 & \boxed{1} & 3 & 9 & 0 \\
3 & -6 \\
0 & 0 & 0 & 0 & 0 & 0 & \boxed{1} \\
0 & 4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} 0 & 0
\end{array}\right]
$$

in reduced row-echelon form we have

$$
\begin{array}{rlrlr}
r & =4 & & & \\
d_{1} & =1 & d_{2}=3 & d_{3}=4 & d_{4}=7 \\
f_{1} & =2 & f_{2}=5 & f_{3}=6 & f_{4}=8
\end{array}
$$

Notice that the sets $D=\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}=\{1,3,4,7\}$ and $F=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}=\{2,5,6,8,9\}$ have nothing in common and together account for all of the columns of B (we say it is a partition of the set
of column indices).
The number r is the single most important piece of information we can get from the reduced rowechelon form of a matrix. It is defined as the number of non-zero rows, but since each non-zero row has a leading 1 , it is also the number of leading 1's present. For each leading 1, we have a pivot column, so r is also the number of pivot columns. Repeating ourselves, r is the number of leading 1's, the number of non-zero rows and the number of pivot columns. Across different situations, each of these interpretations of the meaning of r will be useful.

Before proving some theorems about the possibilities for solution sets to systems of equations, let's analyze one particular system with an infinite solution set very carefully as an example. We'll use this technique frequently, and shortly we'll refine it slightly.

Archetypes I and J are both fairly large for doing computations by hand (though not impossibly large). Their properties are very similar, so we will frequently analyze the situation in Archetype I, and leave you the joy of analyzing Archetype J yourself. So work through Archetype I with the text, by hand and/or with a computer, and then tackle Archetype J yourself (and check your results with those listed). Notice too that the archetypes describing systems of equations each lists the values of r, D and F. Here we go...

Example ISSI

Describing infinite solution sets, Archetype I

Archetype I 724 is the system of $m=4$ equations in $n=7$ variables.

$$
\begin{array}{r}
x_{1}+4 x_{2}-x_{4}+7 x_{6}-9 x_{7}=3 \\
2 x_{1}+8 x_{2}-x_{3}+3 x_{4}+9 x_{5}-13 x_{6}+7 x_{7}=9 \\
2 x_{3}-3 x_{4}-4 x_{5}+12 x_{6}-8 x_{7}=1 \\
-x_{1}-4 x_{2}+2 x_{3}+4 x_{4}+8 x_{5}-31 x_{6}+37 x_{7}=4
\end{array}
$$

This system has a 4×8 augmented matrix that is row-equivalent to the following matrix (check this!), and which is in reduced row-echelon form (the existence of this matrix is guaranteed by Theorem REMEF (31),

$$
\left[\begin{array}{cccccccc}
{[1} & 4 & 0 & 0 & 2 & 1 & -3 & 4 \\
0 & 0 & 1 & 0 & 1 & -3 & 5 & 2 \\
0 & 0 & 0 & \boxed{1} & 2 & -6 & 6 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

So we find that $r=3$ and

$$
D=\left\{d_{1}, d_{2}, d_{3}\right\}=\{1,3,4\} \quad F=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}=\{2,5,6,7,8\}
$$

Let i denote one of the $r=3$ non-zero rows, and then we see that we can solve the corresponding equation represented by this row for the variable $x_{d_{i}}$ and write it as a linear function of the variables $x_{f_{1}}, x_{f_{2}}, x_{f_{3}}, x_{f_{4}}$ (notice that $f_{5}=8$ does not reference a variable). We'll do this now, but you can already see how the subscripts upon subscripts takes some getting used to.

$$
\begin{array}{ll}
(i=1) & x_{d_{1}}=x_{1}=4-4 x_{2}-2 x_{5}-x_{6}+3 x_{7} \\
(i=2) & x_{d_{2}}=x_{3}=2-x_{5}+3 x_{6}-5 x_{7} \\
(i=3) & x_{d_{3}}=x_{4}=1-2 x_{5}+6 x_{6}-6 x_{7}
\end{array}
$$

Each element of the set $F=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}=\{2,5,6,7,8\}$ is the index of a variable, except for $f_{5}=8$. We refer to $x_{f_{1}}=x_{2}, x_{f_{2}}=x_{5}, x_{f_{3}}=x_{6}$ and $x_{f_{4}}=x_{7}$ as "free" (or "independent") variables since they are allowed to assume any possible combination of values that we can imagine and we can continue on to build a solution to the system by solving individual equations for the values of the other ("dependent") variables.

Each element of the set $D=\left\{d_{1}, d_{2}, d_{3}\right\}=\{1,3,4\}$ is the index of a variable. We refer to the variables $x_{d_{1}}=x_{1}, x_{d_{2}}=x_{3}$ and $x_{d_{3}}=x_{4}$ as "dependent" variables since they depend on the independent variables. More precisely, for each possible choice of values for the independent variables we get exactly one set of values for the dependent variables that combine to form a solution of the system.

To express the solutions as a set, we write

$$
\left\{\left.\left[\begin{array}{c}
4-4 x_{2}-2 x_{5}-x_{6}+3 x_{7} \\
x_{2} \\
2-x_{5}+3 x_{6}-5 x_{7} \\
1-2 x_{5}+6 x_{6}-6 x_{7} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right] \right\rvert\, x_{2}, x_{5}, x_{6}, x_{7} \in \mathbb{C}\right\}
$$

The condition that $x_{2}, x_{5}, x_{6}, x_{7} \in \mathbb{C}$ is how we specify that the variables $x_{2}, x_{5}, x_{6}, x_{7}$ are "free" to assume any possible values.

This systematic approach to solving a system of equations will allow us to create a precise description of the solution set for any consistent system once we have found the reduced row-echelon form of the augmented matrix. It will work just as well when the set of free variables is empty and we get just a single solution. And we could program a computer to do it! Now have a whack at Archetype J Exercise TSS.T10 55), mimicking the discussion in this example. We'll still be here when you get back.

Using the reduced row-echelon form of the augmented matrix of a system of equations to determine the nature of the solution set of the system is a very key idea. So let's look at one more example like the last one. But first a definition, and then the example. We mix our metaphors a bit when we call variables free versus dependent. Maybe we should call dependent variables "enslaved"?

Definition IDV

Independent and Dependent Variables

Suppose A is the augmented matrix of a consistent system of linear equations and B is a row-equivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that contains the leading 1 for some row (i.e. column j is a pivot column), and this column is not the last column. Then the variable x_{j} is dependent. A variable that is not dependent is called independent or free.

Example FDV

Free and dependent variables

Consider the system of five equations in five variables,

$$
\begin{aligned}
x_{1}-x_{2}-2 x_{3}+x_{4}+11 x_{5} & =13 \\
x_{1}-x_{2}+x_{3}+x_{4}+5 x_{5} & =16 \\
2 x_{1}-2 x_{2}+x_{4}+10 x_{5} & =21 \\
2 x_{1}-2 x_{2}-x_{3}+3 x_{4}+20 x_{5} & =38 \\
2 x_{1}-2 x_{2}+x_{3}+x_{4}+8 x_{5} & =22
\end{aligned}
$$

whose augmented matrix row-reduces to

$$
\left[\begin{array}{cccccc}
\hline 1 & -1 & 0 & 0 & 3 & 6 \\
0 & 0 & 1 & 0 & -2 & 1 \\
0 & 0 & 0 & \boxed{1} & 4 & 9 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

There are leading 1's in columns 1,3 and 4 , so $D=\{1,3,4\}$. From this we know that the variables x_{1}, x_{3} and x_{4} will be dependent variables, and each of the $r=3$ nonzero rows of the row-reduced matrix will yield an expression for one of these three variables. The set F is all the remaining column indices, $F=\{2,5,6\}$. Since $6 \in F$ we know there is no leading 1 in the final column, so the system is consistent by Theorem RCLS 50. The remaining indices in F will correspond to free variables, so x_{2} and x_{5} are our free variables. The resulting three equations that describe our solution set are then,

$$
\begin{array}{ll}
\left(x_{d_{1}}=x_{1}\right) & x_{1}=6+x_{2}-3 x_{5} \\
\left(x_{d_{2}}=x_{3}\right) & x_{3}=1+2 x_{5} \\
\left(x_{d_{3}}=x_{4}\right) & x_{4}=9-4 x_{5}
\end{array}
$$

Make sure you understand where these three equations came from, and notice how the location of the leading 1's determined the variables on the left-hand side of each equation. We can compactly describe the solution set as,

$$
S=\left\{\left.\left[\begin{array}{c}
6+x_{2}-3 x_{5} \\
x_{2} \\
1+2 x_{5} \\
9-4 x_{5} \\
x_{5}
\end{array}\right] \right\rvert\, x_{2}, x_{5} \in \mathbb{C}\right\}
$$

Notice how we express the freedom for x_{2} and $x_{5}: x_{2}, x_{5} \in \mathbb{C}$.
Sets are an important part of algebra, and we've seen a few already. Being comfortable with sets is important for understanding and writing proofs. If you haven't already, pay a visit now to Section SET 669.

We can now use the values of m, n, r, and the independent and dependent variables to categorize the solution sets for linear systems through a sequence of theorems. Through the following sequence of proofs, you will want to consult three proof techniques. See Technique E 676].

See Technique N 676. See Technique CP 677.

First we have a theorem that explores the distinction between consistent and inconsistent linear systems.

Theorem RCLS

Recognizing Consistency of a Linear System

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then the system of equations is inconsistent if and only if the leading 1 of row r is located in column $n+1$ of B.

Proof (\Leftarrow) The first half of the proof begins with the assumption that the leading 1 of row r is located in column $n+1$ of B. Then row r of B begins with n consecutive zeros, finishing with the leading 1 . This is a representation of the equation $0=1$, which is false. Since this equation is false for any collection of values we might choose for the variables, there are no solutions for the system of equations, and it is inconsistent.
(\Rightarrow) For the second half of the proof, we wish to show that if we assume the system is inconsistent, then the final leading 1 is located in the last column. But instead of proving this directly, we'll form the logically equivalent statement that is the contrapositive, and prove that instead (see Technique CP 677). Turning the implication around, and negating each portion, we arrive at the logically equivalent statement: If the leading 1 of row r is not in column $n+1$, then the system of equations is consistent.

If the leading 1 for row r is located somewhere in columns 1 through n, then every preceding row's leading 1 is also located in columns 1 through n. In other words, since the last leading 1 is not in the last column, no leading 1 for any row is in the last column, due to the echelon layout of the leading 1 's. Let $b_{i, n+1}, 1 \leq i \leq r$, denote the entries of the last column of B for the first r rows. Employ our notation for columns of the reduced row-echelon form of a matrix (see Notation RREFA 31) to B and set $x_{f_{i}}=0$, $1 \leq i \leq n-r$ and then set $x_{d_{i}}=b_{i, n+1}, 1 \leq i \leq r$. In other words, set the dependent variables equal to
the corresponding values in the final column and set all the free variables to zero. These values for the variables make the equations represented by the first r rows all true (convince yourself of this). Rows $r+1$ through m (if any) are all zero rows, hence represent the equation $0=0$ and are also all true. We have now identified one solution to the system, so we can say the system is consistent.

The beauty of this theorem being an equivalence is that we can unequivocally test to see if a system is consistent or inconsistent by looking at just a single entry of the reduced row-echelon form matrix. We could program a computer to do it!

Notice that for a consistent system the row-reduced augmented matrix has $n+1 \in F$, so the largest element of F does not refer to a variable. Also, for an inconsistent system, $n+1 \in D$, and it then does not make much sense to discuss whether or not variables are free or dependent since there is no solution. With the characterization of Theorem RCLS 50, we can explore the relationships between r and n in light of the consistency of a system of equations. First, a situation where we can quickly conclude the inconsistency of a system.

Theorem ISRN

Inconsistent Systems, r and n

Suppose A is the augmented matrix of a system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. If $r=n+1$, then the system of equations is inconsistent.
Proof If $r=n+1$, then $D=\{1,2,3, \ldots, n, n+1\}$ and every column of B contains a leading 1 and is a pivot column. In particular, the entry of column $n+1$ for row $r=n+1$ is a leading 1 . Theorem RCLS 50 then says that the system is inconsistent.

Do not confuse Theorem ISRN 51 with its converse! Go check out Technique CV 677 right now.
Next, if a system is consistent, we can distinguish between a unique solution and infinitely many solutions, and furthermore, we recognize that these are the only two possibilities.

Theorem CSRN

Consistent Systems, r and n

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not zero rows. Then $r \leq n$. If $r=n$, then the system has a unique solution, and if $r<n$, then the system has infinitely many solutions.
Proof This theorem contains three implications that we must establish. Notice first that B has $n+1$ columns, so there can be at most $n+1$ pivot columns, i.e. $r \leq n+1$. If $r=n+1$, then Theorem ISRN 51 tells us that the system is inconsistent, contrary to our hypothesis. We are left with $r \leq n$.

When $r=n$, we find $n-r=0$ free variables (i.e. $F=\{n+1\}$) and any solution must equal the unique solution given by the first n entries of column $n+1$ of B.

When $r<n$, we have $n-r>0$ free variables, corresponding to columns of B without a leading 1 , excepting the final column, which also does not contain a leading 1 by Theorem RCLS 50. By varying the values of the free variables suitably, we can demonstrate infinitely many solutions.

Subsection FV
 Free Variables
 $\Pi!$

The next theorem simply states a conclusion from the final paragraph of the previous proof, allowing us to state explicitly the number of free variables for a consistent system.

Theorem FVCS

Free Variables for Consistent Systems

Suppose A is the augmented matrix of a consistent system of linear equations with m equations in n
variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r rows that are not completely zeros. Then the solution set can be described with $n-r$ free variables.

Proof See the proof of Theorem CSRN 51.

Example CFV

Counting free variables

For each archetype that is a system of equations, the values of n and r are listed. Many also contain a few sample solutions. We can use this information profitably, as illustrated by four examples.

1. Archetype A 689 has $n=3$ and $r=2$. It can be seen to be consistent by the sample solutions given. Its solution set then has $n-r=1$ free variables, and therefore will be infinite.
2. Archetype B 694 has $n=3$ and $r=3$. It can be seen to be consistent by the single sample solution given. Its solution set can then be described with $n-r=0$ free variables, and therefore will have just the single solution.
3. Archetype H 720 has $n=2$ and $r=3$. In this case, $r=n+1$, so Theorem ISRN 51 says the system is inconsistent. We should not try to apply Theorem FVCS 51 to count free variables, since the theorem only applies to consistent systems. (What would happen if you did?)
4. Archetype E 707 has $n=4$ and $r=3$. However, by looking at the reduced row-echelon form of the augmented matrix, we find a leading 1 in row 3, column 4. By Theorem RCLS 50 we recognize the system is then inconsistent. (Why doesn't this example contradict Theorem ISRN 51?)

We have accomplished a lot so far, but our main goal has been the following theorem, which is now very simple to prove. The proof is so simple that we ought to call it a corollary, but the result is important enough that it deserves to be called a theorem. (See Technique LC 682 .) Notice that this theorem was presaged first by Example TTS 12 and further foreshadowed by other examples.

Theorem PSSLS

Possible Solution Sets for Linear Systems

A system of linear equations has no solutions, a unique solution or infinitely many solutions.
Proof By definition, a system is either inconsistent or consistent. The first case describes systems with no solutions. For consistent systems, we have the remaining two possibilities as guaranteed by, and described in, Theorem CSRN 51.

We have one more theorem to round out our set of tools for determining solution sets to systems of linear equations.

Theorem CMVEI

Consistent, More Variables than Equations, Infinite solutions

Suppose a consistent system of linear equations has m equations in n variables. If $n>m$, then the system has infinitely many solutions.

Proof Suppose that the augmented matrix of the system of equations is row-equivalent to B, a matrix in reduced row-echelon form with r nonzero rows. Because B has m rows in total, the number that are nonzero rows is less. In other words, $r \leq m$. Follow this with the hypothesis that $n>m$ and we find that the system has a solution set described by at least one free variable because

$$
n-r \geq n-m>0
$$

A consistent system with free variables will have an infinite number of solutions, as given by Theorem CSRN 51.

Notice that to use this theorem we need only know that the system is consistent, together with the values of m and n. We do not necessarily have to compute a row-equivalent reduced row-echelon form matrix, even though we discussed such a matrix in the proof. This is the substance of the following example.

Example OSGMD

One solution gives many, Archetype D

Archetype D is the system of $m=3$ equations in $n=4$ variables,

$$
\begin{aligned}
2 x_{1}+x_{2}+7 x_{3}-7 x_{4} & =8 \\
-3 x_{1}+4 x_{2}-5 x_{3}-6 x_{4} & =-12 \\
x_{1}+x_{2}+4 x_{3}-5 x_{4} & =4
\end{aligned}
$$

and the solution $x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=1$ can be checked easily by substitution. Having been handed this solution, we know the system is consistent. This, together with $n>m$, allows us to apply Theorem CMVEI 52 and conclude that the system has infinitely many solutions.

These theorems give us the procedures and implications that allow us to completely solve any system of linear equations. The main computational tool is using row operations to convert an augmented matrix into reduced row-echelon form. Here's a broad outline of how we would instruct a computer to solve a system of linear equations.

1. Represent a system of linear equations by an augmented matrix (an array is the appropriate data structure in most computer languages).
2. Convert the matrix to a row-equivalent matrix in reduced row-echelon form using the procedure from the proof of Theorem REMEF 31 .
3. Determine r and locate the leading 1 of row r. If it is in column $n+1$, output the statement that the system is inconsistent and halt.
4. With the leading 1 of row r not in column $n+1$, there are two possibilities:
(a) $r=n$ and the solution is unique. It can be read off directly from the entries in rows 1 through n of column $n+1$.
(b) $r<n$ and there are infinitely many solutions. If only a single solution is needed, set all the free variables to zero and read off the dependent variable values from column $n+1$, as in the second half of the proof of Theorem RCLS 50. If the entire solution set is required, figure out some nice compact way to describe it, since your finite computer is not big enough to hold all the solutions (we'll have such a way soon).

The above makes it all sound a bit simpler than it really is. In practice, row operations employ division (usually to get a leading entry of a row to convert to a leading 1) and that will introduce round-off errors. Entries that should be zero sometimes end up being very, very small nonzero entries, or small entries lead to overflow errors when used as divisors. A variety of strategies can be employed to minimize these sorts of errors, and this is one of the main topics in the important subject known as numerical linear algebra.

Solving a linear system is such a fundamental problem in so many areas of mathematics, and its applications, that any computational device worth using for linear algebra will have a built-in routine to do just that. See: Computation LS.MMA 658. In this section we've gained a foolproof procedure for solving any system of linear equations, no matter how many equations or variables. We also have a handful of theorems that allow us to determine partial information about a solution set without actually constructing the whole set itself. Donald Knuth would be proud.

Subsection READ

Reading Questions

1. How do we recognize when a system of linear equations is inconsistent?
2. Suppose we have converted the augmented matrix of a system of equations into reduced row-echelon form. How do we then identify the dependent and independent (free) variables?
3. What are the possible solution sets for a system of linear equations?

Subsection EXC
 Exercises
 mT

C10 In the spirit of Example ISSI 48, describe the infinite solution set for Archetype J 728.
Contributed by Robert Beezer
M45 Prove that Archetype J 728 has infinitely many solutions without row-reducing the augmented matrix.
Contributed by Robert Beezer Solution 56
For Exercises M51-M57 say as much as possible about each system's solution set. Be sure to make it clear which theorems you are using to reach your conclusions.
M51 A consistent system of 8 equations in 6 variables.
Contributed by Robert Beezer Solution 56
M52 A consistent system of 6 equations in 8 variables.
Contributed by Robert Beezer Solution 56
M53 A system of 5 equations in 9 variables.
Contributed by Robert Beezer Solution 56
M54 A system with 12 equations in 35 variables.
Contributed by Robert Beezer Solution 56
M56 A system with 6 equations in 12 variables.
Contributed by Robert Beezer Solution 56
M57 A system with 8 equations and 6 variables. The reduced row-echelon form of the augmented matrix of the system has 7 pivot coulmns.
Contributed by Robert Beezer Solution 56
M60 Without doing any computations, and without examining any solutions, say as much as possible about the form of the solution set for each archetype that is a system of equations.

| Archetype A | 689 |
| :--- | :--- | :--- |
| Archetype B | 694 |
| Archetype C | 699 |
| Archetype D | 703 |
| Archetype E | 707 |
| Archetype F | 711 |
| Archetype G | 716 |
| Archetype H | 720 |
| Archetype I | 724 |
| Archetype J | 728 |
| Contributed by | Robert Beezer |

T10 An inconsistent system may have $r>n$. If we try (incorrectly!) to apply Theorem FVCS 51 to such a system, how many free variables would we discover?
Contributed by Robert Beezer Solution 56
T40 Suppose that the coefficient matrix of a system of linear equations has two columns that are identical. Prove that the system has infinitely many solutions.
Contributed by Robert Beezer Solution 56

Subsection SOL Solutions

M45 Contributed by Robert Beezer Statement 55
Demonstrate that the system is consistent by verifying any one of the four sample solutions provided. Then because $n=9>6=m$, Theorem CMVEI [52] gives us the conclusion that the system has infinitely many solutions.

Notice that we only know the system will have at least $9-6=3$ free variables, but very well could have more. We do not know know that $r=6$, only that $r \leq 6$.
M51 Contributed by Robert Beezer Statement 55
Consistent means there is at least one solution (Definition CS 47). It will have either a unique solution or infinitely many solutions (Theorem PSSLS [52]).

M52 Contributed by Robert Beezer Statement 55
With 6 rows in the augmented matrix, the row-reduced version will have $r \leq 6$. Since the system is consistent, apply Theorem CSRN 51 to see that $n-r \geq 2$ implies infinitely many solutions.
M53 Contributed by Robert Beezer Statement 55
The system could be inconsistent. If it is consistent, then because it has more variables than equations Theorem CMVEI 52 implies that there would be infinitely many solutions. So, of all the possibilities in Theorem PSSLS 52, only the case of a unique solution can be ruled out.

M54 Contributed by Robert Beezer Statement 55
The system could be inconsistent. If it is consistent, then Theorem CMVEI 52 tells us the solution set will be infinite. So we can be certain that there is not a unique solution.

M56 Contributed by Robert Beezer Statement 55
The system could be inconsistent. If it is consistent, and since $12>6$, then Theorem CMVEI [52 says we will have infinitely many solutions. So there are two possibilities. Theorem PSSLS 52 allows to state equivalently that a unique solution is an impossibility.

M57 Contributed by Robert Beezer Statement 55
7 pivot columns implies that there are $r=7$ nonzero rows (so row 8 is all zeros in the reduced row-echelon form). Then $n+1=6+1=7=r$ and Theorem ISRN 51 allows to conclude that the system is inconsistent.

T10 Contributed by Robert Beezer Statement 55
Theorem FVCS 51 will indicate a negative number of free variables, but we can say even more. If $r>n$, then the only possibility is that $r=n+1$, and then we compute $n-r=n-(n+1)=-1$ free variables.

T40 Contributed by Robert Beezer Statement 55

Since the system is consistent, we know there is either a unique solution, or infinitely many solutions (Theorem PSSLS 52). If we perform row operations (Definition RO 28) on the augmented matrix of the system, the two equal columns of the coefficient matrix will suffer the same fate, and remain equal in the final reduced row-echelon form. Suppose both of these columns are pivot columns (Definition RREF 31). Then there is single row containing the two leading 1's of the two pivot columns, a violation of reduced row-echelon form (Definition RREF 31). So at least one of these columns is not a pivot column, and the column index indicates a free variable in the description of the solution set (Definition IDV 49). With a free variable, we arrive at an infinite solution set (Theorem FVCS 51).

Section HSE
 Homogeneous Systems of Equations

In this section we specialize to systems of linear equations where every equation has a zero as its constant term. Along the way, we will begin to express more and more ideas in the language of matrices and begin a move away from writing out whole systems of equations. The ideas initiated in this section will carry through the remainder of the course.

Subsection SHS
 Solutions of Homogeneous Systems

As usual, we begin with a definition.

Definition HS

Homogeneous System

A system of linear equations, $\mathcal{L S}(A, \mathbf{b})$ is homogeneous if the vector of constants is the zero vector, in other words, $\mathbf{b}=\mathbf{0}$.

Example AHSAC

Archetype C as a homogeneous system

For each archetype that is a system of equations, we have formulated a similar, yet different, homogeneous system of equations by replacing each equation's constant term with a zero. To wit, for Archetype C 699, we can convert the original system of equations into the homogeneous system,

$$
\begin{aligned}
2 x_{1}-3 x_{2}+x_{3}-6 x_{4} & =0 \\
4 x_{1}+x_{2}+2 x_{3}+9 x_{4} & =0 \\
3 x_{1}+x_{2}+x_{3}+8 x_{4} & =0
\end{aligned}
$$

Can you quickly find a solution to this system without row-reducing the augmented matrix?
As you might have discovered by studying Example AHSAC 57, setting each variable to zero will always be a solution of a homogeneous system. This is the substance of the following theorem.

Theorem HSC

Homogeneous Systems are Consistent

Suppose that a system of linear equations is homogeneous. Then the system is consistent.
Proof Set each variable of the system to zero. When substituting these values into each equation, the left-hand side evaluates to zero, no matter what the coefficients are. Since a homogeneous system has zero on the right-hand side of each equation as the constant term, each equation is true. With one demonstrated solution, we can call the system consistent.

Since this solution is so obvious, we now define it as the trivial solution.

Definition TSHSE

Trivial Solution to Homogeneous Systems of Equations

Suppose a homogeneous system of linear equations has n variables. The solution $x_{1}=0, x_{2}=0, \ldots, x_{n}=0$ (i.e. $\mathbf{x}=\mathbf{0}$) is called the trivial solution.

Here are three typical examples, which we will reference throughout this section. Work through the row operations as we bring each to reduced row-echelon form. Also notice what is similar in each example, and what differs.

Example HUSAB

Homogeneous, unique solution, Archetype B
Archetype B can be converted to the homogeneous system,

$$
\begin{array}{r}
-11 x_{1}+2 x_{2}-14 x_{3}=0 \\
23 x_{1}-6 x_{2}+33 x_{3}=0 \\
14 x_{1}-2 x_{2}+17 x_{3}=0
\end{array}
$$

whose augmented matrix row-reduces to

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0
\end{array}\right]
$$

By Theorem HSC 57, the system is consistent, and so the computation $n-r=3-3=0$ means the solution set contains just a single solution. Then, this lone solution must be the trivial solution.

Example HISAA

Homogeneous, infinite solutions, Archetype A
Archetype A 689 can be converted to the homogeneous system,

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =0 \\
2 x_{1}+x_{2}+x_{3} & =0 \\
x_{1}+x_{2} & =0
\end{aligned}
$$

whose augmented matrix row-reduces to

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 1 & 0 \\
0 & \boxed{1} & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By Theorem HSC 57, the system is consistent, and so the computation $n-r=3-2=1$ means the solution set contains one free variable by Theorem FVCS 51, and hence has infinitely many solutions. We can describe this solution set using the free variable x_{3},

$$
S=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}=-x_{3}, x_{2}=x_{3}\right\}=\left\{\left.\left[\begin{array}{c}
-x_{3} \\
x_{3} \\
x_{3}
\end{array}\right] \right\rvert\, x_{3} \in \mathbb{C}\right\}
$$

Geometrically, these are points in three dimensions that lie on a line through the origin.

Example HISAD

Homogeneous, infinite solutions, Archetype D
Archetype D 703 (and identically, Archetype E 707) can be converted to the homogeneous system,

$$
\begin{array}{r}
2 x_{1}+x_{2}+7 x_{3}-7 x_{4}=0 \\
-3 x_{1}+4 x_{2}-5 x_{3}-6 x_{4}=0 \\
x_{1}+x_{2}+4 x_{3}-5 x_{4}=0
\end{array}
$$

whose augmented matrix row-reduces to

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 3 & -2 & 0 \\
0 & \boxed{1} & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

By Theorem HSC 57, the system is consistent, and so the computation $n-r=4-2=2$ means the solution set contains two free variables by Theorem FVCS 51, and hence has infinitely many solutions. We can describe this solution set using the free variables x_{3} and x_{4},

$$
\begin{aligned}
S & =\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \right\rvert\, x_{1}=-3 x_{3}+2 x_{4}, x_{2}=-x_{3}+3 x_{4}\right\} \\
& =\left\{\left.\left[\begin{array}{c}
-3 x_{3}+2 x_{4} \\
-x_{3}+3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right] \right\rvert\, x_{3}, x_{4} \in \mathbb{C}\right\}
\end{aligned}
$$

After working through these examples, you might perform the same computations for the slightly larger example, Archetype J 728.

Notice that when we do row operations on the augmented matrix of a homogeneous system of linear equations the last column of the matrix is all zeros. Any one of the three allowable row operations will convert zeros to zeros and thus, the final column of the matrix in reduced row-echelon form will also be all zeros. So in this case, we may be as likely to reference only the coefficient matrix and presume that we remember that the final column begins with zeros, and after any number of row operations is still zero.

Example HISAD 58 suggests the following theorem.

Theorem HMVEI

Homogeneous, More Variables than Equations, Infinite solutions

Suppose that a homogeneous system of linear equations has m equations and n variables with $n>m$. Then the system has infinitely many solutions.

Proof We are assuming the system is homogeneous, so Theorem HSC 57 says it is consistent. Then the hypothesis that $n>m$, together with Theorem CMVEI 52, gives infinitely many solutions.

Example HUSAB 58 and Example HISAA 58 are concerned with homogeneous systems where $n=m$ and expose a fundamental distinction between the two examples. One has a unique solution, while the other has infinitely many. These are exactly the only two possibilities for a homogeneous system and illustrate that each is possible (unlike the case when $n>m$ where Theorem HMVEI 59) tells us that there is only one possibility for a homogeneous system).

Subsection NSM
 Null Space of a Matrix

The set of solutions to a homogeneous system (which by Theorem HSC 57 is never empty) is of enough interest to warrant its own name. However, we define it as a property of the coefficient matrix, not as a property of some system of equations.

Definition NSM

Null Space of a Matrix
The null space of a matrix A, denoted $\mathcal{N}(A)$, is the set of all the vectors that are solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$.
(This definition contains Notation NSM.)
In the Archetypes Appendix A 685) each example that is a system of equations also has a corresponding homogeneous system of equations listed, and several sample solutions are given. These solutions will be elements of the null space of the coefficient matrix. We'll look at one example.

Example NSEAI

Null space elements of Archetype I

The write-up for Archetype I 724 lists several solutions of the corresponding homogeneous system. Here are two, written as solution vectors. We can say that they are in the null space of the coefficient matrix for the system of equations in Archetype I 724.

$$
\mathbf{x}=\left[\begin{array}{c}
3 \\
0 \\
-5 \\
-6 \\
0 \\
0 \\
1
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
-4 \\
1 \\
-3 \\
-2 \\
1 \\
1 \\
1
\end{array}\right]
$$

However, the vector

$$
\mathbf{z}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
2
\end{array}\right]
$$

is not in the null space, since it is not a solution to the homogeneous system. For example, it fails to even make the first equation true.

Here are two (prototypical) examples of the computation of the null space of a matrix. Notice that we will now begin writing solutions as vectors.

Example CNS1

Computing a null space, \#1
Let's compute the null space of

$$
A=\left[\begin{array}{ccccc}
2 & -1 & 7 & -3 & -8 \\
1 & 0 & 2 & 4 & 9 \\
2 & 2 & -2 & -1 & 8
\end{array}\right]
$$

which we write as $\mathcal{N}(A)$. Translating Definition NSM 59, we simply desire to solve the homogeneous system $\mathcal{L S}(A, \mathbf{0})$. So we row-reduce the augmented matrix to obtain

$$
\left[\begin{array}{cccccc}
\begin{array}{c}
1 \\
\end{array} & 0 & 2 & 0 & 1 & 0 \\
0 & \boxed{1} & -3 & 0 & 4 & 0 \\
0 & 0 & 0 & \boxed{1} & 2 & 0
\end{array}\right]
$$

The variables (of the homogeneous system) x_{3} and x_{5} are free (since columns 1,2 and 4 are pivot columns), so we arrange the equations represented by the matrix in reduced row-echelon form to

$$
\begin{aligned}
& x_{1}=-2 x_{3}-x_{5} \\
& x_{2}=3 x_{3}-4 x_{5} \\
& x_{4}=-2 x_{5}
\end{aligned}
$$

So we can write the infinite solution set as sets using column vectors,

$$
\mathcal{N}(A)=\left\{\left.\left[\begin{array}{c}
-2 x_{3}-x_{5} \\
3 x_{3}-4 x_{5} \\
x_{3} \\
-2 x_{5} \\
x_{5}
\end{array}\right] \right\rvert\, x_{3}, x_{5} \in \mathbb{C}\right\}
$$

Example CNS2

Computing a null space, \#2
Let's compute the null space of

$$
C=\left[\begin{array}{ccc}
-4 & 6 & 1 \\
-1 & 4 & 1 \\
5 & 6 & 7 \\
4 & 7 & 1
\end{array}\right]
$$

which we write as $\mathcal{N}(C)$. Translating Definition NSM 59, we simply desire to solve the homogeneous system $\mathcal{L S}(C, \mathbf{0})$. So we row-reduce the augmented matrix to obtain

$$
\left[\begin{array}{ccc}
{[1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \boxed{1} \\
0 & 0 & 0
\end{array}\right]
$$

There are no free variables in the homogenous system represented by the row-reduced matrix, so there is only the trivial solution, the zero vector, $\mathbf{0}$. So we can write the (trivial) solution set as

$$
\mathcal{N}(C)=\{\mathbf{0}\}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}
$$

Subsection READ
 Reading Questions

1. What is always true of the solution set for a homogeneous system of equations?
2. Suppose a homogeneous sytem of equations has 13 variables and 8 equations. How many solutions will it have? Why?
3. Describe in words (not symbols) the null space of a matrix.

Subsection EXC
 Exercises
 $\pi+$

C10 Each archetype Appendix A 685) that is a system of equations has a corresponding homogeneous system with the same coefficient matrix. Compute the set of solutions for each. Notice that these solution sets are the null spaces of the coefficient matrices.
Archetype A 689
Archetype B 694
Archetype C 699

| Archetype D 703 Archetype E 707 |
| :--- | :--- |

Archetype F 711

Archetype G 716$]$	Archetype H 720

Archetype I 724
and Archetype J 728
Contributed by Robert Beezer
C20 Archetype K 733 and Archetype L 737 are simply 5×5 matrices (i.e. they are not systems of equations). Compute the null space of each matrix.
Contributed by Robert Beezer
C30 Compute the null space of the matrix $A, \mathcal{N}(A)$.

$$
A=\left[\begin{array}{ccccc}
2 & 4 & 1 & 3 & 8 \\
-1 & -2 & -1 & -1 & 1 \\
2 & 4 & 0 & -3 & 4 \\
2 & 4 & -1 & -7 & 4
\end{array}\right]
$$

Contributed by Robert Beezer Solution 64
C31 Find the null space of the matrix $B, \mathcal{N}(B)$.

$$
B=\left[\begin{array}{cccc}
-6 & 4 & -36 & 6 \\
2 & -1 & 10 & -1 \\
-3 & 2 & -18 & 3
\end{array}\right]
$$

Contributed by Robert Beezer Solution 64
M45 Without doing any computations, and without examining any solutions, say as much as possible about the form of the solution set for corresponding homogeneous system of equations of each archetype that is a system of equations.
Archetype A

| Archetype B 694 |
| :--- | :--- |

Archetype C 699
Archetype D 703 Archetype E 707
Archetype F 711

| Archetype G 716 Archetype H 720 |
| :--- | :--- |

Archetype I 724
Archetype J 728
Contributed by Robert Beezer
For Exercises M50-M52 say as much as possible about each system's solution set. Be sure to make it clear which theorems you are using to reach your conclusions.

M50 A homogeneous system of 8 equations in 8 variables.
Contributed by Robert Beezer Solution 64
M51 A homogeneous system of 8 equations in 9 variables.
Contributed by Robert Beezer Solution 65
M52 A homogeneous system of 8 equations in 7 variables.
Contributed by Robert Beezer Solution 65
T10 Prove or disprove: A system of linear equations is homogeneous if and only if the system has the zero vector as a solution.
Contributed by Martin Jackson Solution 65
T20 Consider the homogeneous system of linear equations $\mathcal{L S}(A, \mathbf{0})$, and suppose that $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ u_{3} \\ \vdots \\ u_{n}\end{array}\right]$ is one solution to the system of equations. Prove that $\mathbf{v}=\left[\begin{array}{c}4 u_{1} \\ 4 u_{2} \\ 4 u_{3} \\ \vdots \\ 4 u_{n}\end{array}\right]$ is also a solution to $\mathcal{L S}(A, \mathbf{0})$.
Contributed by Robert Beezer Solution 65

Subsection SOL Solutions

C30 Contributed by Robert Beezer Statement 62
Definition NSM 59] tells us that the null space of A is the solution set to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$. The augmented matrix of this system is

$$
\left[\begin{array}{cccccc}
2 & 4 & 1 & 3 & 8 & 0 \\
-1 & -2 & -1 & -1 & 1 & 0 \\
2 & 4 & 0 & -3 & 4 & 0 \\
2 & 4 & -1 & -7 & 4 & 0
\end{array}\right]
$$

To solve the system, we row-reduce the augmented matrix and obtain,

$$
\left[\begin{array}{cccccc}
\boxed{1} & 2 & 0 & 0 & 5 & 0 \\
0 & 0 & \boxed{1} & 0 & -8 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This matrix represents a system with equations having three dependent variables $\left(x_{1}, x_{3}\right.$, and $\left.x_{4}\right)$ and two independent variables $\left(x_{2}\right.$ and $\left.x_{5}\right)$. These equations rearrange to

$$
x_{1}=-2 x_{2}-5 x_{5} \quad x_{3}=8 x_{5} \quad x_{4}=-2 x_{5}
$$

So we can write the solution set (which is the requested null space) as

$$
\mathcal{N}(A)=\left\{\left.\left[\begin{array}{c}
-2 x_{2}-5 x_{5} \\
x_{2} \\
8 x_{5} \\
-2 x_{5} \\
x_{5}
\end{array}\right] \right\rvert\, x_{2}, x_{5} \in \mathbb{C}\right\}
$$

C31 Contributed by Robert Beezer Statement 62
We form the augmented matrix of the homogeneous system $\mathcal{L S}(B, \mathbf{0})$ and row-reduce the matrix,

$$
\left[\begin{array}{ccccc}
-6 & 4 & -36 & 6 & 0 \\
2 & -1 & 10 & -1 & 0 \\
-3 & 2 & -18 & 3 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
\hline 1 & 0 & 2 & 1 & 0 \\
0 & \begin{array}{|c}
1 \\
-6
\end{array} & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We knew ahead of time that this system would be consistent (Theorem HSC 57), but we can now see there are $n-r=4-2=2$ free variables, namely x_{3} and x_{4} (Theorem FVCS 51). Based on this analysis, we can rearrange the equations associated with each nonzero row of the reduced row-echelon form into an expression for the lone dependent variable as a function of the free variables. We arrive at the solution set to the homogeneous system, which is the null space of the matrix by Definition NSM 59,

$$
\mathcal{N}(B)=\left\{\left.\left[\begin{array}{c}
-2 x_{3}-x_{4} \\
6 x_{3}-3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right] \right\rvert\, x_{3}, x_{4} \in \mathbb{C}\right\}
$$

M50 Contributed by Robert Beezer Statement 63
Since the system is homogeneous, we know it has the trivial solution (Theorem HSC 57). We cannot say
anymore based on the information provided, except to say that there is either a unique solution or infinitely many solutions (Theorem PSSLS [52). See Archetype A 689] and Archetype B 694 to understand the possibilities.
M51 Contributed by Robert Beezer Statement 63
Since there are more variables than equations, Theorem HMVEI 59 applies and tells us that the solution set is infinite. From the proof of Theorem HSC [57] we know that the zero vector is one solution.
M52 Contributed by Robert Beezer Statement 63
By Theorem HSC 57, we know the system is consistent because the zero vector is always a solution of a homogeneous system. There is no more that we can say, since both a unique solution and infinitely many solutions are possibilities.
T10 Contributed by Robert Beezer Statement 63 This is a true statement. A proof is:
(\Rightarrow) Suppose we have a homogeneous system $\mathcal{L S}(A, \mathbf{0})$. Then by substituting the scalar zero for each variable, we arrive at true statements for each equation. So the zero vector is a solution. This is the content of Theorem HSC 57.
(\Leftarrow) Suppose now that we have a generic (i.e. not necessarily homogeneous) system of equations, $\mathcal{L S}(A, \mathbf{b})$ that has the zero vector as a solution. Upon substituting this solution into the system, we discover that each component of \mathbf{b} must also be zero. So $\mathbf{b}=\mathbf{0}$.
T20 Contributed by Robert Beezer Statement 63
Suppose that a single equation from this system (the i-th one) has the form,

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+a_{i 3} x_{3}+\cdots+a_{i n} x_{n}=0
$$

Evaluate the left-hand side of this equation with the components of the proposed solution vector \mathbf{v},

$$
\begin{aligned}
a_{i 1}\left(4 u_{1}\right) & +a_{i 2}\left(4 u_{2}\right)+a_{i 3}\left(4 u_{3}\right)+\cdots+a_{i n}\left(4 u_{n}\right) & & \\
& =4 a_{i 1} u_{1}+4 a_{i 2} u_{2}+4 a_{i 3} u_{3}+\cdots+4 a_{i n} u_{n} & & \text { Commutativity } \\
& =4\left(a_{i 1} u_{1}+a_{i 2} u_{2}+a_{i 3} u_{3}+\cdots+a_{i n} u_{n}\right) & & \text { Distributivity } \\
& =4(0) & & \mathbf{u} \text { solution to } \mathcal{L S}(A, \mathbf{0}) \\
& =0 & &
\end{aligned}
$$

So \mathbf{v} makes each equation true, and so is a solution to the system.
Notice that this result is not true if we change $\mathcal{L S}(A, \mathbf{0})$ from a homogeneous system to a nonhomogeneous system. Can you create an example of a (non-homogeneous) system with a solution \mathbf{u} such that \mathbf{v} is not a solution?

Section NM
 Nonsingular Matrices

In this section we specialize and consider matrices with equal numbers of rows and columns, which when considered as coefficient matrices lead to systems with equal numbers of equations and variables. We will see in the second half of the course (Chapter D 363, Chapter E 389 Chapter LT 441 , Chapter R 513) that these matrices are especially important.

Subsection NM
 Nonsingular Matrices

Our theorems will now establish connections between systems of equations (homogeneous or otherwise), augmented matrices representing those systems, coefficient matrices, constant vectors, the reduced rowechelon form of matrices (augmented and coefficient) and solution sets. Be very careful in your reading, writing and speaking about systems of equations, matrices and sets of vectors. A system of equations is not a matrix, a matrix is not a solution set, and a solution set is not a system of equations. Now would be a great time to review the discussion about speaking and writing mathematics in Technique L 674 .

Definition SQM

Square Matrix

A matrix with m rows and n columns is square if $m=n$. In this case, we say the matrix has size n. To emphasize the situation when a matrix is not square, we will call it rectangular.

We can now present one of the central definitions of linear algebra.

Definition NM

Nonsingular Matrix

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear system of equations $\mathcal{L S}(A, \mathbf{0})$ is $\{\mathbf{0}\}$, i.e. the system has only the trivial solution. Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix.

We can investigate whether any square matrix is nonsingular or not, no matter if the matrix is derived somehow from a system of equations or if it is simply a matrix. The definition says that to perform this investigation we must construct a very specific system of equations (homogeneous, with the matrix as the coefficient matrix) and look at its solution set. We will have theorems in this section that connect nonsingular matrices with systems of equations, creating more opportunities for confusion. Convince yourself now of two observations, (1) we can decide nonsingularity for any square matrix, and (2) the determination of nonsingularity involves the solution set for a certain homogenous system of equations.

Notice that it makes no sense to call a system of equations nonsingular (the term does not apply to a system of equations), nor does it make any sense to call a 5×7 matrix singular (the matrix is not square).

Example S

A singular matrix, Archetype A
Example HISAA 58 shows that the coefficient matrix derived from Archetype A 689, specifically the 3×3 matrix,

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

is a singular matrix since there are nontrivial solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$.

Example NM

A nonsingular matrix, Archetype B
Example HUSAB 58 shows that the coefficient matrix derived from Archetype B 694, specifically the 3×3 matrix,

$$
B=\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]
$$

is a nonsingular matrix since the homogeneous system, $\mathcal{L S}(B, \mathbf{0})$, has only the trivial solution.
Notice that we will not discuss Example HISAD 58 as being a singular or nonsingular coefficient matrix since the matrix is not square.

The next theorem combines with our main computational technique (row-reducing a matrix) to make it easy to recognize a nonsingular matrix. But first a definition.

Definition IM

Identity Matrix

The $m \times m$ identity matrix, I_{m}, is defined by

$$
\left[I_{m}\right]_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

(This definition contains Notation IM.)

Example IM

An identity matrix
The 4×4 identity matrix is

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Notice that an identity matrix is square, and in reduced row-echelon form. So in particular, if we were to arrive at the identity matrix while bringing a matrix to reduced row-echelon form, then it would have all of the diagonal entries circled as leading 1's.

Theorem NMRRI

Nonsingular Matrices Row Reduce to the Identity matrix

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

Proof (\Leftarrow) Suppose B is the identity matrix. When the augmented matrix $[A \mid \mathbf{0}]$ is row-reduced, the result is $[B \mid \mathbf{0}]=\left[I_{n} \mid \mathbf{0}\right]$. The number of nonzero rows is equal to the number of variables in the linear system of equations $\mathcal{L S}(A, \mathbf{0})$, so $n=r$ and Theorem FVCS 51 gives $n-r=0$ free variables. Thus, the homogeneous system $\mathcal{L} \mathcal{S}(A, \mathbf{0})$ has just one solution, which must be the trivial solution. This is exactly the definition of a nonsingular matrix.
(\Rightarrow) If A is nonsingular, then the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ has a unique solution, and has no free variables in the description of the solution set. The homogeneous system is consistent Theorem HSC 57) so Theorem FVCS 51 applies and tells us there are $n-r$ free variables. Thus, $n-r=0$, and so
$n=r$. So B has n pivot columns among its total of n columns. This is enough to force B to be the $n \times n$ identity matrix I_{n}.

Notice that since this theorem is an equivalence it will always allow us to determine if a matrix is either nonsingular or singular. Here are two examples of this, continuing our study of Archetype A and Archetype B.

Example SRR

Singular matrix, row-reduced

The coefficient matrix for Archetype A 689 is

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

which when row-reduced becomes the row-equivalent matrix

$$
B=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \boxed{1} & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Since this matrix is not the 3×3 identity matrix, Theorem NMRRI 68 tells us that A is a singular matrix.

Example NSR

Nonsingular matrix, row-reduced
The coefficient matrix for Archetype B 694 is

$$
A=\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]
$$

which when row-reduced becomes the row-equivalent matrix

$$
B=\left[\begin{array}{ccc}
\boxed{1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \boxed{1}
\end{array}\right]
$$

Since this matrix is the 3×3 identity matrix, Theorem NMRRI 68 tells us that A is a nonsingular matrix.

Subsection NSNM
 Null Space of a Nonsingular Matrix

Nonsingular matrices and their null spaces are intimately related, as the next two examples illustrate.

Example NSS

Null space of a singular matrix
Given the coefficient matrix from Archetype A 689,

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

the null space is the set of solutions to the homogeneous system of equations $\mathcal{L S}(A, \mathbf{0})$ has a solution set and null space constructed in Example HISAA 58 as

$$
\mathcal{N}(A)=\left\{\left.\left[\begin{array}{c}
-x_{3} \\
x_{3} \\
x_{3}
\end{array}\right] \right\rvert\, x_{3} \in \mathbb{C}\right\}
$$

Example NSNM

Null space of a nonsingular matrix

Given the coefficient matrix from Archetype B 694,

$$
A=\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]
$$

the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ has a solution set constructed in Example HUSAB 58 that contains only the trivial solution, so the null space has only a single element,

$$
\mathcal{N}(A)=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\}
$$

These two examples illustrate the next theorem, which is another equivalence.

Theorem NMTNS

Nonsingular Matrices have Trivial Null Spaces

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of $A, \mathcal{N}(A)$, contains only the zero vector, i.e. $\mathcal{N}(A)=\{\mathbf{0}\}$.
Proof The null space of a square matrix, A, is equal to the set of solutions to the homogeneous system, $\mathcal{L S}(A, \mathbf{0})$. A matrix is nonsingular if and only if the set of solutions to the homogeneous system, $\mathcal{L S}(A, \mathbf{0})$, has only a trivial solution. These two observations may be chained together to construct the two proofs necessary for each half of this theorem.

The next theorem pulls a lot of ideas together. Two proof techniques are applicable to the proof. So first, head out and read two more proof techniques: Technique CD 678 and Technique U 678 . Theorem NMUS 70 tells us that we can learn a lot about solutions to a system of linear equations with a square coefficient matrix by examining a similar homogeneous system.

Theorem NMUS

Nonsingular Matrices and Unique Solutions

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector \mathbf{b}.
Proof (\Leftarrow) The hypothesis for this half of the proof is that the system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every choice of the constant vector \mathbf{b}. We will make a very specific choice for \mathbf{b} : $\mathbf{b}=\mathbf{0}$. Then we know that the system $\mathcal{L S}(A, \mathbf{0})$ has a unique solution. But this is precisely the definition of what it means for A to be nonsingular (Definition NM 67]). That almost seems too easy! Notice that we have not used the full power of our hypothesis, but there is nothing that says we must use a hypothesis to its fullest.

If the first half of the proof seemed easy, perhaps we'll have to work a bit harder to get the implication in the opposite direction. We provide two different proofs for the second half. The first is suggested by Asa Scherer and relies on the uniqueness of the reduced row-echelon form of a matrix Theorem RREFU
[104), a result that we could have proven earlier, but we have decided to delay until later. The second proof is lengthier and more involved, but does not rely on the uniqueness of the reduced row-echelon form of a matrix, a result we have not proven yet. It is also a good example of the types of proofs we will encounter throughout the course.
$(\Rightarrow$, Round 1) We assume that A is nonsingular, so we know there is a sequence of row operations that will convert A into the identity matrix I_{n} Theorem NMRRI 68). Form the augmented matrix $A^{\prime}=[A \mid \mathbf{b}]$ and apply this same sequence of row operations to A^{\prime}. The result will be the matrix $B^{\prime}=\left[I_{n} \mid \mathbf{c}\right]$, which is in reduced row-echelon form. It should be clear that \mathbf{c} is a solution to $\mathcal{L S}(A, \mathbf{b})$. Furthermore, since B^{\prime} is unique Theorem RREFU 104), the vector \mathbf{c} must be unique, and therefore is a unique solution of $\mathcal{L S}(A, \mathbf{b})$.
$(\Rightarrow$, Round 2$)$ We will assume A is nonsingular, and try to solve the system $\mathcal{L S}(A, \mathbf{b})$ without making any assumptions about \mathbf{b}. To do this we will begin by constructing a new homogeneous linear system of equations that looks very much like the original. Suppose A has size n (why must it be square?) and write the original system as,

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \tag{*}\\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\cdots+a_{n n} x_{n} & =b_{n}
\end{align*}
$$

form the new, homogeneous system in n equations with $n+1$ variables, by adding a new variable y, whose coefficients are the negatives of the constant terms,

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}-b_{1} y & =0 \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}-b_{2} y & =0 \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}-b_{3} y & =0 \\
\vdots & \tag{**}\\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\cdots+a_{n n} x_{n}-b_{n} y & =0
\end{align*}
$$

Since this is a homogeneous system with more variables than equations ($m=n+1>n$), Theorem HMVEI 59 says that the system has infinitely many solutions. We will choose one of these solutions, any one of these solutions, so long as it is not the trivial solution. Write this solution as

$$
\begin{array}{clllll}
x_{1}=c_{1} & x_{2}=c_{2} & x_{3}=c_{3} & \ldots & x_{n}=c_{n} & y=c_{n+1}
\end{array}
$$

We know that at least one value of the c_{i} is nonzero, but we will now show that in particular $c_{n+1} \neq 0$. We do this using a proof by contradiction Technique CD 678). So suppose the c_{i} form a solution as described, and in addition that $c_{n+1}=0$. Then we can write the i-th equation of system ($* *$) as,

$$
a_{i 1} c_{1}+a_{i 2} c_{2}+a_{i 3} c_{3}+\cdots+a_{i n} c_{n}-b_{i}(0)=0
$$

which becomes

$$
a_{i 1} c_{1}+a_{i 2} c_{2}+a_{i 3} c_{3}+\cdots+a_{i n} c_{n}=0
$$

Since this is true for each i, we have that $x_{1}=c_{1}, x_{2}=c_{2}, x_{3}=c_{3}, \ldots, x_{n}=c_{n}$ is a solution to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ formed with a nonsingular coefficient matrix. This means that the only
possible solution is the trivial solution, so $c_{1}=0, c_{2}=0, c_{3}=0, \ldots, c_{n}=0$. So, assuming simply that $c_{n+1}=0$, we conclude that all of the c_{i} are zero. But this contradicts our choice of the c_{i} as not being the trivial solution to the system ($* *)$. So $c_{n+1} \neq 0$.

We now propose and verify a solution to the original system $(*)$. Set

$$
x_{1}=\frac{c_{1}}{c_{n+1}} \quad x_{2}=\frac{c_{2}}{c_{n+1}} \quad x_{3}=\frac{c_{3}}{c_{n+1}} \quad \ldots \quad x_{n}=\frac{c_{n}}{c_{n+1}}
$$

Notice how it was necessary that we know that $c_{n+1} \neq 0$ for this step to succeed. Now, evaluate the i-th equation of system $(*)$ with this proposed solution, and recognize in the third line that c_{1} through c_{n+1} appear as if they were substituted into the left-hand side of the i-th equation of system $(* *)$,

$$
\begin{aligned}
& a_{i 1} \frac{c_{1}}{c_{n+1}}+a_{i 2} \frac{c_{2}}{c_{n+1}}+a_{i 3} \frac{c_{3}}{c_{n+1}}+\cdots+a_{i n} \frac{c_{n}}{c_{n+1}} \\
& =\frac{1}{c_{n+1}}\left(a_{i 1} c_{1}+a_{i 2} c_{2}+a_{i 3} c_{3}+\cdots+a_{i n} c_{n}\right) \\
& =\frac{1}{c_{n+1}}\left(a_{i 1} c_{1}+a_{i 2} c_{2}+a_{i 3} c_{3}+\cdots+a_{i n} c_{n}-b_{i} c_{n+1}\right)+b_{i} \\
& =\frac{1}{c_{n+1}}(0)+b_{i} \\
& =b_{i}
\end{aligned}
$$

Since this equation is true for every i, we have found a solution to system (*). To finish, we still need to establish that this solution is unique.

With one solution in hand, we will entertain the possibility of a second solution. So assume system (*) has two solutions,

$$
\begin{array}{lllll}
x_{1}=d_{1} & x_{2}=d_{2} & x_{3}=d_{3} & \ldots & x_{n}=d_{n} \\
x_{1}=e_{1} & x_{2}=e_{2} & x_{3}=e_{3} & \ldots & x_{n}=e_{n}
\end{array}
$$

Then,

$$
\begin{aligned}
& \left(a_{i 1}\left(d_{1}-e_{1}\right)+a_{i 2}\left(d_{2}-e_{2}\right)+a_{i 3}\left(d_{3}-e_{3}\right)+\cdots+a_{i n}\left(d_{n}-e_{n}\right)\right) \\
& =\left(a_{i 1} d_{1}+a_{i 2} d_{2}+a_{i 3} d_{3}+\cdots+a_{i n} d_{n}\right)-\left(a_{i 1} e_{1}+a_{i 2} e_{2}+a_{i 3} e_{3}+\cdots+a_{i n} e_{n}\right) \\
& =b_{i}-b_{i} \\
& =0
\end{aligned}
$$

This is the i-th equation of the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ evaluated with $x_{j}=d_{j}-e_{j}, 1 \leq j \leq n$. Since A is nonsingular, we must conclude that this solution is the trivial solution, and so $0=d_{j}-e_{j}$, $1 \leq j \leq n$. That is, $d_{j}=e_{j}$ for all j and the two solutions are identical, meaning any solution to (*) is unique.

This important theorem deserves several comments. First, notice that the proposed solution $\left(x_{i}=\frac{c_{i}}{c_{n+1}}\right)$ appeared in the Round 2 proof with no motivation whatsoever. This is just fine in a proof. A proof should convince you that a theorem is true. It is your job to read the proof and be convinced of every assertion. Questions like "Where did that come from?" or "How would I think of that?" have no bearing on the validity of the proof.

Second, this theorem helps to explain part of our interest in nonsingular matrices. If a matrix is nonsingular, then no matter what vector of constants we pair it with, using the matrix as the coefficient matrix will always yield a linear system of equations with a solution, and the solution is unique. To determine if a matrix has this property (non-singularity) it is enough to just solve one linear system, the homogeneous system with the matrix as coefficient matrix and the zero vector as the vector of constants (or any other vector of constants, see Exercise MM.T10 202).

Finally, formulating the negation of the second part of this theorem is a good exercise. A singular matrix has the property that for some value of the vector \mathbf{b}, the system $\mathcal{L S}(A, \mathbf{b})$ does not have a unique solution (which means that it has no solution or infinitely many solutions). We will be able to say more about this case later (see the discussion following Theorem PSPHS 102). Square matrices that are nonsingular have a long list of interesting properties, which we will start to catalog in the following, recurring, theorem. Of course, singular matrices will then have all of the opposite properties. The following theorem is a list of equivalences. We want to understand just what is involved with understanding and proving a theorem that says several condtions are equivalent. So have a look at Technique ME 679 before studying the first in this series of theorems.

Theorem NME1

Nonsingular Matrix Equivalences, Round 1

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{0\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.

Proof That A is nonsingular is equivalent to each of the subsequent statements by, in turn, Theorem NMRRI 68, Theorem NMTNS 70 and Theorem NMUS 70. So the statement of this theorem is just a convenient way to organize all these results.

Subsection READ
 Reading Questions

1. What is the definition of a nonsingular matrix?
2. What is the easiest way to recognize a nonsingular matrix?
3. Suppose we have a system of equations and its coefficient matrix is nonsingular. What can you say about the solution set for this system?

Subsection EXC Exercises

In Exercises C30-C33 determine if the matrix is nonsingular or singular. Give reasons for your answer. C30

$$
\left[\begin{array}{cccc}
-3 & 1 & 2 & 8 \\
2 & 0 & 3 & 4 \\
1 & 2 & 7 & -4 \\
5 & -1 & 2 & 0
\end{array}\right]
$$

Contributed by Robert Beezer Solution 76

C31

$$
\left[\begin{array}{cccc}
2 & 3 & 1 & 4 \\
1 & 1 & 1 & 0 \\
-1 & 2 & 3 & 5 \\
1 & 2 & 1 & 3
\end{array}\right]
$$

Contributed by Robert Beezer Solution 76

C32

$$
\left[\begin{array}{cccc}
9 & 3 & 2 & 4 \\
5 & -6 & 1 & 3 \\
4 & 1 & 3 & -5
\end{array}\right]
$$

Contributed by Robert Beezer Solution 76
C33

$$
\left[\begin{array}{cccc}
-1 & 2 & 0 & 3 \\
1 & -3 & -2 & 4 \\
-2 & 0 & 4 & 3 \\
-3 & 1 & -2 & 3
\end{array}\right]
$$

Contributed by Robert Beezer Solution 76
C40 Each of the archetypes below is a system of equations with a square coefficient matrix, or is itself a square matrix. Determine if these matrices are nonsingular, or singular. Comment on the null space of each matrix.
Archetype A 689
Archetype B 694
Archetype F 711
Archetype K 733
Archetype L 737
Contributed by Robert Beezer
M30 Let A be the coefficient matrix of the system of equations below. Is A nonsingular or singular? Explain what you could infer about the solution set for the system based only on what you have learned about A being singular or nonsingular.

$$
\begin{aligned}
-x_{1}+5 x_{2} & =-8 \\
-2 x_{1}+5 x_{2}+5 x_{3}+2 x_{4} & =9 \\
-3 x_{1}-x_{2}+3 x_{3}+x_{4} & =3 \\
7 x_{1}+6 x_{2}+5 x_{3}+x_{4} & =30
\end{aligned}
$$

Contributed by Robert Beezer Solution 76
For Exercises M51-M52 say as much as possible about each system's solution set. Be sure to make it clear which theorems you are using to reach your conclusions.
M51 6 equations in 6 variables, singular coefficient matrix.
Contributed by Robert Beezer Solution 76
M52 A system with a nonsingular coefficient matrix, not homogeneous.
Contributed by Robert Beezer Solution 77
T10 Suppose that A is a singular matrix, and B is a matrix in reduced row-echelon form that is rowequivalent to A. Prove that the last row of B is a zero row.
Contributed by Robert Beezer Solution 77

Subsection SOL Solutions

C30 Contributed by Robert Beezer Statement 74
The matrix row-reduces to

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & \boxed{1}
\end{array}\right]
$$

which is the 4×4 identity matrix. By Theorem NMRRI 68 the original matrix must be nonsingular.
C31 Contributed by Robert Beezer Statement 74
Row-reducing the matrix yields,

$$
\left[\begin{array}{cccc}
{[1} & 0 & 0 & -2 \\
0 & \boxed{1} & 0 & 3 \\
0 & 0 & \boxed{1} & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since this is not the 4×4 identity matrix, Theorem NMRRI 68 tells us the matrix is singular.
C32 Contributed by Robert Beezer Statement 74
The matrix is not square, so neither term is applicable. See Definition NM 67, which is stated for just square matrices.

C33 Contributed by Robert Beezer Statement 74
Theorem NMRRI 68 tells us we can answer this question by simply row-reducing the matrix. Doing this we obtain,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & \boxed{1} \\
\hline
\end{array}\right]
$$

Since the reduced row-echelon form of the matrix is the 4×4 identity matrix I_{4}, we know that B is nonsingular.

M30 Contributed by Robert Beezer Statement 74
We row-reduce the coefficient matrix of the system of equations,

$$
\left[\begin{array}{cccc}
-1 & 5 & 0 & 0 \\
-2 & 5 & 5 & 2 \\
-3 & -1 & 3 & 1 \\
7 & 6 & 5 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Since the row-reduced version of the coefficient mattrix is the 4×4 identity matrix, I_{4} Definition IM 68 by Theorem NMRRI 68, we know the coefficient matrix is nonsingular. According to Theorem NMUS 70] we know that the system is guaranteed to have a unique solution, based only on the extra information that the coefficient matrix is nonsingular.
M51 Contributed by Robert Beezer Statement 75
Theorem NMRRI 68 tells us that the coefficient matrix will not row-reduce to the identity matrix. So if were to row-reduce the augmented matrix of this system of equations, we would not get a unique solution. So by Theorem PSSLS 52 there remaining possibilities are no solutions, or infinitely many.

M52 Contributed by Robert Beezer Statement 75
Any system with a nonsingular coefficient matrix will have a unique solution by Theorem NMUS 70. If the system is not homogeneous, the solution cannot be the zero vector (Exercise HSE.T10 63).
T10 Contributed by Robert Beezer Statement 75
Let n denote the size of the square matrix A. By Theorem NMRRI 68 the hypothesis that A is singular implies that B is not the identity matrix I_{n}. If B has n pivot columns, then it would have to be I_{n}, so B must have fewer than n pivot columns. But the number of nonzero rows in $B(r)$ is equal to the number of pivot columns as well. So the n rows of B have fewer than n nonzero rows, and B must contain at least one zero row. By Definition RREF 31, this row must be at the bottom of B.

Chapter V Vectors

We have worked extensively in the last chapter with matrices, and some with vectors. In this chapter we will develop the properties of vectors, while preparing to study vector spaces. Initially we will depart from our study of systems of linear equations, but in Section LC 87] we will forge a connection between linear combinations and systems of linear equations in Theorem SLSLC 90 . This connection will allow us to understand systems of linear equations at a higher level, while consequently discussing them less frequently.

Section VO Vector Operations

In this section we define some new operations involving vectors, and collect some basic properties of these operations. Begin by recalling our definition of a column vector as an ordered list of complex numbers, written vertically (Definition CV 25). The collection of all possible vectors of a fixed size is a commonly used set, so we start with its definition.

Definition VSCV

Vector Space of Column Vectors
The vector space \mathbb{C}^{m} is the set of all column vectors (Definition CV 25) of size m with entries from the set of complex numbers, \mathbb{C}.
(This definition contains Notation VSCV.)

When a set similar to this is defined using only column vectors where all the entries are from the real numbers, it is written as \mathbb{R}^{m} and is known as Euclidean m-space.

The term "vector" is used in a variety of different ways. We have defined it as an ordered list written vertically. It could simply be an ordered list of numbers, and written as $(2,3,-1,6)$. Or it could be interpreted as a point in m dimensions, such as $(3,4,-2)$ representing a point in three dimensions relative to x, y and z axes. With an interpretation as a point, we can construct an arrow from the origin to the point which is consistent with the notion that a vector has direction and magnitude.

All of these ideas can be shown to be related and equivalent, so keep that in mind as you connect the ideas of this course with ideas from other disciplines. For now, we'll stick with the idea that a vector is a just a list of numbers, in some particular order.

Subsection VEASM
 Vector Equality, Addition, Scalar Multiplication

We start our study of this set by first defining what it means for two vectors to be the same.

Definition CVE

Column Vector Equality
Suppose that $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$. Then \mathbf{u} and \mathbf{v} are equal, written $\mathbf{u}=\mathbf{v}$ if

$$
[\mathbf{u}]_{i}=[\mathbf{v}]_{i} \quad 1 \leq i \leq m
$$

(This definition contains Notation CVE.)
Now this may seem like a silly (or even stupid) thing to say so carefully. Of course two vectors are equal if they are equal for each corresponding entry! Well, this is not as silly as it appears. We will see a few occasions later where the obvious definition is not the right one. And besides, in doing mathematics we need to be very careful about making all the necessary definitions and making them unambiguous. And we've done that here.

Notice now that the symbol ' $=$ ' is now doing triple-duty. We know from our earlier education what it means for two numbers (real or complex) to be equal, and we take this for granted. In Definition SE 670 we defined what it meant for two sets to be equal. Now we have defined what it means for two vectors to be equal, and that definition builds on our definition for when two numbers are equal when we use the condition $u_{i}=v_{i}$ for all $1 \leq i \leq m$. So think carefully about your objects when you see an equal sign and think about just which notion of equality you have encountered. This will be especially important when you are asked to construct proofs whose conclusion states that two objects are equal.

OK, let's do an example of vector equality that begins to hint at the utility of this definition.

Example VESE

Vector equality for a system of equations

Consider the system of linear equations in Archetype B 694,

$$
\begin{aligned}
-7 x_{1}-6 x_{2}-12 x_{3} & =-33 \\
5 x_{1}+5 x_{2}+7 x_{3} & =24 \\
x_{1}+4 x_{3} & =5
\end{aligned}
$$

Note the use of three equals signs - each indicates an equality of numbers (the linear expressions are numbers when we evaluate them with fixed values of the variable quantities). Now write the vector equality,

$$
\left[\begin{array}{c}
-7 x_{1}-6 x_{2}-12 x_{3} \\
5 x_{1}+5 x_{2}+7 x_{3} \\
x_{1}+4 x_{3}
\end{array}\right]=\left[\begin{array}{c}
-33 \\
24 \\
5
\end{array}\right] .
$$

By Definition CVE 80, this single equality (of two column vectors) translates into three simultaneous equalities of numbers that form the system of equations. So with this new notion of vector equality we can become less reliant on referring to systems of simultaneous equations. There's more to vector equality than just this, but this is a good example for starters and we will develop it further.

We will now define two operations on the set \mathbb{C}^{m}. By this we mean well-defined procedures that somehow convert vectors into other vectors. Here are two of the most basic definitions of the entire course.

Definition CVA

Column Vector Addition

Suppose that $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$. The sum of \mathbf{u} and \mathbf{v} is the vector $\mathbf{u}+\mathbf{v}$ defined by

$$
[\mathbf{u}+\mathbf{v}]_{i}=[\mathbf{u}]_{i}+[\mathbf{v}]_{i} \quad 1 \leq i \leq m
$$

(This definition contains Notation CVA.)
So vector addition takes two vectors of the same size and combines them (in a natural way!) to create a new vector of the same size. Notice that this definition is required, even if we agree that this is the obvious, right, natural or correct way to do it. Notice too that the symbol ' + ' is being recycled. We all know how to add numbers, but now we have the same symbol extended to double-duty and we use it to indicate how to add two new objects, vectors. And this definition of our new meaning is built on our previous meaning of addition via the expressions $u_{i}+v_{i}$. Think about your objects, especially when doing proofs. Vector addition is easy, here's an example from \mathbb{C}^{4}.

Example VA

Addition of two vectors in \mathbb{C}^{4}
If

$$
\mathbf{u}=\left[\begin{array}{c}
2 \\
-3 \\
4 \\
2
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
5 \\
2 \\
-7
\end{array}\right]
$$

then

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}
2 \\
-3 \\
4 \\
2
\end{array}\right]+\left[\begin{array}{c}
-1 \\
5 \\
2 \\
-7
\end{array}\right]=\left[\begin{array}{c}
2+(-1) \\
-3+5 \\
4+2 \\
2+(-7)
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
6 \\
-5
\end{array}\right] .
$$

Our second operation takes two objects of different types, specifically a number and a vector, and combines them to create another vector. In this context we call a number a scalar in order to emphasize that it is not a vector.

Definition CVSM

Column Vector Scalar Multiplication

Suppose $\mathbf{u} \in \mathbb{C}^{m}$ and $\alpha \in \mathbb{C}$, then the scalar multiple of \mathbf{u} by α is the vector $\alpha \mathbf{u}$ defined by

$$
[\alpha \mathbf{u}]_{i}=\alpha[\mathbf{u}]_{i} \quad 1 \leq i \leq m
$$

(This definition contains Notation CVSM.)
Notice that we are doing a kind of multiplication here, but we are defining a new type, perhaps in what appears to be a natural way. We use juxtaposition (smashing two symbols together side-by-side) to denote this operation rather than using a symbol like we did with vector addition. So this can be another source of confusion. When two symbols are next to each other, are we doing regular old multiplication, the kind we've done for years, or are we doing scalar vector multiplication, the operation we just defined? Think about your objects - if the first object is a scalar, and the second is a vector, then it must be that we are doing our new operation, and the result of this operation will be another vector.

Notice how consistency in notation can be an aid here. If we write scalars as lower case Greek letters from the start of the alphabet (such as α, β, \ldots) and write vectors in bold Latin letters from the end of the alphabet $(\mathbf{u}, \mathbf{v}, \ldots)$, then we have some hints about what type of objects we are working with. This can be a blessing and a curse, since when we go read another book about linear algebra, or read an application in another discipline (physics, economics, ...) the types of notation employed may be very different and hence unfamiliar.

Again, computationally, vector scalar multiplication is very easy.

Example CVSM

Scalar multiplication in \mathbb{C}^{5}
If

$$
\mathbf{u}=\left[\begin{array}{c}
3 \\
1 \\
-2 \\
4 \\
-1
\end{array}\right]
$$

and $\alpha=6$, then

$$
\alpha \mathbf{u}=6\left[\begin{array}{c}
3 \\
1 \\
-2 \\
4 \\
-1
\end{array}\right]=\left[\begin{array}{c}
6(3) \\
6(1) \\
6(-2) \\
6(4) \\
6(-1)
\end{array}\right]=\left[\begin{array}{c}
18 \\
6 \\
-12 \\
24 \\
-6
\end{array}\right] .
$$

Vector addition and scalar multiplication are the most natural and basic operations to perform on vectors, so it should be easy to have your computational device form a linear combination. See: Computation VLC.MMA 658 Computation VLC.TI86 662 Computation VLC.TI83 664 .

Subsection VSP
 Vector Space Properties

With definitions of vector addition and scalar multiplication we can state, and prove, several properties of each operation, and some properties that involve their interplay. We now collect ten of them here for later reference.

Theorem VSPCV

Vector Space Properties of Column Vectors

Suppose that \mathbb{C}^{m} is the set of column vectors of size m (Definition VSCV 79) with addition and scalar multiplication as defined in Definition CVA 80 and Definition CVSM 81. Then

- ACC Additive Closure, Column Vectors

If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\mathbf{u}+\mathbf{v} \in \mathbb{C}^{m}$.

- SCC Scalar Closure, Column Vectors

If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $\alpha \mathbf{u} \in \mathbb{C}^{m}$.

- CC Commutativity, Column Vectors

If $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.

- AAC Additive Associativity, Column Vectors If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^{m}$, then $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.
- ZC Zero Vector, Column Vectors

There is a vector, $\mathbf{0}$, called the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $\mathbf{u} \in \mathbb{C}^{m}$.

- AIC Additive Inverses, Column Vectors

If $\mathbf{u} \in \mathbb{C}^{m}$, then there exists a vector $-\mathbf{u} \in \mathbb{C}^{m}$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.

- SMAC Scalar Multiplication Associativity, Column Vectors If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $\alpha(\beta \mathbf{u})=(\alpha \beta) \mathbf{u}$.

- DVAC Distributivity across Vector Addition, Column Vectors

If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$, then $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$.

- DSAC Distributivity across Scalar Addition, Column Vectors

If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in \mathbb{C}^{m}$, then $(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u}$.

- OC One, Column Vectors

If $\mathbf{u} \in \mathbb{C}^{m}$, then $1 \mathbf{u}=\mathbf{u}$.

Proof While some of these properties seem very obvious, they all require proof. However, the proofs are not very interesting, and border on tedious. We'll prove one version of distributivity very carefully, and you can test your proof-building skills on some of the others. We need to establish an equality, so we will do so by beginning with one side of the equality, apply various definitions and theorems (listed to the right of each step) to massage the expression from the left into the expression on the right. Now would be a good time to read Technique PI 679, just below. Here we go with a proof of Property DSAC 83 . For $1 \leq i \leq m$,

$$
\begin{aligned}
{[(\alpha+\beta) \mathbf{u}]_{i} } & =(\alpha+\beta)[\mathbf{u}]_{i} & & \text { Definition CVSM } 81 \\
& =\alpha[\mathbf{u}]_{i}+\beta[\mathbf{u}]_{i} & & \text { Distributivity in } \mathbb{C} \\
& =[\alpha \mathbf{u}]_{i}+[\beta \mathbf{u}]_{i} & & \text { Definition CVSM } 81 \\
& =[\alpha \mathbf{u}+\beta \mathbf{u}]_{i} & & \text { Definition CVA 80 }
\end{aligned}
$$

Since the individual components of the vectors $(\alpha+\beta) \mathbf{u}$ and $\alpha \mathbf{u}+\beta \mathbf{u}$ are equal for all $i, 1 \leq i \leq m$, Definition CVE 80 tells us the vectors are equal.

Many of the conclusions of our theorems can be characterized as "identities," especially when we are establishing basic properties of operations such as those in this section. So some advice about the style we use for proving identities is appropriate right now. Have a look at Technique PI 679.

Be careful with the notion of the vector $-\mathbf{u}$. This is a vector that we add to \mathbf{u} so that the result is the particular vector $\mathbf{0}$. This is basically a property of vector addition. It happens that we can compute $-\mathbf{u}$ using the other operation, scalar multiplication. We can prove this directly by writing that

$$
[-\mathbf{u}]_{i}=-[\mathbf{u}]_{i}=(-1)[\mathbf{u}]_{i}=[(-1) \mathbf{u}]_{i}
$$

We will see later how to derive this property as a consequence of several of the ten properties listed in Theorem VSPCV 82 .

Subsection READ
 Reading Questions

1. Where have you seen vectors used before in other courses? How were they different?
2. In words, when are two vectors equal?
3. Perform the following computation with vector operations

$$
2\left[\begin{array}{l}
1 \\
5 \\
0
\end{array}\right]+(-3)\left[\begin{array}{l}
7 \\
6 \\
5
\end{array}\right]
$$

Subsection EXC
 Exercises

C10 Compute

$$
4\left[\begin{array}{c}
2 \\
-3 \\
4 \\
1 \\
0
\end{array}\right]+(-2)\left[\begin{array}{c}
1 \\
2 \\
-5 \\
2 \\
4
\end{array}\right]+\left[\begin{array}{c}
-1 \\
3 \\
0 \\
1 \\
2
\end{array}\right]
$$

Contributed by Robert Beezer Solution 85
T13 Prove Property CC 82 of Theorem VSPCV 82. Write your proof in the style of the proof of Property DSAC 83 given in this section.
Contributed by Robert Beezer Solution 85
T17 Prove Property SMAC 82 of Theorem VSPCV 82. Write your proof in the style of the proof of Property DSAC [83 given in this section.
Contributed by Robert Beezer
T18 Prove Property DVAC 83 of Theorem VSPCV 82. Write your proof in the style of the proof of Property DSAC [83] given in this section.
Contributed by Robert Beezer

Subsection SOL
 Solutions

C10 Contributed by Robert Beezer Statement 84
$\left[\begin{array}{c}5 \\ -13 \\ 26 \\ 1 \\ -6\end{array}\right]$
T13 Contributed by Robert Beezer Statement 84
For all $1 \leq i \leq m$,

$$
\begin{aligned}
{[\mathbf{u}+\mathbf{v}]_{i} } & =[\mathbf{u}]_{i}+[\mathbf{v}]_{i} & & \text { Definition CVA } 80 \\
& =[\mathbf{v}]_{i}+[\mathbf{u}]_{i} & & \text { Commutativity in } \mathbb{C} \\
& =[\mathbf{v}+\mathbf{u}]_{i} & & \text { Definition CVA } 80
\end{aligned}
$$

With equality of each component of the vectors $\mathbf{u}+\mathbf{v}$ and $\mathbf{v}+\mathbf{u}$ being equal Definition CVE 80 tells us the two vectors are equal.

Section LC
 Linear Combinations

In Section VO 79 we defined vector addition and scalar multiplication. These two operations combine nicely to give us a construction known as a linear combination, a construct that we will work with throughout this course.

Subsection LC
 Linear Combinations

Definition LCCV

Linear Combination of Column Vectors

Given n vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}$ from \mathbb{C}^{m} and n scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, their linear combination is the vector

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n} .
$$

So this definition takes an equal number of scalars and vectors, combines them using our two new operations (scalar multiplication and vector addition) and creates a single brand-new vector, of the same size as the original vectors. When a definition or theorem employs a linear combination, think about the nature of the objects that go into its creation (lists of scalars and vectors), and the type of object that results (a single vector). Computationally, a linear combination is pretty easy.

Example TLC

Two linear combinations in \mathbb{C}^{6}
Suppose that

$$
\begin{array}{cccc}
\alpha_{1}=1 & \alpha_{2}=-4 & \alpha_{3}=2 & \alpha_{4}=-1
\end{array}
$$

and

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
2 \\
4 \\
-3 \\
1 \\
2 \\
9
\end{array}\right] \quad \mathbf{u}_{2}=\left[\begin{array}{c}
6 \\
3 \\
0 \\
-2 \\
1 \\
4
\end{array}\right] \quad \mathbf{u}_{3}=\left[\begin{array}{c}
-5 \\
2 \\
1 \\
1 \\
-3 \\
0
\end{array}\right] \quad \mathbf{u}_{4}=\left[\begin{array}{c}
3 \\
2 \\
-5 \\
7 \\
1 \\
3
\end{array}\right]
$$

then their linear combination is

$$
\alpha_{1} \mathbf{u}_{\mathbf{1}}+\alpha_{2} \mathbf{u}_{\mathbf{2}}+\alpha_{3} \mathbf{u}_{\mathbf{3}}+\alpha_{4} \mathbf{u}_{\mathbf{4}}=(1)\left[\begin{array}{c}
2 \\
4 \\
-3 \\
1 \\
2 \\
9
\end{array}\right]+(-4)\left[\begin{array}{c}
6 \\
3 \\
0 \\
-2 \\
1 \\
4
\end{array}\right]+(2)\left[\begin{array}{c}
-5 \\
2 \\
1 \\
1 \\
-3 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
3 \\
2 \\
-5 \\
7 \\
1 \\
3
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
2 \\
4 \\
-3 \\
1 \\
2 \\
9
\end{array}\right]+\left[\begin{array}{c}
-24 \\
-12 \\
0 \\
8 \\
-4 \\
-16
\end{array}\right]+\left[\begin{array}{c}
-10 \\
4 \\
2 \\
2 \\
-6 \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 \\
-2 \\
5 \\
-7 \\
-1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-35 \\
-6 \\
4 \\
4 \\
-9 \\
-10
\end{array}\right] .
$$

A different linear combination, of the same set of vectors, can be formed with different scalars. Take

$$
\beta_{1}=3 \quad \beta_{2}=0 \quad \beta_{3}=5 \quad \beta_{4}=-1
$$

and form the linear combination

$$
\begin{aligned}
\beta_{1} \mathbf{u}_{\mathbf{1}}+\beta_{2} \mathbf{u}_{\mathbf{2}}+\beta_{3} \mathbf{u}_{\mathbf{3}}+\beta_{4} \mathbf{u}_{\mathbf{4}} & =(3)\left[\begin{array}{c}
2 \\
4 \\
-3 \\
1 \\
2 \\
9
\end{array}\right]+(0)\left[\begin{array}{c}
6 \\
3 \\
0 \\
-2 \\
1 \\
4
\end{array}\right]+(5)\left[\begin{array}{c}
-5 \\
2 \\
1 \\
1 \\
-3 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
3 \\
2 \\
-5 \\
7 \\
1 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
6 \\
12 \\
-9 \\
3 \\
6 \\
27
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-25 \\
10 \\
5 \\
5 \\
-15 \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 \\
-2 \\
5 \\
-7 \\
-1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-22 \\
20 \\
1 \\
1 \\
-10 \\
24
\end{array}\right] .
\end{aligned}
$$

Notice how we could keep our set of vectors fixed, and use different sets of scalars to construct different vectors. You might build a few new linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ right now. We'll be right here when you get back. What vectors were you able to create? Do you think you could create the vector

$$
\mathbf{w}=\left[\begin{array}{c}
13 \\
15 \\
5 \\
-17 \\
2 \\
25
\end{array}\right]
$$

with a "suitable" choice of four scalars? Do you think you could create any possible vector from \mathbb{C}^{6} by choosing the proper scalars? These last two questions are very fundamental, and time spent considering them now will prove beneficial later.

Our next two examples are key ones, and a discussion about decompositions is timely. Have a look at Technique DC 680 before studying the next two examples.

Example ABLC

Archetype B as a linear combination

In this example we will rewrite Archetype B 694 in the language of vectors, vector equality and linear combinations. In Example VESE 80 we wrote the system of $m=3$ equations as the vector equality

$$
\left[\begin{array}{c}
-7 x_{1}-6 x_{2}-12 x_{3} \\
5 x_{1}+5 x_{2}+7 x_{3} \\
x_{1}+4 x_{3}
\end{array}\right]=\left[\begin{array}{c}
-33 \\
24 \\
5
\end{array}\right]
$$

Now we will bust up the linear expressions on the left, first using vector addition,

$$
\left[\begin{array}{c}
-7 x_{1} \\
5 x_{1} \\
x_{1}
\end{array}\right]+\left[\begin{array}{c}
-6 x_{2} \\
5 x_{2} \\
0 x_{2}
\end{array}\right]+\left[\begin{array}{c}
-12 x_{3} \\
7 x_{3} \\
4 x_{3}
\end{array}\right]=\left[\begin{array}{c}
-33 \\
24 \\
5
\end{array}\right] .
$$

Now we can rewrite each of these $n=3$ vectors as a scalar multiple of a fixed vector, where the scalar is one of the unknown variables, converting the left-hand side into a linear combination

$$
x_{1}\left[\begin{array}{c}
-7 \\
5 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-6 \\
5 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-12 \\
7 \\
4
\end{array}\right]=\left[\begin{array}{c}
-33 \\
24 \\
5
\end{array}\right] .
$$

We can now interpret the problem of solving the system of equations as determining values for the scalar multiples that make the vector equation true. In the analysis of Archetype B 694, we were able to determine that it had only one solution. A quick way to see this is to row-reduce the coefficient matrix to the 3×3 identity matrix and apply Theorem NMRRI 68 to determine that the coefficient matrix is nonsingular. Then Theorem NMUS 70 tells us that the system of equations has a unique solution. This solution is

$$
x_{1}=-3 \quad x_{2}=5 \quad x_{3}=2 .
$$

So, in the context of this example, we can express the fact that these values of the variables are a solution by writing the linear combination,

$$
(-3)\left[\begin{array}{c}
-7 \\
5 \\
1
\end{array}\right]+(5)\left[\begin{array}{c}
-6 \\
5 \\
0
\end{array}\right]+(2)\left[\begin{array}{c}
-12 \\
7 \\
4
\end{array}\right]=\left[\begin{array}{c}
-33 \\
24 \\
5
\end{array}\right] .
$$

Furthermore, these are the only three scalars that will accomplish this equality, since they come from a unique solution.

Notice how the three vectors in this example are the columns of the coefficient matrix of the system of equations. This is our first hint of the important interplay between the vectors that form the columns of a matrix, and the matrix itself.

With any discussion of Archetype A 689 or Archetype B 694 we should be sure to contrast with the other.

Example AALC

Archetype A as a linear combination

As a vector equality, Archetype A 689 can be written as

$$
\left[\begin{array}{c}
x_{1}-x_{2}+2 x_{3} \\
2 x_{1}+x_{2}+x_{3} \\
x_{1}+x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
8 \\
5
\end{array}\right] .
$$

Now bust up the linear expressions on the left, first using vector addition,

$$
\left[\begin{array}{c}
x_{1} \\
2 x_{1} \\
x_{1}
\end{array}\right]+\left[\begin{array}{c}
-x_{2} \\
x_{2} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
2 x_{3} \\
x_{3} \\
0 x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
8 \\
5
\end{array}\right] .
$$

Rewrite each of these $n=3$ vectors as a scalar multiple of a fixed vector, where the scalar is one of the unknown variables, converting the left-hand side into a linear combination

$$
x_{1}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
8 \\
5
\end{array}\right] .
$$

Row-reducing the augmented matrix for Archetype A 689 leads to the conclusion that the system is consistent and has free variables, hence infinitely many solutions. So for example, the two solutions

$$
\begin{array}{lll}
x_{1}=2 & x_{2}=3 & x_{3}=1 \\
x_{1}=3 & x_{2}=2 & x_{3}=0
\end{array}
$$

can be used together to say that,

$$
\text { (2) }\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+(3)\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+(1)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
8 \\
5
\end{array}\right]=(3)\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+(2)\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+(0)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Ignore the middle of this equation, and move all the terms to the left-hand side,

$$
\text { (2) }\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+(3)\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+(1)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+(-3)\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+(-2)\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+(-0)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Regrouping gives

$$
(-1)\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+(1)\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+(1)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Notice that these three vectors are the columns of the coefficient matrix for the system of equations in Archetype A 689. This equality says there is a linear combination of those columns that equals the vector of all zeros. Give it some thought, but this says that

$$
\begin{array}{lll}
x_{1}=-1 & x_{2}=1 & x_{3}=1
\end{array}
$$

is a nontrivial solution to the homogeneous system of equations with the coefficient matrix for the original system in Archetype A 689. In particular, this demonstrates that this coefficient matrix is singular. \boxtimes

There's a lot going on in the last two examples. Come back to them in a while and make some connections with the intervening material. For now, we will summarize and explain some of this behavior with a theorem.

Theorem SLSLC

Solutions to Linear Systems are Linear Combinations

Denote the columns of the $m \times n$ matrix A as the vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$. Then \mathbf{x} is a solution to the linear system of equations $\mathcal{L S}(A, \mathbf{b})$ if and only if

$$
[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n}=\mathbf{b}
$$

Proof The proof of this theorem is as much about a change in notation as it is about making logical deductions. Write the system of equations $\mathcal{L S}(A, \mathbf{b})$ as

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n} & =b_{3} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n} & =b_{m} .
\end{aligned}
$$

Notice then that the entry of the coefficient matrix A in row i and column j has two names: $a_{i j}$ as the coefficient of x_{j} in equation i of the system and $\left[\mathbf{A}_{j}\right]_{i}$ as the i-th entry of the column vector in column j of the coefficient matrix A. Likewise, entry i of \mathbf{b} has two names: b_{i} from the linear system and $[\mathbf{b}]_{i}$ as an entry of a vector. Our theorem is an equivalence Technique E 676) so we need to prove both "directions."
(\Leftarrow) Suppose we have the vector equality between \mathbf{b} and the linear combination of the columns of A. Then for $1 \leq i \leq n$,

$$
\begin{aligned}
b_{i} & =[\mathbf{b}]_{i} \\
& =\left[[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n}\right]_{i} \\
& =\left[[\mathbf{x}]_{1} \mathbf{A}_{1}\right]_{i}+\left[[\mathbf{x}]_{2} \mathbf{A}_{2}\right]_{i}+\left[[\mathbf{x}]_{3} \mathbf{A}_{3}\right]_{i}+\cdots+\left[[\mathbf{x}]_{n} \mathbf{A}_{n}\right]_{i} \\
& =[\mathbf{x}]_{1}\left[\mathbf{A}_{1}\right]_{i}+[\mathbf{x}]_{2}\left[\mathbf{A}_{2}\right]_{i}+[\mathbf{x}]_{3}\left[\mathbf{A}_{3}\right]_{i}+\cdots+[\mathbf{x}]_{n}\left[\mathbf{A}_{n}\right]_{i} \\
& =[\mathbf{x}]_{1} a_{i 1}+[\mathbf{x}]_{2} a_{i 2}+[\mathbf{x}]_{3} a_{i 3}+\cdots+[\mathbf{x}]_{n} a_{i n} \\
& =a_{i 1}[\mathbf{x}]_{1}+a_{i 2}[\mathbf{x}]_{2}+a_{i 3}[\mathbf{x}]_{3}+\cdots+a_{i n}[\mathbf{x}]_{n}
\end{aligned}
$$

Notation
Hypothesis
Definition CVA 80
Definition CVSM 81
Notation
Commutativity in \mathbb{C}

This says that the entries of \mathbf{x} form a solution to equation i of $\mathcal{L S}(A, \mathbf{b})$ for all $1 \leq i \leq n$, i.e. \mathbf{x} is a solution to $\mathcal{L S}(A, \mathbf{b})$.
(\Rightarrow) Suppose now that \mathbf{x} is a solution to the linear system $\mathcal{L S}(A, \mathbf{b})$. Then for all $1 \leq i \leq n$,

$$
\begin{aligned}
{[\mathbf{b}]_{i} } & =b_{i} \\
& =a_{i 1}[\mathbf{x}]_{1}+a_{i 2}[\mathbf{x}]_{2}+a_{i 3}[\mathbf{x}]_{3}+\cdots+a_{i n}[\mathbf{x}]_{n} \\
& =[\mathbf{x}]_{1} a_{i 1}+[\mathbf{x}]_{2} a_{i 2}+[\mathbf{x}]_{3} a_{i 3}+\cdots+[\mathbf{x}]_{n} a_{i n} \\
& =[\mathbf{x}]_{1}\left[\mathbf{A}_{1}\right]_{i}+[\mathbf{x}]_{2}\left[\mathbf{A}_{2}\right]_{i}+[\mathbf{x}]_{3}\left[\mathbf{A}_{3}\right]_{i}+\cdots+[\mathbf{x}]_{n}\left[\mathbf{A}_{n}\right]_{i} \\
& =\left[[\mathbf{x}]_{1} \mathbf{A}_{1}\right]_{i}+\left[[\mathbf{x}]_{2} \mathbf{A}_{2}\right]_{i}+\left[[\mathbf{x}]_{3} \mathbf{A}_{3}\right]_{i}+\cdots+\left[[\mathbf{x}]_{n} \mathbf{A}_{n}\right]_{i} \\
& =\left[[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n}\right]_{i}
\end{aligned}
$$

Notation
Hypothesis
Commutativity in \mathbb{C}
Notation
Definition CVSM 81
Definition CVA 80
Sinc the components of \mathbf{b} and the linear combination of the columns of A agree for all $1 \leq i \leq n$, Definition CVE 80 tells us that the vectors are equal.

In other words, this theorem tells us that solutions to systems of equations are linear combinations of the column vectors of the coefficient matrix $\left(\mathbf{A}_{i}\right)$ which yield the constant vector \mathbf{b}. Or said another way, a solution to a system of equations $\mathcal{L S}(A, \mathbf{b})$ is an answer to the question "How can I form the vector \mathbf{b} as a linear combination of the columns of A ?" Look through the archetypes that are systems of equations and examine a few of the advertised solutions. In each case use the solution to form a linear combination of the columns of the coefficient matrix and verify that the result equals the constant vector (see Exercise LC.C21 107).

Subsection VFSS
 Vector Form of Solution Sets

We have written solutions to systems of equations as column vectors. For example Archetype B 694 has the solution $x_{1}=-3, x_{2}=5, x_{3}=2$ which we now write as

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
5 \\
2
\end{array}\right]
$$

Now, we will use column vectors and linear combinations to express all of the solutions to a linear system of equations in a compact and understandable way. First, here's two examples that will motivate our next
theorem. This is a valuable technique, almost the equal of row-reducing a matrix, so be sure you get comfortable with it over the course of this section.

Example VFSAD

Vector form of solutions for Archetype D
Archetype D 703 is a linear system of 3 equations in 4 variables. Row-reducing the augmented matrix yields

$$
\left[\begin{array}{ccccc}
1 & 0 & 3 & -2 & 4 \\
0 & \boxed{1} & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and we see $r=2$ nonzero rows. Also, $D=\{1,2\}$ so the dependent variables are then x_{1} and x_{2}. $F=\{3,4,5\}$ so the two free variables are x_{3} and x_{4}. We will express a generic solution for the system by two slightly different methods, though both arrive at the same conclusion.

First, we will decompose Technique DC 680) a solution vector. Rearranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
4-3 x_{3}+2 x_{4} \\
-x_{3}+3 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Now we will use the definitions of column vector addition and scalar multiplication to express this vector as a linear combination,

$$
\begin{aligned}
& =\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 x_{3} \\
-x_{3} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
2 x_{4} \\
3 x_{4} \\
0 \\
x_{4}
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

We will develop the same linear combination a bit quicker, using three steps. While the method above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of $n-r$ vectors, using the free variables as the scalars.

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=[]+x_{3}[]+x_{4}[]
$$

Step 2. Use 0's and 1's to ensure equality for the entries of the the vectors with indices in F (corresponding to the free variables).

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
\\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
\\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
\\
0 \\
1
\end{array}\right]
$$

Step 3. For each dependent variable, use the augmented matrix to formulate an equation expressing the dependent variable as a constant plus multiples of the free variables. Convert this equation into entries of the vectors that ensure equality for each dependent variable, one at a time.

$$
\begin{array}{lll}
x_{1}=4-3 x_{3}+2 x_{4} & \Rightarrow \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
-3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
x_{2}=0-1 x_{3}+3 x_{4} & \Rightarrow & \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]
\end{array}
$$

This final form of a typical solution is especially pleasing and useful. For example, we can build solutions quickly by choosing values for our free variables, and then compute a linear combination. Such as

$$
x_{3}=2, x_{4}=-5 \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right]+(2)\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+(-5)\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-12 \\
-17 \\
2 \\
-5
\end{array}\right]
$$

or,

$$
x_{3}=1, x_{4}=3 \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right]+(1)\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+(3)\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 \\
8 \\
1 \\
3
\end{array}\right] .
$$

You'll find the second solution listed in the write-up for Archetype D 703, and you might check the first solution by substituting it back into the original equations.

While this form is useful for quickly creating solutions, its even better because it tells us exactly what every solution looks like. We know the solution set is infinite, which is pretty big, but now we can say that a solution is some multiple of $\left[\begin{array}{c}-3 \\ -1 \\ 1 \\ 0\end{array}\right]$ plus a multiple of $\left[\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right]$ plus the fixed vector $\left[\begin{array}{l}4 \\ 0 \\ 0 \\ 0\end{array}\right]$. Period. So it only takes us three vectors to describe the entire infinite solution set, provided we also agree on how to combine the three vectors into a linear combination.

This is such an important and fundamental technique, we'll do another example.

Example VFS

Vector form of solutions

Consider a linear system of $m=5$ equations in $n=7$ variables, having the augmented matrix A.

$$
A=\left[\begin{array}{cccccccc}
2 & 1 & -1 & -2 & 2 & 1 & 5 & 21 \\
1 & 1 & -3 & 1 & 1 & 1 & 2 & -5 \\
1 & 2 & -8 & 5 & 1 & 1 & -6 & -15 \\
3 & 3 & -9 & 3 & 6 & 5 & 2 & -24 \\
-2 & -1 & 1 & 2 & 1 & 1 & -9 & -30
\end{array}\right]
$$

Row-reducing we obtain the matrix

$$
\left.B=\begin{array}{cccccccc}
\boxed{1} & 0 & 2 & -3 & 0 & 0 & 9 & 15 \\
0 & \boxed{1} & -5 & 4 & 0 & 0 & -8 & -10 \\
0 & 0 & 0 & 0 & \boxed{1} & 0 & -6 & 11 \\
0 & 0 & 0 & 0 & 0 & \boxed{1} & 7 & -21 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and we see $r=4$ nonzero rows. Also, $D=\{1,2,5,6\}$ so the dependent variables are then x_{1}, x_{2}, x_{5}, and $x_{6} . F=\{3,4,7,8\}$ so the $n-r=3$ free variables are x_{3}, x_{4} and x_{7}. We will express a generic solution for the system by two different methods: both a decomposition and a construction.

First, we will decompose (Technique DC 680) a solution vector. Rearranging each equation represented in the row-reduced form of the augmented matrix by solving for the dependent variable in each row yields the vector equality,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
15-2 x_{3}+3 x_{4}-9 x_{7} \\
-10+5 x_{3}-4 x_{4}+8 x_{7} \\
x_{3} \\
x_{4} \\
11+6 x_{7} \\
-21-7 x_{7} \\
x_{7}
\end{array}\right]
$$

Now we will use the definitions of column vector addition and scalar multiplication to decompose this generic solution vector as a linear combination,

$$
\begin{aligned}
& =\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
11 \\
-21 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 x_{3} \\
5 x_{3} \\
x_{3} \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
3 x_{4} \\
-4 x_{4} \\
0 \\
x_{4} \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-9 x_{7} \\
8 x_{7} \\
0 \\
0 \\
6 x_{7} \\
-7 x_{7} \\
x_{7}
\end{array}\right] \\
& =\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
11 \\
-21 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
5 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
3 \\
-4 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{c}
-9 \\
8 \\
0 \\
0 \\
6 \\
-7 \\
1
\end{array}\right]
\end{aligned}
$$

We will now develop the same linear combination a bit quicker, using three steps. While the method above is instructive, the method below will be our preferred approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination of $n-r$ vectors, using the free variables as the scalars.

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=[]+x_{3}[]+x_{4}[]+x_{7}[]
$$

Step 2. Use 0's and 1's to ensure equality for the entries of the the vectors with indices in F (corresponding to the free variables).

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{l}
\\
0 \\
0 \\
1
\end{array}\right]
$$

Step 3. For each dependent variable, use the augmented matrix to formulate an equation expressing the dependent variable as a constant plus multiples of the free variables. Convert this equation into entries of the vectors that ensure equality for each dependent variable, one at a time.

$$
\begin{aligned}
& x_{1}=15-2 x_{3}+3 x_{4}-9 x_{7} \quad \Rightarrow \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
15 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{c}
-9 \\
0 \\
0 \\
1
\end{array}\right] \\
& x_{2}=-10+5 x_{3}-4 x_{4}+8 x_{7} \quad \Rightarrow \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
5 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
3 \\
-4 \\
0 \\
1 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{c}
-9 \\
8 \\
0 \\
0 \\
1
\end{array}\right] \\
& x_{5}=11+6 x_{7} \quad \Rightarrow \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
11 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
5 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
3 \\
-4 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{c}
-9 \\
8 \\
0 \\
0 \\
6 \\
1
\end{array}\right] \\
& x_{6}=-21-7 x_{7} \quad \Rightarrow \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
11 \\
-21 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
5 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
3 \\
-4 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{c}
-9 \\
8 \\
0 \\
0 \\
6 \\
-7 \\
1
\end{array}\right]
\end{aligned}
$$

This final form of a typical solution is especially pleasing and useful. For example, we can build solutions quickly by choosing values for our free variables, and then compute a linear combination. For example

$$
x_{3}=2, x_{4}=-4, x_{7}=3 \quad \Rightarrow
$$

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
11 \\
-21 \\
0
\end{array}\right]+(2)\left[\begin{array}{c}
-2 \\
5 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-4)\left[\begin{array}{c}
3 \\
-4 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+(3)\left[\begin{array}{c}
-9 \\
8 \\
0 \\
0 \\
6 \\
-7 \\
1
\end{array}\right]=\left[\begin{array}{c}
-28 \\
40 \\
2 \\
-4 \\
29 \\
-42 \\
3
\end{array}\right]
$$

or perhaps,

$$
\begin{aligned}
& x_{3}=5, x_{4}=2, x_{7}=1 \Rightarrow \\
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
11 \\
-21 \\
0
\end{array}\right]+(5)\left[\begin{array}{c}
-2 \\
5 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(2)\left[\begin{array}{c}
3 \\
-4 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+(1)\left[\begin{array}{c}
-9 \\
8 \\
0 \\
0 \\
6 \\
-7 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
15 \\
5 \\
2 \\
17 \\
-28 \\
1
\end{array}\right]
\end{aligned}
$$

or even,

$$
\begin{aligned}
& x_{3}=0, x_{4}=0, x_{7}=0 \quad \Rightarrow \\
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
11 \\
-21 \\
0
\end{array}\right]+(0)\left[\begin{array}{c}
-2 \\
5 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(0)\left[\begin{array}{c}
3 \\
-4 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+(0)\left[\begin{array}{c}
-9 \\
8 \\
0 \\
0 \\
6 \\
-7 \\
1
\end{array}\right]=\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
11 \\
-21 \\
0
\end{array}\right]
\end{aligned}
$$

So we can compactly express all of the solutions to this linear system with just 4 fixed vectors, provided we agree how to combine them in a linear combinations to create solution vectors.

Suppose you were told that the vector \mathbf{w} below was a solution to this system of equations. Could you turn the problem around and write \mathbf{w} as a linear combination of the four vectors $\mathbf{c}, \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$? (See Exercise LC.M11 108.)

$$
\mathbf{w}=\left[\begin{array}{c}
100 \\
-75 \\
7 \\
9 \\
-37 \\
35 \\
-8
\end{array}\right] \quad \mathbf{c}=\left[\begin{array}{c}
15 \\
-10 \\
0 \\
0 \\
11 \\
-21 \\
0
\end{array}\right] \quad \mathbf{u}_{1}=\left[\begin{array}{c}
-2 \\
5 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{u}_{2}=\left[\begin{array}{c}
3 \\
-4 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{u}_{3}=\left[\begin{array}{c}
-9 \\
8 \\
0 \\
0 \\
6 \\
-7 \\
1
\end{array}\right]
$$

Did you think a few weeks ago that you could so quickly and easily list all the solutions to a linear system of 5 equations in 7 variables?

We'll now formalize the last two (important) examples as a theorem.

Theorem VFSLS

Vector Form of Solutions to Linear Systems

Suppose that $[A \mid \mathbf{b}]$ is the augmented matrix for a consistent linear system $\mathcal{L S}(A, \mathbf{b})$ of m equations in
n variables. Let B be a row-equivalent $m \times(n+1)$ matrix in reduced row-echelon form. Suppose that B has r nonzero rows, columns without leading 1 's with indices $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}, n+1\right\}$, and columns with leading 1's (pivot columns) having indices $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$. Define vectors $\mathbf{c}, \mathbf{u}_{j}$, $1 \leq j \leq n-r$ of size n by

$$
\begin{aligned}
{[\mathbf{c}]_{i} } & = \begin{cases}0 & \text { if } i \in F \\
{[B]_{k, n+1}} & \text { if } i \in D, i=d_{k}\end{cases} \\
{\left[\mathbf{u}_{j}\right]_{i} } & = \begin{cases}1 & \text { if } i \in F, i=f_{j} \\
0 & \text { if } i \in F, i \neq f_{j} \\
-[B]_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
\end{aligned}
$$

Then the set of solutions to the system of equations $\mathcal{L S}(A, \mathbf{b})$ is

$$
S=\left\{\mathbf{c}+x_{f_{1}} \mathbf{u}_{1}+x_{f_{2}} \mathbf{u}_{2}+x_{f_{3}} \mathbf{u}_{3}+\cdots+x_{f_{n-r}} \mathbf{u}_{n-r} \mid x_{f_{1}}, x_{f_{2}}, x_{f_{3}}, \ldots, x_{f_{n-r}} \in \mathbb{C}\right\}
$$

Proof We are being asked to prove that the solution set has a particular form. First, $\mathcal{L S}(A, \mathbf{b})$ is equivalent to the linear system of equations that has the matrix B as its augmented matrix Theorem REMES [29]), so we need only show that S is the solution set for the system with B as its augmented matrix.

We begin by showing that every element of S is a solution to the system. Let $x_{f_{1}}=\alpha_{1}, x_{f_{2}}=\alpha_{2}$, $x_{f_{3}}=\alpha_{3}, \ldots, x_{f_{n-r}}=\alpha_{n-r}$ be one choice of the values of $x_{f_{1}}, x_{f_{2}}, x_{f_{3}}, \ldots, x_{f_{n-r}}$. So a proposed solution is

$$
\mathbf{x}=\mathbf{c}+\alpha_{f_{1}} \mathbf{u}_{1}+\alpha_{f_{2}} \mathbf{u}_{2}+\alpha_{f_{3}} \mathbf{u}_{3}+\cdots+\alpha_{f_{n-r}} \mathbf{u}_{n-r}
$$

So we evaluate equation ℓ of the system represented by B with the solution vector \mathbf{x},

$$
\beta=[B]_{\ell 1}[\mathbf{x}]_{1}+[B]_{\ell 2}[\mathbf{x}]_{2}+[B]_{\ell 3}[\mathbf{x}]_{3}+\cdots+[B]_{\ell n}[\mathbf{x}]_{n}
$$

When $r+1 \leq \ell \leq m$, row ℓ of the matrix B is a zero row, so the equation represented by that row is always true, no matter which solution vector we propose. So assume $1 \leq \ell \leq r$. Then $[B]_{\ell d_{i}}=0$ for all $1 \leq i \leq r$, except that $[B]_{\ell_{\ell}}=1$, so β simplifies to

$$
\beta=[\mathbf{x}]_{d_{\ell}}+[B]_{\ell f_{1}}[\mathbf{x}]_{f_{1}}+[B]_{\ell f_{2}}[\mathbf{x}]_{f_{2}}+[B]_{\ell f_{3}}[\mathbf{x}]_{f_{3}}+\cdots+[B]_{\ell f_{n-r}}[\mathbf{x}]_{f_{n-r}}
$$

Notice that for $1 \leq i \leq n-r$

$$
\begin{aligned}
{[\mathbf{x}]_{f_{i}} } & =[\mathbf{c}]_{f_{i}}+\alpha_{f_{1}}\left[\mathbf{u}_{1}\right]_{f_{i}}+\alpha_{f_{2}}\left[\mathbf{u}_{2}\right]_{f_{i}}+\alpha_{f_{3}}\left[\mathbf{u}_{3}\right]_{f_{i}}+\cdots+\alpha_{f_{i}}\left[\mathbf{u}_{i}\right]_{f_{i}}+\cdots+\alpha_{f_{n-r}}\left[\mathbf{u}_{\mathbf{n}-\mathbf{r}}\right]_{f_{i}} \\
& =0+\alpha_{f_{1}}(0)+\alpha_{f_{2}}(0)+\alpha_{f_{3}}(0)+\cdots+\alpha_{f_{i}}(1)+\cdots+\alpha_{f_{n-r}}(0) \\
& =\alpha_{f_{i}}
\end{aligned}
$$

So β simplifies further to

$$
\beta=[\mathbf{x}]_{d_{\ell}}+[B]_{\ell f_{1}} \alpha_{f_{1}}+[B]_{\ell f_{2}} \alpha_{f_{2}}+[B]_{\ell f_{3}} \alpha_{f_{3}}+\cdots+[B]_{\ell f_{n-r}} \alpha_{f_{n-r}}
$$

Now examine the $[\mathbf{x}]_{d_{\ell}}$ term of β,

$$
\begin{aligned}
{[\mathbf{x}]_{d_{\ell}} } & =[\mathbf{c}]_{d_{\ell}}+\alpha_{f_{1}}\left[\mathbf{u}_{1}\right]_{d_{\ell}}+\alpha_{f_{2}}\left[\mathbf{u}_{2}\right]_{d_{\ell}}+\alpha_{f_{3}}\left[\mathbf{u}_{3}\right]_{d_{\ell}}+\cdots+\alpha_{f_{n-r}}\left[\mathbf{u}_{\mathbf{n}-\mathbf{r}}\right]_{d_{\ell}} \\
& =[B]_{\ell, n+1}+\alpha_{f_{1}}\left(-[B]_{\ell, f_{1}}\right)+\alpha_{f_{2}}\left(-[B]_{\ell, f_{2}}\right)+\alpha_{f_{3}}\left(-[B]_{\ell, f_{3}}\right)+\cdots+\alpha_{f_{n-r}}\left(-[B]_{\ell, f_{n-r}}\right)
\end{aligned}
$$

Replacing this term into the expression for β, we obtain

$$
\beta=[\mathbf{x}]_{d_{\ell}}+[B]_{\ell f_{1}} \alpha_{f_{1}}+[B]_{\ell f_{2}} \alpha_{f_{2}}+[B]_{\ell f_{3}} \alpha_{f_{3}}+\cdots+[B]_{\ell f_{n-r}} \alpha_{f_{n-r}}
$$

$$
\begin{aligned}
& =[B]_{\ell, n+1}+\alpha_{f_{1}}\left(-[B]_{\ell, f_{1}}\right)+\alpha_{f_{2}}\left(-[B]_{\ell, f_{2}}\right)+\alpha_{f_{3}}\left(-[B]_{\ell, f_{3}}\right)+\cdots+\alpha_{f_{n-r}}\left(-[B]_{\ell, f_{n-r}}\right)+ \\
& \quad[B]_{\ell f_{1}} \alpha_{f_{1}}+[B]_{\ell f_{2}} \alpha_{f_{2}}+[B]_{\ell f_{3}} \alpha_{f_{3}}+\cdots+[B]_{\ell f_{n-r}} \alpha_{f_{n-r}} \\
& =[B]_{\ell, n+1}
\end{aligned}
$$

So β began as the left-hand side of equation ℓ from the system represented by B and we now know it equals $[B]_{\ell, n+1}$, the constant term for equation ℓ. So this arbitrarily chosen vector from S makes every equation true, and therefore is a solution to the system.

For the second half of the proof, assume that $x_{1}=\alpha_{1}, x_{2}=\alpha_{2}, x_{3}=\alpha_{3}, \ldots, x_{n}=\alpha_{n}$ are the components of a solution vector for the system having B as its augmented matrix, and show that this solution vector is an element of the set S. Begin with the observation that this solution makes equation ℓ of the system true for $1 \leq \ell \leq m$,

$$
[B]_{\ell, 1} \alpha_{1}+[B]_{\ell, 2} \alpha_{2}+[B]_{\ell, 3} \alpha_{3}+\cdots+[B]_{\ell, n} \alpha_{n}=[B]_{\ell, n+1}
$$

Since B is in reduced row-echelon form, when $\ell>r$ we know that all the entries of B in row ℓ are all zero and this equation is true. For $\ell \leq r$, we can further exploit the knowledge of the structure of B, specifically recalling that B has no leading 1 's in the final column since the system is consistent (Theorem RCLS 50). Equation ℓ then reduces to

$$
\text { (1) } \alpha_{d_{\ell}}+[B]_{\ell, f_{1}} \alpha_{f_{1}}+[B]_{\ell, f_{2}} \alpha_{f_{2}}+[B]_{\ell, f_{3}} \alpha_{f_{3}}+\cdots+[B]_{\ell, f_{n-r}} \alpha_{f_{n-r}}=[B]_{\ell, n+1}
$$

Rearranging, this becomes,

$$
\begin{aligned}
\alpha_{d_{\ell}} & =[B]_{\ell, n+1}-[B]_{\ell, f_{1}} \alpha_{f_{1}}-[B]_{\ell, f_{2}} \alpha_{f_{2}}-[B]_{\ell, f_{3}} \alpha_{f_{3}}-\cdots-[B]_{\ell, f_{n-r}} \alpha_{f_{n-r}} \\
& =[c]_{\ell}+\alpha_{f_{1}}\left[\mathbf{u}_{1}\right]_{\ell}+\alpha_{f_{2}}\left[\mathbf{u}_{2}\right]_{\ell}+\alpha_{f_{3}}\left[\mathbf{u}_{3}\right]_{\ell}+\cdots+\alpha_{f_{n-r}}\left[\mathbf{u}_{n-r}\right]_{\ell} \\
& =\left[\mathbf{c}+\alpha_{f_{1}} \mathbf{u}_{1}+\alpha_{f_{2}} \mathbf{u}_{2}+\alpha_{f_{3}} \mathbf{u}_{3}+\cdots+\alpha_{f_{n-r}} \mathbf{u}_{n-r}\right]_{\ell}
\end{aligned}
$$

This tells us that the components of the solution vector corresponding to dependent variables (indices in D), are of the same form as stated for membership in the set S. We still need to check the components that correspond to the free variables (indices in F). To this end, suppose $i \in F$ and $i=f_{j}$. Then

$$
\begin{aligned}
\alpha_{i} & =1 \alpha_{f_{j}} \\
& =0+0 \alpha_{f_{1}}+0 \alpha_{f_{2}}+0 \alpha_{f_{3}}+\cdots+0 \alpha_{f_{j-1}}+1 \alpha_{f_{j}}+0 \alpha_{f_{j+1}}+\cdots+0 \alpha_{f_{n-r}} \\
& =[\mathbf{c}]_{i}+\alpha_{f_{1}}\left[\mathbf{u}_{1}\right]_{i}+\alpha_{f_{2}}\left[\mathbf{u}_{2}\right]_{i}+\alpha_{f_{2}}\left[\mathbf{u}_{3}\right]_{i}+\cdots+\alpha_{f_{n-r}}\left[\mathbf{u}_{n-r}\right]_{i} \\
& =\left[\mathbf{c}+\alpha_{f_{1}} \mathbf{u}_{1}+\alpha_{f_{2}} \mathbf{u}_{2}+\cdots+\alpha_{f_{n-r}} \mathbf{u}_{n-r}\right]_{i}
\end{aligned}
$$

So our solution vector is also of the right form in the remaining slots, and hence qualifies for membership in the set S.

Theorem VFSLS 96 formalizes what happened in the three steps of Example VFSAD 92 . The theorem will be useful in proving other theorems, and it it is useful since it tells us an exact procedure for simply describing an infinite solution set. We could program a computer to implement it, once we have the augmented matrix row-reduced and have checked that the system is consistent. By Knuth's definition, this completes our conversion of linear equation solving from art into science. Notice that it even applies (but is overkill) in the case of a unique solution. However, as a practical matter, I prefer the three-step process of Example VFSAD 92 when I need to describe an infinite solution set. So let's practice some more, but with a bigger example.

Example VFSAI

Vector form of solutions for Archetype I

Archetype I 724 is a linear system of $m=4$ equations in $n=7$ variables. Row-reducing the augmented
matrix yields

$$
\left[\begin{array}{cccccccc}
\boxed{1} & 4 & 0 & 0 & 2 & 1 & -3 & 4 \\
0 & 0 & \boxed{1} & 0 & 1 & -3 & 5 & 2 \\
0 & 0 & 0 & 1 & 2 & -6 & 6 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and we see $r=3$ nonzero rows. The columns with leading 1's are $D=\{1,3,4\}$ so the r dependent variables are x_{1}, x_{3}, x_{4}. The columns without leading 1's are $F=\{2,5,6,7,8\}$, so the $n-r=4$ free variables are $x_{2}, x_{5}, x_{6}, x_{7}$.

Step 1. Write the vector of variables (\mathbf{x}) as a fixed vector (c), plus a linear combination of $n-r=4$ vectors $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right)$, using the free variables as the scalars.

$$
\left.\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=[]+x_{2}[]+x_{5}[]+x_{6}[]+x_{7}[]\right][]
$$

Step 2. For each free variable, use 0 's and 1's to ensure equality for the corresponding entry of the the vectors. Take note of the pattern of 0's and 1's at this stage, because this is the best look you'll have at it. We'll state an important theorem in the next section and the proof will essentially rely on this observation.

Step 3. For each dependent variable, use the augmented matrix to formulate an equation expressing the dependent variable as a constant plus multiples of the free variables. Convert this equation into entries of the vectors that ensure equality for each dependent variable, one at a time.

$$
\begin{aligned}
& x_{1}=4-4 x_{2}-2 x_{5}-1 x_{6}+3 x_{7} \quad \Rightarrow \\
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{l}
3 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \\
& x_{3}=2+0 x_{2}-x_{5}+3 x_{6}-5 x_{7} \quad \Rightarrow \\
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
2 \\
0 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-2 \\
0 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
-1 \\
0 \\
3 \\
0 \\
1 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{c}
3 \\
0 \\
-5 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
x_{4} & =1+0 x_{2}-2 x_{5}+6 x_{6}-6 x_{7} \Rightarrow \\
\mathbf{x} & =\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-2 \\
0 \\
-1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
-1 \\
0 \\
3 \\
6 \\
0 \\
1 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{c}
3 \\
0 \\
-5 \\
-6 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

We can now use this final expression to quickly build solutions to the system. You might try to recreate each of the solutions listed in the write-up for Archetype I 724. (Hint: look at the values of the free variables in each solution, and notice that the vector \mathbf{c} has 0's in these locations.)

Even better, we have a description of the infinite solution set, based on just 5 vectors, which we combine in linear combinations to produce solutions.

Whenever we discuss Archetype I 724 you know that's your cue to go work through Archetype J 728 by yourself. Remember to take note of the $0 / 1$ pattern at the conclusion of Step 2 . Have fun - we won't go anywhere while you're away.

This technique is so important, that we'll do one more example. However, an important distinction will be that this system is homogeneous.

Example VFSAL

Vector form of solutions for Archetype L
Archetype L 737 is presented simply as the 5×5 matrix

$$
L=\left[\begin{array}{ccccc}
-2 & -1 & -2 & -4 & 4 \\
-6 & -5 & -4 & -4 & 6 \\
10 & 7 & 7 & 10 & -13 \\
-7 & -5 & -6 & -9 & 10 \\
-4 & -3 & -4 & -6 & 6
\end{array}\right]
$$

We'll interpret it here as the coefficient matrix of a homogeneous system and reference this matrix as L. So we are solving the homogeneous system $\mathcal{L S}(L, \mathbf{0})$ having $m=5$ equations in $n=5$ variables. If we built the augmented matrix, we would add a sixth column to L containing all zeros. As we did row operations, this sixth column would remain all zeros. So instead we will row-reduce the coefficient matrix, and mentally remember the missing sixth column of zeros. This row-reduced matrix is

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 1 & -2 \\
0 & \boxed{1} & 0 & -2 & 2 \\
0 & 0 & \boxed{1} & 2 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and we see $r=3$ nonzero rows. The columns with leading 1's are $D=\{1,2,3\}$ so the r dependent variables are x_{1}, x_{2}, x_{3}. The columns without leading 1 's are $F=\{4,5\}$, so the $n-r=2$ free variables are x_{4}, x_{5}. Notice that if we had included the all-zero vector of constants to form the augmented matrix for the system, then the index 6 would have appeared in the set F, and subsequently would have been ignored when listing the free variables.

Step 1. Write the vector of variables (\mathbf{x}) as a fixed vector (\mathbf{c}), plus a linear combination of $n-r=2$
vectors ($\mathbf{u}_{1}, \mathbf{u}_{2}$), using the free variables as the scalars.

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=[]+x_{4}[]+x_{5}[]
$$

Step 2. For each free variable, use 0's and 1's to ensure equality for the corresponding entry of the the vectors. Take note of the pattern of 0's and 1's at this stage, even if it is not as illuminating as in other examples.

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
{[} \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
{[} \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{l}
\\
0 \\
1
\end{array}\right]
$$

Step 3. For each dependent variable, use the augmented matrix to formulate an equation expressing the dependent variable as a constant plus multiples of the free variables. Don't forget about the "missing" sixth column being full of zeros. Convert this equation into entries of the vectors that ensure equality for each dependent variable, one at a time.

$$
\begin{array}{lll}
x_{1}=0-1 x_{4}+2 x_{5} & \Rightarrow & \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
-1 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
x_{2}=0+2 x_{4}-2 x_{5} & \Rightarrow & \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
2 \\
-2 \\
0 \\
1
\end{array}\right] \\
x_{3}=0-2 x_{4}+1 x_{5} & \Rightarrow & \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0 \\
1
\end{array}\right]
\end{array}
$$

The vector cowill always have 0's in the entries corresponding to free variables. However, since we are solving a homogeneous system, the row-reduced augmented matrix has zeros in column $n+1=6$, and hence all the entries of \mathbf{c} are zero. So we can write

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\mathbf{0}+x_{4}\left[\begin{array}{c}
-1 \\
2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0 \\
1
\end{array}\right]=x_{4}\left[\begin{array}{c}
-1 \\
2 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0 \\
1
\end{array}\right]
$$

It will always happen that the solutions to a homogeneous system has $\mathbf{c}=\mathbf{0}$ (even in the case of a unique solution?). So our expression for the solutions is a bit more pleasing. In this example it says that the solutions are all possible linear combinations of the two vectors $\mathbf{u}_{1}=\left[\begin{array}{c}-1 \\ 2 \\ -2 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}2 \\ -2 \\ 1 \\ 0 \\ 1\end{array}\right]$, with no
mention of any fixed vector entering into the linear combination.
This observation will motivate our next section and the main definition of that section, and after that we will conclude the section by formalizing this situation.

Subsection PSHS

Particular Solutions, Homogeneous Solutions

The next theorem tells us that in order to find all of the solutions to a linear system of equations, it is sufficient to find just one solution, and then find all of the solutions to the corresponding homogeneous system. This explains part of our interest in the null space, the set of all solutions to a homogeneous system.

Theorem PSPHS

Particular Solution Plus Homogeneous Solutions

Suppose that \mathbf{w} is one solution to the linear system of equations $\mathcal{L S}(A, b)$. Then \mathbf{y} is a solution to $\mathcal{L S}(A, b)$ if and only if $\mathbf{y}=\mathbf{w}+\mathbf{z}$ for some vector $\mathbf{z} \in \mathcal{N}(A)$.

Proof Let $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$ be the columns of the coefficient matrix A.
(\Leftarrow) Suppose $\mathbf{y}=\mathbf{w}+\mathbf{z}$ and $\mathbf{z} \in \mathcal{N}(A)$. Then

$$
\begin{aligned}
\mathbf{b} & =[\mathbf{w}]_{1} \mathbf{A}_{1}+[\mathbf{w}]_{2} \mathbf{A}_{2}+[\mathbf{w}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{w}]_{n} \mathbf{A}_{n} & & \text { Theorem SLSLC } 90 \\
& =[\mathbf{w}]_{1} \mathbf{A}_{1}+[\mathbf{w}]_{2} \mathbf{A}_{2}+[\mathbf{w}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{w}]_{n} \mathbf{A}_{n}+0 & & \\
& =[\mathbf{w}]_{1} \mathbf{A}_{1}+[\mathbf{w}]_{2} \mathbf{A}_{2}+[\mathbf{w}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{w}]_{n} \mathbf{A}_{n} & & \\
& +[\mathbf{z}]_{1} \mathbf{A}_{1}+[\mathbf{z}]_{2} \mathbf{A}_{2}+[\mathbf{z}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{z}]_{n} \mathbf{A}_{n} & & \text { Theorem SLSLC } 90 \\
& =\left([\mathbf{w}]_{1}+[\mathbf{z}]_{1}\right) \mathbf{A}_{1}+\left([\mathbf{w}]_{2}+[\mathbf{z}]_{2}\right) \mathbf{A}_{2}+\cdots+\left([\mathbf{w}]_{n}+[\mathbf{z}]_{n}\right) \mathbf{A}_{n} & & \text { Theorem VSPCV 82 } \\
& =[\mathbf{w}+\mathbf{z}]_{1} \mathbf{A}_{1}+[\mathbf{w}+\mathbf{z}]_{2} \mathbf{A}_{2}+[\mathbf{w}+\mathbf{z}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{w}+\mathbf{z}]_{n} \mathbf{A}_{n} & & \text { Definition CVA } 80 \\
& =[\mathbf{y}]_{1} \mathbf{A}_{1}+[\mathbf{y}]_{2} \mathbf{A}_{2}+[\mathbf{y}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{y}]_{n} \mathbf{A}_{n} & & \text { Definition of } \mathbf{y}
\end{aligned}
$$

Applying Theorem SLSLC 90 we see that \mathbf{y} is a solution to $\mathcal{L S}(A, \mathbf{b})$.
(\Rightarrow) Suppose \mathbf{y} is a solution to $\mathcal{L S}(A, b)$. Then

$$
\begin{aligned}
\mathbf{0} & =\mathbf{b}-\mathbf{b} & & \\
& =[\mathbf{y}]_{1} \mathbf{A}_{1}+[\mathbf{y}]_{2} \mathbf{A}_{2}+[\mathbf{y}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{y}]_{n} \mathbf{A}_{n} & & \\
& \quad-\left([\mathbf{w}]_{1} \mathbf{A}_{1}+[\mathbf{w}]_{2} \mathbf{A}_{2}+[\mathbf{w}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{w}]_{n} \mathbf{A}_{n}\right) & & \text { Theorem SLSLC } 90 \\
& =\left([\mathbf{y}]_{1}-[\mathbf{w}]_{1}\right) \mathbf{A}_{1}+\left([\mathbf{y}]_{2}-[\mathbf{w}]_{2}\right) \mathbf{A}_{2}+\cdots+\left([\mathbf{y}]_{n}-[\mathbf{w}]_{n}\right) \mathbf{A}_{n} & & \text { Theorem VSPCV 82 } \\
& =[\mathbf{y}-\mathbf{w}]_{1} \mathbf{A}_{1}+[\mathbf{y}-\mathbf{w}]_{2} \mathbf{A}_{2}+[\mathbf{y}-\mathbf{w}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{y}-\mathbf{w}]_{n} \mathbf{A}_{n} & & \text { Definition CVA } 80
\end{aligned}
$$

By Theorem SLSLC 90 we see that $\mathbf{y}-\mathbf{w}$ is a solution to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ and by Definition NSM 59, $\mathbf{y}-\mathbf{w} \in \mathcal{N}(A)$. In other words, $\mathbf{y}-\mathbf{w}=\mathbf{z}$ for some vector $\mathbf{z} \in \mathcal{N}(A)$. Rewritten, this is $\mathbf{y}=\mathbf{w}+\mathbf{z}$, as desired.

After proving Theorem NMUS 70 we commented (insufficiently) on the negation of one half of the theorem. Nonsingular coefficient matrices lead to unique solutions for every choice of the vector of constants. What does this say about singular matrices? A singular matrix A has a nontrivial null space Theorem NMTNS 70). For a given vector of constants, \mathbf{b}, the system $\mathcal{L S}(A, b)$ could be inconsistent, meaning there are no solutions. But if there is at least one solution (w), then Theorem PSPHS 102 tells us there will be infinitely many solutions because of the role of the infinite null space for a singular matrix. So a
system of equations with a singular coefficient matrix never has a unique solution. Either there are no solutions, or infinitely many solutions, depending on the choice of the vector of constants (b).

Example PSHS
 Particular solutions, homogeneous solutions, Archetype D

Archetype D 703 is a consistent system of equations with a nontrivial null space. Let A denote the coefficient matrix of this system. The write-up for this system begins with three solutions,

$$
\mathbf{y}_{1}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right] \quad \mathbf{y}_{2}=\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{y}_{3}=\left[\begin{array}{l}
7 \\
8 \\
1 \\
3
\end{array}\right]
$$

We will choose to have \mathbf{y}_{1} play the role of \mathbf{w} in the statement of Theorem PSPHS 102, any one of the three vectors listed here (or others) could have been chosen. To illustrate the theorem, we should be able to write each of these three solutions as the vector \mathbf{w} plus a solution to the corresponding homogeneous system of equations. Since $\mathbf{0}$ is always a solution to a homogeneous system we can easily write

$$
\mathbf{y}_{1}=\mathbf{w}=\mathbf{w}+\mathbf{0} .
$$

The vectors \mathbf{y}_{2} and \mathbf{y}_{3} will require a bit more effort. Solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ are exactly the elements of the null space of the coefficient matrix, which by an application of Theorem VFSLS 96 is

$$
\mathcal{N}(A)=\left\{\left.x_{3}\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right] \right\rvert\, x_{3}, x_{4} \in \mathbb{C}\right\}
$$

Then

$$
\mathbf{y}_{2}=\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right]+\left((-2)\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+(-1)\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]\right)=\mathbf{w}+\mathbf{z}_{2}
$$

where

$$
\mathbf{z}_{2}=\left[\begin{array}{c}
4 \\
-1 \\
-2 \\
-1
\end{array}\right]=(-2)\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+(-1)\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]
$$

is obviously a solution of the homogeneous system since it is written as a linear combination of the vectors describing the null space of the coefficient matrix (or as a check, you could just evaluate the equations in the homogeneous system with \mathbf{z}_{2}).

Again

$$
\mathbf{y}_{3}=\left[\begin{array}{l}
7 \\
8 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
7 \\
7 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right]+\left((-1)\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]\right)=\mathbf{w}+\mathbf{z}_{3}
$$

where

$$
\mathbf{z}_{3}=\left[\begin{array}{c}
7 \\
7 \\
-1 \\
2
\end{array}\right]=(-1)\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]
$$

is obviously a solution of the homogeneous system since it is written as a linear combination of the vectors describing the null space of the coefficient matrix (or as a check, you could just evaluate the equations in the homogeneous system with \mathbf{z}_{2}).

Here's another view of this theorem, in the context of this example. Grab two new solutions of the original system of equations, say

$$
\mathbf{y}_{4}=\left[\begin{array}{c}
11 \\
0 \\
-3 \\
-1
\end{array}\right] \quad \mathbf{y}_{5}=\left[\begin{array}{c}
-4 \\
2 \\
4 \\
2
\end{array}\right]
$$

and form their difference,

$$
\mathbf{u}=\left[\begin{array}{c}
11 \\
0 \\
-3 \\
-1
\end{array}\right]-\left[\begin{array}{c}
-4 \\
2 \\
4 \\
2
\end{array}\right]=\left[\begin{array}{c}
15 \\
-2 \\
-7 \\
-3
\end{array}\right]
$$

It is no accident that \mathbf{u} is a solution to the homogeneous system (check this!). In other words, the difference between any two solutions to a linear system of equations is an element of the null space of the coefficient matrix. This is an equivalent way to state Theorem PSPHS 102. (See Exercise MM.T50 202).

The ideas of this subsection will be appear again in Chapter LT 441 when we discuss pre-images of linear transformations (Definition PI 452).

Subsection URREF
 Uniqueness of Reduced Row-Echelon Form

We are now in a position to establish that the reduced row-echelon form of a matrix is unique. Going forward, we will emphasize the point-of-view that a matrix is a collection of columns. But there are two occasions when we need to work carefully with the rows of a matrix. This is the first such occasion. We could define something called a row vector that would equal a given row of a matrix, and might be written as a horizontal list. Then we could define vector equality, the basic operations of vector addition and scalar multiplication, followed by a definition of a linear combination of row vectors. We will not incur the overhead of stating all these definitions, but will instead convert the rows of a matrix to column vectors and use our definitions that are already in place. This was our reason for delaying this proof until now. Remind yourself as you work through this proof that it only relies only on the definition of equivalent matrices, reduced row-echelon form and linear combinations. So in particular, we are not guilty of circular reasoning. Should we have defined vector operations and linear combinations just prior to discussing reduced row-echelon form, then the following proof of uniqueness could have been presented at that time. OK, here we go.

Theorem RREFU

Reduced Row-Echelon Form is Unique

Suppose that A is an $m \times n$ matrix and that B and C are $m \times n$ matrices that are row-equivalent to A and in reduced row-echelon form. Then $B=C$.

Proof Denote the pivot columns of B as $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ and the pivot columns of C as $D^{\prime}=\left\{d^{\prime}{ }_{1}, d^{\prime}{ }_{2}, d^{\prime}{ }_{3}, \ldots,{d^{\prime}}_{r^{\prime}}\right\}$ (Notation RREFA 31). We begin by showing that $D=D^{\prime}$.

For both B and C, we can take the elements of a row of the matrix and use them to construct a column vector. We will denote these by \mathbf{b}_{i} and \mathbf{c}_{i}, respectively, $1 \leq i \leq m$. Since B and C are both row-equivalent to A, there is a sequence of row operations that will convert B to C, and vice-versa, since row operations are reversible. If we can convert B into C via a sequence of row operations, then any row
of C expressed as a column vector, say \mathbf{c}_{k}, is a linear combination of the column vectors derived from the rows of $B,\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots, \mathbf{b}_{m}\right\}$. Similarly, any row of B is a linear combination of the set of rows of C. Our principal device in this proof is to carefully analyze individual entries of vector equalities between a single row of either B or C and a linear combination of the rows of the other matrix.

Let's first show that $d_{1}=d_{1}^{\prime}$. Suppose that $d_{1}<d_{1}^{\prime}$. We can write the first row of B as a linear combination of the rows of C, that is, there are scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ such that

$$
\mathbf{b}_{1}=a_{1} \mathbf{c}_{1}+a_{2} \mathbf{c}_{2}+a_{3} \mathbf{c}_{3}+\cdots+a_{m} \mathbf{c}_{m}
$$

Consider the entry in location d_{1} on both sides of this equality. Since B is in reduced row-echelon form (Definition RREF [31]) we find a one in \mathbf{b}_{1} on the left. Since $d_{1}<d_{1}^{\prime}$, and C is in reduced row-echelon form (Definition RREF 31) each vector \mathbf{c}_{i} has a zero in location d_{1}, and therefore the linear combination on the right also has a zero in location d_{1}. This is a contradiction, so we know that $d_{1} \geq d_{1}^{\prime}$. By an entirely similar argument, we could conclude that $d_{1} \leq d_{1}^{\prime}$. This means that $d_{1}=d_{1}^{\prime}$.

Suppose that we have determined that $d_{1}=d_{1}^{\prime}, d_{2}=d_{2}^{\prime}, d_{3}=d_{3}^{\prime}, \ldots, d_{k}=d_{k}^{\prime}$. Let's now show that $d_{k+1}=d_{k+1}^{\prime}$. To achieve a contradiction, suppose that $d_{k+1}<d_{k+1}^{\prime}$. Row $k+1$ of B is a linear combination of the rows of C, so there are scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ such that

$$
\mathbf{b}_{k+1}=a_{1} \mathbf{c}_{1}+a_{2} \mathbf{c}_{2}+a_{3} \mathbf{c}_{3}+\cdots+a_{m} \mathbf{c}_{m}
$$

Since B is in reduced row-echelon form (Definition RREF [31), the entries of \mathbf{b}_{k+1} in locations $d_{1}, d_{2}, d_{3}, \ldots, d_{k}$ are all zero. Since C is in reduced row-echelon form (Definition RREF 31), location d_{i} of \mathbf{c}_{i} is one for each $1 \leq i \leq k$. The equality of these vectors in locations $d_{1}, d_{2}, d_{3}, \ldots, d_{k}$ then implies that $a_{1}=0$, $a_{2}=0, a_{3}=0, \ldots, a_{k}=0$.

Now consider location d_{k+1} in this vector equality. The vector \mathbf{b}_{k+1} on the left is one in this location since B is in reduced row-echelon form (Definition RREF 31). Vectors $\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}, \ldots, \mathbf{c}_{k}$, are multiplied by zero scalars in the linear combination on the right. The remaining vectors, $\mathbf{c}_{k+1}, \mathbf{c}_{k+2}, \mathbf{c}_{k+3}, \ldots, \mathbf{c}_{m}$ each has a zero in location d_{k+1} since $d_{k+1}<d_{k+1}^{\prime}$ and C is in reduced row-echelon form (Definition RREF 31). So the right hand side of the vector equality is zero in location d_{k+1}, a contradiction. Thus $d_{k+1} \geq d_{k+1}^{\prime}$. By an entirely similar argument, we could conclude that $d_{k+1} \leq d_{k+1}^{\prime}$, and therefore $d_{k+1}=d_{k+1}^{\prime}$.

Now we establish that $r=r^{\prime}$. Suppose that $r<r^{\prime}$. By the arguments above we can show that $d_{1}=d_{1}^{\prime}$, $d_{2}=d_{2}^{\prime}, d_{3}=d_{3}^{\prime}, \ldots, d_{r}=d_{r}^{\prime}$. Row r^{\prime} of C is a linear combination of the r non-zero rows of B, so there are scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{r}$ so that

$$
\mathbf{c}_{r^{\prime}}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+a_{3} \mathbf{b}_{3}+\cdots+a_{r} \mathbf{b}_{r}
$$

Locations $d_{1}, d_{2}, d_{3}, \ldots, d_{r}$ of $\mathbf{c}_{r^{\prime}}$ are all zero since $r<r^{\prime}$ and C is in reduced row-echelon form Definition RREF 31). For a given index $i, 1 \leq i \leq r$, the vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots, \mathbf{b}_{r}$ have zeros in location d_{i}, except that the vector \mathbf{b}_{i} is one in location d_{i} since B is in reduced row-echelon form (Definition RREF 31). This consideration of location d_{i} implies that $a_{i}=0,1 \leq i \leq r$. With all the scalars in the linear combination equal to zero, we conclude that $\mathbf{c}_{r^{\prime}}=\mathbf{0}$, contradicting the existence of a leading 1 in $\mathbf{c}_{r^{\prime}}$. So $r \geq r^{\prime}$. By a similar argument, we conclude that $r \leq r^{\prime}$ and therefore $r=r^{\prime}$. Thus $D=D^{\prime}$.

To finally show that $B=C$, we will show that the rows of the two matrices are equal. Row k of C, \mathbf{c}_{k}, is a linear combination of the r non-zero rows of B, so there are scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{r}$ such that

$$
\mathbf{c}_{k}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+a_{3} \mathbf{b}_{3}+\cdots+a_{r} \mathbf{b}_{r}
$$

Because C is in reduced row-echelon form Definition RREF 31), location d_{i} of \mathbf{c}_{k} is zero for $1 \leq i \leq r$, except in location d_{k} where the entry is one. In the linear combination on the right of the vector equality, the vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}, \ldots, \mathbf{b}_{r}$ have zeros in location d_{i}, except that \mathbf{b}_{k} has a one in location d_{k}, since B is in reduced row-echelon form (Definition RREF (31). This implies that $a_{1}=0, a_{2}=0, \ldots, a_{k-1}=0$, $a_{k+1}=0, a_{k+2}=0, \ldots, a_{r}=0$ and $a_{k}=1$. Then the vector equality reduces to simply $\mathbf{c}_{k}=\mathbf{b}_{k}$. Since k was arbitrary, B and C have equal rows and so are equal matrices.

Subsection READ

Reading Questions

1. Earlier, a reading question asked you to solve the system of equations

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=0 \\
x_{1}+2 x_{2}+x_{3}=3 \\
x_{1}+3 x_{2}+3 x_{3}=7
\end{array}
$$

Use a linear combination to rewrite this system of equations as a vector equality.
2. Find a linear combination of the vectors

$$
S=\left\{\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
-5
\end{array}\right]\right\}
$$

that equals the vector $\left[\begin{array}{c}1 \\ -9 \\ 11\end{array}\right]$.
3. The matrix below is the augmented matrix of a system of equations, row-reduced to reduced rowechelon form. Write the vector form of the solutions to the system.

$$
\left[\begin{array}{cccccc}
\hline 1 & 3 & 0 & 6 & 0 & 9 \\
0 & 0 & 1 & -2 & 0 & -8 \\
0 & 0 & 0 & 0 & 1 & 3
\end{array}\right]
$$

Subsection EXC
 Exercises
 ET1

C21 Consider each archetype that is a system of equations. For individual solutions listed (both for the original system and the corresponding homogeneous system) express the vector of constants as a linear combination of the columns of the coefficient matrix, as guaranteed by Theorem SLSLC 90. Verify this equality by computing the linear combination. For systems with no solutions, recognize that it is then impossible to write the vector of constants as a linear combination of the columns of the coefficient matrix. Note too, for homogeneous systems, that the solutions give rise to linear combinations that equal the zero vector.
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703
Archetype E 707
Archetype F 711
Archetype G 716
Archetype H 720
Archetype I 724
Archetype J 728

Contributed by Robert Beezer Solution 109
C22 Consider each archetype that is a system of equations. Write elements of the solution set in vector form, as guaranteed by Theorem VFSLS 96.
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703
Archetype E 707
Archetype F 711
Archetype G 716
Archetype H 720
Archetype I 724]
Archetype J 728
Contributed by Robert Beezer Solution 109
$\mathbf{C 4 0}$ Find the vector form of the solutions to the system of equations below.

$$
\begin{aligned}
2 x_{1}-4 x_{2}+3 x_{3}+x_{5} & =6 \\
x_{1}-2 x_{2}-2 x_{3}+14 x_{4}-4 x_{5} & =15 \\
x_{1}-2 x_{2}+x_{3}+2 x_{4}+x_{5} & =-1 \\
-2 x_{1}+4 x_{2}-12 x_{4}+x_{5} & =-7
\end{aligned}
$$

Contributed by Robert Beezer Solution 109
C41 Find the vector form of the solutions to the system of equations below.

$$
-2 x_{1}-1 x_{2}-8 x_{3}+8 x_{4}+4 x_{5}-9 x_{6}-1 x_{7}-1 x_{8}-18 x_{9}=3
$$

$$
\begin{aligned}
3 x_{1}-2 x_{2}+5 x_{3}+2 x_{4}-2 x_{5}-5 x_{6}+1 x_{7}+2 x_{8}+15 x_{9} & =10 \\
4 x_{1}-2 x_{2}+8 x_{3}+2 x_{5}-14 x_{6}-2 x_{8}+2 x_{9} & =36 \\
-1 x_{1}+2 x_{2}+1 x_{3}-6 x_{4}+7 x_{6}-1 x_{7}-3 x_{9} & =-8 \\
3 x_{1}+2 x_{2}+13 x_{3}-14 x_{4}-1 x_{5}+5 x_{6}-1 x_{8}+12 x_{9} & =15 \\
-2 x_{1}+2 x_{2}-2 x_{3}-4 x_{4}+1 x_{5}+6 x_{6}-2 x_{7}-2 x_{8}-15 x_{9} & =-7
\end{aligned}
$$

Contributed by Robert Beezer Solution 109
M10 Example TLC 87 asks if the vector

$$
\mathbf{w}=\left[\begin{array}{c}
13 \\
15 \\
5 \\
-17 \\
2 \\
25
\end{array}\right]
$$

can be written as a linear combination of the four vectors

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
2 \\
4 \\
-3 \\
1 \\
2 \\
9
\end{array}\right] \quad \mathbf{u}_{2}=\left[\begin{array}{c}
6 \\
3 \\
0 \\
-2 \\
1 \\
4
\end{array}\right] \quad \mathbf{u}_{3}=\left[\begin{array}{c}
-5 \\
2 \\
1 \\
1 \\
-3 \\
0
\end{array}\right] \quad \mathbf{u}_{4}=\left[\begin{array}{c}
3 \\
2 \\
-5 \\
7 \\
1 \\
3
\end{array}\right]
$$

Can it? Can any vector in \mathbb{C}^{6} be written as a linear combination of the four vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$? Contributed by Robert Beezer Solution 110

M11 At the end of Example VFS 93, the vector w is claimed to be a solution to the linear system under discussion. Verify that \mathbf{w} really is a solution. Then determine the four scalars that express \mathbf{w} as a linear combination of $\mathbf{c}, \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.
Contributed by Robert Beezer Solution 110
T30 Suppose that \mathbf{x} is a solution to $\mathcal{L S}(A, \mathbf{b})$ and that \mathbf{z} is a solution to the homeneous system $\mathcal{L S}(A, \mathbf{0})$. Prove that $\mathrm{x}+\mathbf{z}$ is a solution to $\mathcal{L S}(A, \mathbf{b})$.
Contributed by Robert Beezer Solution 110

Subsection SOL
 Solutions

C21 Contributed by Robert Beezer Statement 107
Solutions for Archetype A [689] and Archetype B [694] are described carefully in Example AALC 89 and Example ABLC 88].

C22 Contributed by Robert Beezer Statement 107
Solutions for Archetype D [703] and Archetype I 724 are described carefully in Example VFSAD 92 and Example VFSAI 98. The technique described in these examples is probably more useful than carefully deciphering the notation of Theorem VFSLS 96. The solution for each archetype is contained in its description. So now you can check-off the box for that item.

C40 Contributed by Robert Beezer Statement 107
Row-reduce the augmented matrix representing this system, to find

$$
\left[\begin{array}{cccccc}
\boxed{1} & -2 & 0 & 6 & 0 & 1 \\
0 & 0 & \boxed{1} & -4 & 0 & 3 \\
0 & 0 & 0 & 0 & \boxed{1} & -5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The system is consistent (no leading one in column 6, Theorem RCLS 50). x_{2} and x_{4} are the free variables. Now apply Theorem VFSLS 96 directly, or follow the three-step process of Example VFS 93, Example VFSAD 92, Example VFSAI 98, or Example VFSAL 100 to obtain

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
3 \\
0 \\
-5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-6 \\
0 \\
4 \\
1 \\
0
\end{array}\right]
$$

C41 Contributed by Robert Beezer Statement 107
Row-reduce the augmented matrix representing this system, to find

$$
\left[\begin{array}{cccccccccc}
\hline 1 & 0 & 3 & -2 & 0 & -1 & 0 & 0 & 3 & 6 \\
0 & 1 & 2 & -4 & 0 & 3 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & \boxed{1} & -2 & 0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & \boxed{1} & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The system is consistent (no leading one in column 10, Theorem RCLS 50). $F=\{3,4,6,9,10\}$, so the free variables are x_{3}, x_{4}, x_{6} and x_{9}. Now apply Theorem VFSLS 96 directly, or follow the three-step process of Example VFS 93, Example VFSAD 92, Example VFSAI 98, or Example VFSAL 100 to
obtain the solution set

$$
S=\left\{\left.\left[\begin{array}{c}
6 \\
-1 \\
0 \\
0 \\
3 \\
0 \\
0 \\
-2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
-2 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
2 \\
4 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
1 \\
-3 \\
0 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{9}\left[\begin{array}{c}
-3 \\
-2 \\
0 \\
0 \\
1 \\
0 \\
-4 \\
-2 \\
1
\end{array}\right] \right\rvert\, x_{3}, x_{4}, x_{6}, x_{9} \in \mathbb{C}\right\}
$$

M10 Contributed by Robert Beezer Statement 108

No, it is not possible to create \mathbf{w} as a linear combination of the four vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$. By creating the desired linear combination with unknowns as scalars, Theorem SLSLC 90 provides a system of equations that has no solution. This one computation is enough to show us that it is not possible to create all the vectors of \mathbb{C}^{6} through linear combinations of the four vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$.
M11 Contributed by Robert Beezer Statement 108
The coefficient of \mathbf{c} is 1 . The coefficients of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ lie in the third, fourth and seventh entries of \mathbf{w}. Can you see why? (Hint: $F=\{3,4,7,8\}$, so the free variables are x_{3}, x_{4} and x_{7}.)
T30 Contributed by Robert Beezer Statement 108
Write the columns of A as $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$. Then

$$
\begin{aligned}
\mathbf{b} & =[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n} & & \text { Theorem SLSLC } 90 \\
& =[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n}+\mathbf{0} & & \text { Property ZC 82 } \\
& =[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n}+ & & \\
& {[\mathbf{z}]_{1} \mathbf{A}_{1}+[\mathbf{z}]_{2} \mathbf{A}_{2}+[\mathbf{z}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{z}]_{n} \mathbf{A}_{n} } & & \text { Theorem SLSLC } 90 \\
& =\left([\mathbf{x}]_{1}+[\mathbf{z}]_{1}\right) \mathbf{A}_{1}+\left([\mathbf{x}]_{2}+[\mathbf{z}]_{2}\right) \mathbf{A}_{2}+\cdots+\left([\mathbf{x}]_{n}+[\mathbf{z}]_{n}\right) \mathbf{A}_{n} & & \text { Theorem VSPCV 82 } \\
& =[\mathbf{x}+\mathbf{z}]_{1} \mathbf{A}_{1}+[\mathbf{x}+\mathbf{z}]_{2} \mathbf{A}_{2}+\cdots+[\mathbf{x}+\mathbf{z}]_{n} \mathbf{A}_{n} & & \text { Definition CVA 80 }
\end{aligned}
$$

This equation then allows us to employ Theorem SLSLC 90 and conclude that $\mathbf{x}+\mathbf{z}$ is a solution to $\mathcal{L} \mathcal{S}(A, \mathbf{b})$.

Section SS
 Spanning Sets

In this section we will describe a compact way to indicate the elements of an infinite set of vectors, making use of linear combinations. This will give us a convenient way to describe the elements of a set of solutions to a linear system, or the elements of the null space of a matrix, or many other sets of vectors.

Subsection SSV
 Span of a Set of Vectors

In Example VFSAL 100 we saw the solution set of a homogeneous system described as all possible linear combinations of two particular vectors. This happens to be a useful way to construct or describe infinite sets of vectors, so we encapsulate this idea in a definition.

Definition SSCV

Span of a Set of Column Vectors

Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}\right\}$, their span, $\langle S\rangle$, is the set of all possible linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}$. Symbolically,

$$
\begin{aligned}
\langle S\rangle & =\left\{\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{p} \mathbf{u}_{p} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq p\right\} \\
& =\left\{\sum_{i=1}^{p} \alpha_{i} \mathbf{u}_{i} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq p\right\}
\end{aligned}
$$

(This definition contains Notation SSV.)
The span is just a set of vectors, though in all but one situation it is an infinite set. (Just when is it not infinite?) So we start with a finite collection of vectors S (t of them to be precise), and use this finite set to describe an infinite set of vectors, $\langle S\rangle$. Confusing the finite set S with the infinite set $\langle S\rangle$ is one of the most pervasive problems in understanding introductory linear algebra. We will see this construction repeatedly, so let's work through some examples to get comfortable with it. The most obvious question about a set is if a particular item of the correct type is in the set, or not.

Example ABS

A basic span

Consider the set of 5 vectors, S, from \mathbb{C}^{4}

$$
S=\left\{\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
7 \\
3 \\
5 \\
-5
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
9 \\
0
\end{array}\right]\right\}
$$

and consider the infinite set of vectors $\langle S\rangle$ formed from all possible linear combinations of the elements of S. Here are four vectors we definitely know are elements of $\langle S\rangle$, since we will construct them in accordance with Definition SSCV 111,

$$
\mathbf{w}=(2)\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right]+(1)\left[\begin{array}{c}
2 \\
1 \\
2 \\
-1
\end{array}\right]+(-1)\left[\begin{array}{c}
7 \\
3 \\
5 \\
-5
\end{array}\right]+(2)\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2
\end{array}\right]+(3)\left[\begin{array}{c}
-1 \\
0 \\
9 \\
0
\end{array}\right]=\left[\begin{array}{c}
-4 \\
2 \\
28 \\
10
\end{array}\right]
$$

$$
\begin{gathered}
\mathbf{x}=(5)\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right]+(-6)\left[\begin{array}{c}
2 \\
1 \\
2 \\
-1
\end{array}\right]+(-3)\left[\begin{array}{c}
7 \\
3 \\
5 \\
-5
\end{array}\right]+(4)\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2
\end{array}\right]+(2)\left[\begin{array}{c}
-1 \\
0 \\
9 \\
0
\end{array}\right]=\left[\begin{array}{c}
-26 \\
-6 \\
2 \\
34
\end{array}\right] \\
\mathbf{y}=(1)\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right]+(0)\left[\begin{array}{c}
2 \\
1 \\
2 \\
-1
\end{array}\right]+(1)\left[\begin{array}{c}
7 \\
3 \\
5 \\
-5
\end{array}\right]+(0)\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2
\end{array}\right]+(1)\left[\begin{array}{c}
-1 \\
0 \\
9 \\
0
\end{array}\right]=\left[\begin{array}{c}
7 \\
4 \\
17 \\
-4
\end{array}\right] \\
\mathbf{z}=(0)\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right]+(0)\left[\begin{array}{c}
2 \\
1 \\
2 \\
-1
\end{array}\right]+(0)\left[\begin{array}{c}
7 \\
3 \\
5 \\
-5
\end{array}\right]+(0)\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2
\end{array}\right]+(0)\left[\begin{array}{c}
-1 \\
0 \\
9 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

The purpose of a set is to collect objects with some common property, and to exclude objects without that property. So the most fundamental question about a set is if a given object is an element of the set or not. Let's learn more about $\langle S\rangle$ by investigating which vectors are an element of the set, and which are not.

First, is $\mathbf{u}=\left[\begin{array}{c}-15 \\ -6 \\ 19 \\ 5\end{array}\right]$ an element of $\langle S\rangle$? We are asking if there are scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ such that

$$
\alpha_{1}\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
2 \\
1 \\
2 \\
-1
\end{array}\right]+\alpha_{3}\left[\begin{array}{c}
7 \\
3 \\
5 \\
-5
\end{array}\right]+\alpha_{4}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2
\end{array}\right]+\alpha_{5}\left[\begin{array}{c}
-1 \\
0 \\
9 \\
0
\end{array}\right]=\mathbf{u}=\left[\begin{array}{c}
-15 \\
-6 \\
19 \\
5
\end{array}\right]
$$

Applying Theorem SLSLC 90 we recognize the search for these scalars as a solution to a linear system of equations with augmented matrix

$$
\left[\begin{array}{cccccc}
1 & 2 & 7 & 1 & -1 & -15 \\
1 & 1 & 3 & 1 & 0 & -6 \\
3 & 2 & 5 & -1 & 9 & 19 \\
1 & -1 & -5 & 2 & 0 & 5
\end{array}\right]
$$

which row-reduces to

$$
\left[\begin{array}{cccccc}
1 & 0 & -1 & 0 & 3 & 10 \\
0 & 1 & 4 & 0 & -1 & -9 \\
0 & 0 & 0 & 1 & -2 & -7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

At this point, we see that the system is consistent (no a leading 1 in the last column, Theorem RCLS 50), so we know there $i s$ a solution for the five scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$. This is enough evidence for us to say that $\mathbf{u} \in\langle S\rangle$. If we wished further evidence, we could compute an actual solution, say

$$
\begin{array}{ccccc}
\alpha_{1}=2 & \alpha_{2}=1 & \alpha_{3}=-2 & \alpha_{4}=-3 & \alpha_{5}=2
\end{array}
$$

This particular solution allows us to write

$$
\text { (2) }\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right]+(1)\left[\begin{array}{c}
2 \\
1 \\
2 \\
-1
\end{array}\right]+(-2)\left[\begin{array}{c}
7 \\
3 \\
5 \\
-5
\end{array}\right]+(-3)\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2
\end{array}\right]+(2)\left[\begin{array}{c}
-1 \\
0 \\
9 \\
0
\end{array}\right]=\mathbf{u}=\left[\begin{array}{c}
-15 \\
-6 \\
19 \\
5
\end{array}\right]
$$

making it even more obvious that $\mathbf{u} \in\langle S\rangle$.
Lets do it again. Is $\mathbf{v}=\left[\begin{array}{c}3 \\ 1 \\ 2 \\ -1\end{array}\right]$ an element of $\langle S\rangle$? We are asking if there are scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ such that

$$
\alpha_{1}\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
2 \\
1 \\
2 \\
-1
\end{array}\right]+\alpha_{3}\left[\begin{array}{c}
7 \\
3 \\
5 \\
-5
\end{array}\right]+\alpha_{4}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2
\end{array}\right]+\alpha_{5}\left[\begin{array}{c}
-1 \\
0 \\
9 \\
0
\end{array}\right]=\mathbf{v}=\left[\begin{array}{c}
3 \\
1 \\
2 \\
-1
\end{array}\right]
$$

Applying Theorem SLSLC 90 we recognize the search for these scalars as a solution to a linear system of equations with augmented matrix

$$
\left[\begin{array}{cccccc}
1 & 2 & 7 & 1 & -1 & 3 \\
1 & 1 & 3 & 1 & 0 & 1 \\
3 & 2 & 5 & -1 & 9 & 2 \\
1 & -1 & -5 & 2 & 0 & -1
\end{array}\right]
$$

which row-reduces to

$$
\left[\begin{array}{cccccc}
\boxed{1} & 0 & -1 & 0 & 3 & 0 \\
0 & \boxed{1} & 4 & 0 & -1 & 0 \\
0 & 0 & 0 & \boxed{1} & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & \boxed{1}
\end{array}\right]
$$

At this point, we see that the system is inconsistent (a leading 1 in the last column, Theorem RCLS 50), so we know there is not a solution for the five scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$. This is enough evidence for us to say that $\mathbf{v} \notin\langle S\rangle$. End of story.

Example SCAA

Span of the columns of Archetype A

Begin with the finite set of three vectors of size 3

$$
S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right\}
$$

and consider the infinite set $\langle S\rangle$. The vectors of S could have been chosen to be anything, but for reasons that will become clear later, we have chosen the three columns of the coefficient matrix in Archetype A 689. First, as an example, note that

$$
\mathbf{v}=(5)\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+(-3)\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+(7)\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
22 \\
14 \\
2
\end{array}\right]
$$

is in $\langle S\rangle$, since it is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$. We write this succinctly as $\mathbf{v} \in\langle S\rangle$. There is nothing magical about the scalars $\alpha_{1}=5, \alpha_{2}=-3, \alpha_{3}=7$, they could have been chosen to be anything. So repeat this part of the example yourself, using different values of $\alpha_{1}, \alpha_{2}, \alpha_{3}$. What happens if you choose all three scalars to be zero?

So we know how to quickly construct sample elements of the set $\langle S\rangle$. A slightly different question arises when you are handed a vector of the correct size and asked if it is an element of $\langle S\rangle$. For example, is $\mathbf{w}=\left[\begin{array}{l}1 \\ 8 \\ 5\end{array}\right]$ in $\langle S\rangle$? More succinctly, $\mathbf{w} \in\langle S\rangle$?

To answer this question, we will look for scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ so that

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}=\mathbf{w}
$$

By Theorem SLSLC 90 solutions to this vector equality are solutions to the system of equations

$$
\begin{aligned}
\alpha_{1}-\alpha_{2}+2 \alpha_{3} & =1 \\
2 \alpha_{1}+\alpha_{2}+\alpha_{3} & =8 \\
\alpha_{1}+\alpha_{2} & =5 .
\end{aligned}
$$

Building the augmented matrix for this linear system, and row-reducing, gives

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
0 & \boxed{1} & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

This system has infinitely many solutions (there's a free variable in x_{3}), but all we need is one solution vector. The solution,

$$
\begin{array}{lll}
\alpha_{1}=2 & \alpha_{2}=3 & \alpha_{3}=1
\end{array}
$$

tells us that

$$
(2) \mathbf{u}_{1}+(3) \mathbf{u}_{2}+(1) \mathbf{u}_{3}=\mathbf{w}
$$

so we are convinced that \mathbf{w} really is in $\langle S\rangle$. Notice that there are an infinite number of ways to answer this question affirmatively. We could choose a different solution, this time choosing the free variable to be zero,

$$
\begin{array}{lll}
\alpha_{1}=3 & \alpha_{2}=2 & \alpha_{3}=0
\end{array}
$$

shows us that

$$
(3) \mathbf{u}_{1}+(2) \mathbf{u}_{2}+(0) \mathbf{u}_{3}=\mathbf{w}
$$

Verifying the arithmetic in this second solution maybe makes it seem obvious that \mathbf{w} is in this span? And of course, we now realize that there are an infinite number of ways to realize \mathbf{w} as element of $\langle S\rangle$. Let's ask the same type of question again, but this time with $\mathbf{y}=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$, i.e. is $\mathbf{y} \in\langle S\rangle$?

So we'll look for scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ so that

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}=\mathbf{y}
$$

By Theorem SLSLC 90 this linear combination becomes the system of equations

$$
\begin{aligned}
\alpha_{1}-\alpha_{2}+2 \alpha_{3} & =2 \\
2 \alpha_{1}+\alpha_{2}+\alpha_{3} & =4 \\
\alpha_{1}+\alpha_{2} & =3 .
\end{aligned}
$$

Building the augmented matrix for this linear system, and row-reducing, gives

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & \boxed{1} & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This system is inconsistent (there's a leading 1 in the last column, Theorem RCLS 50), so there are no scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ that will create a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ that equals \mathbf{y}. More precisely, $\mathbf{y} \notin\langle S\rangle$.

There are three things to observe in this example. (1) It is easy to construct vectors in $\langle S\rangle$. (2) It is possible that some vectors are in $\langle S\rangle$ (e.g. w), while others are not (e.g. y). (3) Deciding if a given vector is in $\langle S\rangle$ leads to solving a linear system of equations and asking if the system is consistent.

With a computer program in hand to solve systems of linear equations, could you create a program to decide if a vector was, or wasn't, in the span of a given set of vectors? Is this art or science?

This example was built on vectors from the columns of the coefficient matrix of Archetype A 689. Study the determination that $\mathbf{v} \in\langle S\rangle$ and see if you can connect it with some of the other properties of Archetype A 689 .

Having analyzed Archetype A 689 in Example SCAA 113, we will of course subject Archetype B 694 to a similar investigation.

Example SCAB

Span of the columns of Archetype B

Begin with the finite set of three vectors of size 3 that are the columns of the coefficient matrix in Archetype B 694,

$$
R=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{c}
-7 \\
5 \\
1
\end{array}\right],\left[\begin{array}{c}
-6 \\
5 \\
0
\end{array}\right],\left[\begin{array}{c}
-12 \\
7 \\
4
\end{array}\right]\right\}
$$

and consider the infinite set $V=\langle R\rangle$. First, as an example, note that

$$
\mathbf{x}=(2)\left[\begin{array}{c}
-7 \\
5 \\
1
\end{array}\right]+(4)\left[\begin{array}{c}
-6 \\
5 \\
0
\end{array}\right]+(-3)\left[\begin{array}{c}
-12 \\
7 \\
4
\end{array}\right]=\left[\begin{array}{c}
-2 \\
9 \\
-10
\end{array}\right]
$$

is in $\langle R\rangle$, since it is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. In other words, $\mathbf{x} \in\langle R\rangle$. Try some different values of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ yourself, and see what vectors you can create as elements of $\langle R\rangle$.

Now ask if a given vector is an element of $\langle R\rangle$. For example, is $\mathbf{z}=\left[\begin{array}{c}-33 \\ 24 \\ 5\end{array}\right]$ in $\langle R\rangle$? Is $\mathbf{z} \in\langle R\rangle$?
To answer this question, we will look for scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ so that

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}=\mathbf{z}
$$

By Theorem SLSLC 90 this linear combination becomes the system of equations

$$
\begin{aligned}
-7 \alpha_{1}-6 \alpha_{2}-12 \alpha_{3} & =-33 \\
5 \alpha_{1}+5 \alpha_{2}+7 \alpha_{3} & =24 \\
\alpha_{1}+4 \alpha_{3} & =5 .
\end{aligned}
$$

Building the augmented matrix for this linear system, and row-reducing, gives

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & -3 \\
0 & \boxed{1} & 0 & 5 \\
0 & 0 & \boxed{1} & 2
\end{array}\right] .
$$

This system has a unique solution,

$$
\begin{array}{lll}
\alpha_{1}=-3 & \alpha_{2}=5 & \alpha_{3}=2
\end{array}
$$

telling us that

$$
(-3) \mathbf{v}_{1}+(5) \mathbf{v}_{2}+(2) \mathbf{v}_{3}=\mathbf{z}
$$

so we are convinced that \mathbf{z} really is in $\langle R\rangle$. Notice that in this case we have only one way to answer the question affirmatively since the solution is unique.

Let's ask about another vector, say is $\mathbf{x}=\left[\begin{array}{c}-7 \\ 8 \\ -3\end{array}\right]$ in $\langle R\rangle$? Is $\mathbf{x} \in\langle R\rangle$?
We desire scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ so that

$$
\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}=\mathbf{x}
$$

By Theorem SLSLC 90 this linear combination becomes the system of equations

$$
\begin{aligned}
-7 \alpha_{1}-6 \alpha_{2}-12 \alpha_{3} & =-7 \\
5 \alpha_{1}+5 \alpha_{2}+7 \alpha_{3} & =8 \\
\alpha_{1}+4 \alpha_{3} & =-3 .
\end{aligned}
$$

Building the augmented matrix for this linear system, and row-reducing, gives

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & \boxed{1} & 0 & 2 \\
0 & 0 & \boxed{1} & -1
\end{array}\right]
$$

This system has a unique solution,

$$
\begin{array}{lll}
\alpha_{1}=1 & \alpha_{2}=2 & \alpha_{3}=-1
\end{array}
$$

telling us that

$$
(1) \mathbf{v}_{1}+(2) \mathbf{v}_{2}+(-1) \mathbf{v}_{3}=\mathbf{x}
$$

so we are convinced that \mathbf{x} really is in $\langle R\rangle$. Notice that in this case we again have only one way to answer the question affirmatively since the solution is again unique.

We could continue to test other vectors for membership in $\langle R\rangle$, but there is no point. A question about membership in $\langle R\rangle$ inevitably leads to a system of three equations in the three variables $\alpha_{1}, \alpha_{2}, \alpha_{3}$ with a coefficient matrix whose columns are the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. This particular coefficient matrix is nonsingular, so by Theorem NMUS 70, it is guaranteed to have a solution. (This solution is unique, but that's not critical here.) So no matter which vector we might have chosen for \mathbf{z}, we would have been certain to discover that it was an element of $\langle R\rangle$. Stated differently, every vector of size 3 is in $\langle R\rangle$, or $\langle R\rangle=\mathbb{C}^{3}$.

Compare this example with Example SCAA 113, and see if you can connect \mathbf{z} with some aspects of the write-up for Archetype B 694.

Subsection SSNS
 Spanning Sets of Null Spaces

We saw in Example VFSAL 100 that when a system of equations is homogeneous the solution set can be expressed in the form described by Theorem VFSLS 96 where the vector \mathbf{c} is the zero vector. We can essentially ignore this vector, so that the remainder of the typical expression for a solution looks like an arbitrary linear combination, where the scalars are the free variables and the vectors are $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n-r}$. Which sounds a lot like a span. This is the substance of the next theorem.

Theorem SSNS

Spanning Sets for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ be the column indices where B has leading 1's (pivot columns) and $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ be the set of column indices where B does not have leading 1 's. Construct the $n-r$ vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ of size n as

$$
\left[\mathbf{z}_{j}\right]_{i}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\ 0 & \text { if } i \in F, i \neq f_{j} \\ -[B]_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
$$

Then the null space of A is given by

$$
\mathcal{N}(A)=\left\langle\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \ldots, \mathbf{z}_{n-r}\right\}\right\rangle .
$$

Proof Consider the homogeneous system with A as a coefficient matrix, $\mathcal{L S}(A, \mathbf{0})$. Its set of solutions, S, is by Definition NSM 59, the null space of $A, \mathcal{N}(A)$. Let B^{\prime} denote the result of row-reducing the augmented matrix of this homogeneous system. Since the system is homogeneous, the final column of the augmented matrix will be all zeros, and after any number of row operations (Definition RO (28), the column will still be all zeros. So B^{\prime} has a final column that is totally zeros.

Now apply Theorem VFSLS 96 to B^{\prime}, after noting that our homogeneous system must be consistent (Theorem HSC [57]). The vector \mathbf{c} has zeros for each entry that corresponds to an index in F. For entries that correspond to an index in D, the value is $-\left[B^{\prime}\right]_{k, n+1}$, but for B^{\prime} any entry in the final column (index $n+1$) is zero. So $\mathbf{c}=\mathbf{0}$. The vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ are identical to the vectors $\mathbf{u}_{j}, 1 \leq j \leq n-r$ described in Theorem VFSLS 96. Putting it all together and applying Definition SSCV 111 in the final step,

$$
\begin{aligned}
\mathcal{N}(A) & =S \\
& =\left\{\mathbf{c}+x_{f_{1}} \mathbf{u}_{1}+x_{f_{2}} \mathbf{u}_{2}+x_{f_{3}} \mathbf{u}_{3}+\cdots+x_{f_{n-r}} \mathbf{u}_{n-r} \mid x_{f_{1}}, x_{f_{2}}, x_{f_{3}}, \ldots, x_{f_{n-r}} \in \mathbb{C}\right\} \\
& =\left\{x_{f_{1}} \mathbf{z}_{1}+x_{f_{2}} \mathbf{z}_{2}+x_{f_{3}} \mathbf{z}_{3}+\cdots+x_{f_{n-r}} \mathbf{z}_{n-r} \mid x_{f_{1}}, x_{f_{2}}, x_{f_{3}}, \ldots, x_{\left.f_{n-r} \in \mathbb{C}\right\}}\right\} \\
& =\left\langle\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \ldots, \mathbf{z}_{n-r}\right\}\right\rangle
\end{aligned}
$$

Example SSNS

Spanning set of a null space

Find a set of vectors, S, so that the null space of the matrix A below is the span of S, that is, $\langle S\rangle=\mathcal{N}(A)$.

$$
A=\left[\begin{array}{ccccc}
1 & 3 & 3 & -1 & -5 \\
2 & 5 & 7 & 1 & 1 \\
1 & 1 & 5 & 1 & 5 \\
-1 & -4 & -2 & 0 & 4
\end{array}\right]
$$

The null space of A is the set of all solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$. If we find the vector form of the solutions to this homogenous system Theorem VFSLS 96) then the vectors $\mathbf{u}_{j}, 1 \leq j \leq n-r$ in the linear combination are exactly the vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ described in Theorem SSNS 117. So we can mimic Example VFSAL 100 to arrive at these vectors (rather than being a slave to the formulas in the statement of the theorem).

Begin by row-reducing A. The result is

$$
\left[\begin{array}{ccccc}
{[1} & 0 & 6 & 0 & 4 \\
0 & \boxed{1} & -1 & 0 & -2 \\
0 & 0 & 0 & \boxed{1} & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

With $D=\{1,2,4\}$ and $F=\{3,5\}$ we recognize that x_{3} and x_{5} are free variables and we can express each nonzero row as an expression for the dependent variables x_{1}, x_{2}, x_{4} (respectively) in the free variables x_{3} and x_{5}. With this we can write the vector form of a solution vector as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-6 x_{3}-4 x_{5} \\
x_{3}+2 x_{5} \\
x_{3} \\
-3 x_{5} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-6 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-4 \\
2 \\
0 \\
-3 \\
1
\end{array}\right]
$$

Then in the notation of Theorem SSNS 117,

$$
\mathbf{z}_{1}=\left[\begin{array}{c}
-6 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{z}_{2}=\left[\begin{array}{c}
-4 \\
2 \\
0 \\
-3 \\
1
\end{array}\right]
$$

and

$$
\mathcal{N}(A)=\left\langle\left\{\mathbf{z}_{1}, \mathbf{z}_{2}\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
-6 \\
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
2 \\
0 \\
-3 \\
1
\end{array}\right]\right\}\right\rangle
$$

Example NSDS

Null space directly as a span

Let's express the null space of A as the span of a set of vectors, applying Theorem SSNS 117 as economically as possible, without reference to the underlying homogeneous system of equations (in contrast to Example SSNS 117).

$$
A=\left[\begin{array}{cccccc}
2 & 1 & 5 & 1 & 5 & 1 \\
1 & 1 & 3 & 1 & 6 & -1 \\
-1 & 1 & -1 & 0 & 4 & -3 \\
-3 & 2 & -4 & -4 & -7 & 0 \\
3 & -1 & 5 & 2 & 2 & 3
\end{array}\right]
$$

Theorem SSNS 117 creates vectors for the span by first row-reducing the matrix in question. The rowreduced version of A is

$$
B=\left[\begin{array}{cccccc}
\begin{array}{|ccccc}
1 & 0 & 2 & 0 & -1
\end{array} & 2 \\
0 & \boxed{1} & 1 & 0 & 3 & -1 \\
0 & 0 & 0 & 1 & 4 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

I usually find it easier to envision the construction of the homogenous system of equations represented by this matrix, solve for the dependent variables and then unravel the equations into a linear combination.

But we can just as well mechanically follow the prescription of Theorem SSNS 117. Here we go, in two big steps.

First, the indices of the non-pivot columns have indices $F=\{3,5,6\}$, so we will construct the $n-r=$ $6-3=3$ vectors with a pattern of zeros and ones corresponding to the indices in F. This is the realization of the first two lines of the three-case definition of the vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$.

$$
\mathbf{z}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{z}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{z}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Each of these vectors arises due to the presence of a column that is not a pivot column. The remaining entries of each vector are the entries of the corresponding non-pivot column, negated, and distributed into the empty slots in order (these slots have indices in the set D and correspond to pivot columns). This is the realization of the third line of the three-case definition of the vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$.

$$
\mathbf{z}_{1}=\left[\begin{array}{c}
-2 \\
1 \\
1 \\
2 \\
0 \\
0
\end{array}\right] \quad \mathbf{z}_{2}=\left[\begin{array}{c}
1 \\
-3 \\
0 \\
-4 \\
1 \\
0
\end{array}\right] \quad \mathbf{z}_{3}=\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

So, by Theorem SSNS 117, we have

$$
\mathcal{N}(A)=\left\langle\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
1 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-3 \\
0 \\
-4 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

We know that the null space of A is the solution set of the homogeneous system $\mathcal{L S}(A, \mathbf{0})$, but nowhere in this application of Theorem SSNS 117 have we found occasion to reference the variables or equations of this system.

More advanced computational devices will compute the null space of a matrix. See: Computation NS.MMA 659. Here's an example that will simultaneously exercise the span construction and Theorem SSNS 117, while also pointing the way to the next section.

Example SCAD

Span of the columns of Archetype D
Begin with the set of four vectors of size 3

$$
T=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}\right\}=\left\{\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
7 \\
-5 \\
4
\end{array}\right],\left[\begin{array}{l}
-7 \\
-6 \\
-5
\end{array}\right]\right\}
$$

and consider the infinite set $W=\langle T\rangle$. The vectors of T have been chosen as the four columns of the coefficient matrix in Archetype D 703. Check that the vector

$$
\mathbf{z}_{2}=\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]
$$

is a solution to the homogeneous system $\mathcal{L S}(D, \mathbf{0})$ (it is the vector \mathbf{z}_{2} provided by the description of the null space of the coefficient matrix D from Theorem SSNS 117). Applying Theorem SLSLC 90, we can write the linear combination,

$$
2 \mathbf{w}_{1}+3 \mathbf{w}_{2}+0 \mathbf{w}_{3}+1 \mathbf{w}_{4}=\mathbf{0}
$$

which we can solve for \mathbf{w}_{4},

$$
\mathbf{w}_{4}=(-2) \mathbf{w}_{1}+(-3) \mathbf{w}_{2} .
$$

This equation says that whenever we encounter the vector \mathbf{w}_{4}, we can replace it with a specific linear combination of the vectors \mathbf{w}_{1} and \mathbf{w}_{2}. So using \mathbf{w}_{4} in the set T, along with \mathbf{w}_{1} and \mathbf{w}_{2}, is excessive. An example of what we mean here can be illustrated by the computation,

$$
\begin{aligned}
5 \mathbf{w}_{1}+(-4) \mathbf{w}_{2}+6 \mathbf{w}_{3}+(-3) \mathbf{w}_{4} & =5 \mathbf{w}_{1}+(-4) \mathbf{w}_{2}+6 \mathbf{w}_{3}+(-3)\left((-2) \mathbf{w}_{1}+(-3) \mathbf{w}_{2}\right) \\
& =5 \mathbf{w}_{1}+(-4) \mathbf{w}_{2}+6 \mathbf{w}_{3}+\left(6 \mathbf{w}_{1}+9 \mathbf{w}_{2}\right) \\
& =11 \mathbf{w}_{1}+5 \mathbf{w}_{2}+6 \mathbf{w}_{3} .
\end{aligned}
$$

So what began as a linear combination of the vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}$ has been reduced to a linear combination of the vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$. A careful proof using our definition of set equality (Definition SE 670) would now allow us to conclude that this reduction is possible for any vector in W, so

$$
W=\left\langle\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}\right\rangle .
$$

So the span of our set of vectors, W, has not changed, but we have described it by the span of a set of three vectors, rather than four. Furthermore, we can achieve yet another, similar, reduction.

Check that the vector

$$
\mathbf{z}_{1}=\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]
$$

is a solution to the homogeneous system $\mathcal{L S}(D, \mathbf{0})$ (it is the vector \mathbf{z}_{1} provided by the description of the null space of the coefficient matrix D from Theorem SSNS 117). Applying Theorem SLSLC 90, we can write the linear combination,

$$
(-3) \mathbf{w}_{1}+(-1) \mathbf{w}_{2}+1 \mathbf{w}_{3}=\mathbf{0}
$$

which we can solve for \mathbf{w}_{3},

$$
\mathbf{w}_{3}=3 \mathbf{w}_{1}+1 \mathbf{w}_{2}
$$

This equation says that whenever we encounter the vector \mathbf{w}_{3}, we can replace it with a specific linear combination of the vectors \mathbf{w}_{1} and \mathbf{w}_{2}. So, as before, the vector \mathbf{w}_{3} is not needed in the description of W, provided we have \mathbf{w}_{1} and \mathbf{w}_{2} available. In particular, a careful proof would show that

$$
W=\left\langle\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}\right\rangle .
$$

So W began life as the span of a set of four vectors, and we have now shown (utilizing solutions to a homogeneous system) that W can also be described as the span of a set of just two vectors. Convince yourself that we cannot go any further. In other words, it is not possible to dismiss either \mathbf{w}_{1} or \mathbf{w}_{2} in a similar fashion and winnow the set down to just one vector.

What was it about the original set of four vectors that allowed us to declare certain vectors as surplus? And just which vectors were we able to dismiss? And why did we have to stop once we had two vectors remaining? The answers to these questions motivate "linear independence," our next section and next definition, and so are worth considering carefully now.

It is possible to have your computational device crank out the vector form of the solution set to a linear system of equations. See: Computation VFSS.MMA 659.

Subsection READ

1. Let S be the set of three vectors below.

$$
S=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
-4 \\
2
\end{array}\right],\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]\right\}
$$

Let $W=\langle S\rangle$ be the span of S. Is the vector $\left[\begin{array}{c}-1 \\ 8 \\ -4\end{array}\right]$ in W ? Give an explanation of the reason for your answer.
2. Use S and W from the previous question. Is the vector $\left[\begin{array}{c}6 \\ 5 \\ -1\end{array}\right]$ in W ? Give an explanation of the reason for your answer.
3. For the matrix A below, find a set S so that $\langle S\rangle=\mathcal{N}(A)$, where $\mathcal{N}(A)$ is the null space of A. (See Theorem SSNS 117.)

$$
A=\left[\begin{array}{cccc}
1 & 3 & 1 & 9 \\
2 & 1 & -3 & 8 \\
1 & 1 & -1 & 5
\end{array}\right]
$$

Subsection EXC
 Exercises
 π

C22 For each archetype that is a system of equations, consider the corresponding homogeneous system of equations. Write elements of the solution set to these homogeneous systems in vector form, as guaranteed by Theorem VFSLS 96. Then write the null space of the coefficient matrix of each system as the span of a set of vectors, as described in Theorem SSNS 117.
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703 / Archetype E 707]
Archetype F 711
Archetype G 716 / Archetype H 720
Archetype I 724
Archetype J 728

Contributed by Robert Beezer Solution 125
C23 Archetype K 733 and Archetype L 737 are defined as matrices. Use Theorem SSNS 117 directly to find a set S so that $\langle S\rangle$ is the null space of the matrix. Do not make any reference to the associated homogeneous system of equations in your solution.
Contributed by Robert Beezer Solution 125
$\mathbf{C 4 0}$ Suppose that $S=\left\{\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{c}3 \\ 2 \\ -2 \\ 1\end{array}\right]\right\}$. Let $W=\langle S\rangle$ and let $\mathbf{x}=\left[\begin{array}{c}5 \\ 8 \\ -12 \\ -5\end{array}\right]$. Is $\mathbf{x} \in W$? If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution 125
C41 Suppose that $S=\left\{\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{c}3 \\ 2 \\ -2 \\ 1\end{array}\right]\right\}$. Let $W=\langle S\rangle$ and let $\mathbf{y}=\left[\begin{array}{l}5 \\ 1 \\ 3 \\ 5\end{array}\right]$. Is $\mathbf{y} \in W$? If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution 125
$\mathbf{C 4 2}$ Suppose $R=\left\{\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ 2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0 \\ 3 \\ -2\end{array}\right]\right\}$. Is $\mathbf{y}=\left[\begin{array}{c}1 \\ -1 \\ -8 \\ -4 \\ -3\end{array}\right]$ in $\langle R\rangle$?
Contributed by Robert Beezer Solution 126
$\mathbf{C 4 3}$ Suppose $R=\left\{\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ 2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 0 \\ 3 \\ -2\end{array}\right]\right\}$. Is $\mathbf{z}=\left[\begin{array}{l}1 \\ 1 \\ 5 \\ 3 \\ 1\end{array}\right]$ in $\langle R\rangle$?
Contributed by Robert Beezer
$\mathbf{C 4 4}$ Suppose that $S=\left\{\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 4\end{array}\right],\left[\begin{array}{c}-6 \\ 5 \\ 1\end{array}\right]\right\}$. Let $W=\langle S\rangle$ and let $\mathbf{y}=\left[\begin{array}{c}-5 \\ 3 \\ 0\end{array}\right]$. Is $\mathbf{x} \in W$? If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution 127
$\mathbf{C 4 5}$ Suppose that $S=\left\{\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 4\end{array}\right],\left[\begin{array}{c}-6 \\ 5 \\ 1\end{array}\right]\right\}$. Let $W=\langle S\rangle$ and let $\mathbf{w}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$. Is $\mathbf{x} \in W$? If so, provide an explicit linear combination that demonstrates this.
Contributed by Robert Beezer Solution 127
C50 Let A be the matrix below.
(a) Find a set S so that $\mathcal{N}(A)=\langle S\rangle$.
(b) If $\mathbf{z}=\left[\begin{array}{c}3 \\ -5 \\ 1 \\ 2\end{array}\right]$, then show directly that $\mathbf{z} \in \mathcal{N}(A)$.
(c) Write \mathbf{z} as a linear combination of the vectors in S.

$$
A=\left[\begin{array}{cccc}
2 & 3 & 1 & 4 \\
1 & 2 & 1 & 3 \\
-1 & 0 & 1 & 1
\end{array}\right]
$$

Contributed by Robert Beezer Solution 128
C60 For the matrix A below, find a set of vectors S so that the span of S equals the null space of A, $\langle S\rangle=\mathcal{N}(A)$.

$$
A=\left[\begin{array}{cccc}
1 & 1 & 6 & -8 \\
1 & -2 & 0 & 1 \\
-2 & 1 & -6 & 7
\end{array}\right]
$$

Contributed by Robert Beezer Solution 129
M20 In Example SCAD 119 we began with the four columns of the coefficient matrix of Archetype D 703, and used these columns in a span construction. Then we methodically argued that we could remove the last column, then the third column, and create the same set by just doing a span construction with the first two columns. We claimed we could not go any further, and had removed as many vectors as possible.
Provide a convincing argument for why a third vector cannot be removed.
Contributed by Robert Beezer
M21 In the spirit of Example SCAD 119, begin with the four columns of the coefficient matrix of Archetype C 699, and use these columns in a span construction to build the set S. Argue that S can be expressed as the span of just three of the columns of the coefficient matrix (saying exactly which three) and in the spirit of Exercise SS.M20 123 argue that no one of these three vectors can be removed and still have a span construction create S.
Contributed by Robert Beezer Solution 129
T10 Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{C}^{m}$. Prove that

$$
\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, 5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right\}\right\rangle
$$

Contributed by Robert Beezer

T20 Suppose that S is a set of vectors from \mathbb{C}^{m}. Prove that the zero vector, $\mathbf{0}$, is an element of $\langle S\rangle$. Contributed by Robert Beezer Solution 130

T21 Suppose that S is a set of vectors from \mathbb{C}^{m} and $\mathbf{x}, \mathbf{y} \in\langle S\rangle$. Prove that $\mathbf{x}+\mathbf{y} \in\langle S\rangle$. Contributed by Robert Beezer

T22 Suppose that S is a set of vectors from $\mathbb{C}^{m}, \alpha \in \mathbb{C}$, and $\mathbf{x} \in\langle S\rangle$. Prove that $\alpha \mathbf{x} \in\langle S\rangle$. Contributed by Robert Beezer

Subsection SOL
 Solutions

■ாா

C22 Contributed by Robert Beezer Statement 122
The vector form of the solutions obtained in this manner will involve precisely the vectors described in Theorem SSNS 117 as providing the null space of the coefficient matrix of the system as a span. These vectors occur in each archetype in a description of the null space. Studying Example VFSAL 100 may be of some help.

C23 Contributed by Robert Beezer Statement 122
Study Example NSDS 118 to understand the correct approach to this question. The solution for each is listed in the Archetypes (Appendix A 685) themselves.

C40 Contributed by Robert Beezer Statement 122
Rephrasing the question, we want to know if there are scalars α_{1} and α_{2} such that

$$
\alpha_{1}\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
3 \\
2 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 \\
8 \\
-12 \\
-5
\end{array}\right]
$$

Theorem SLSLC 90 allows us to rephrase the question again as a quest for solutions to the system of four equations in two unknowns with an augmented matrix given by

$$
\left[\begin{array}{ccc}
2 & 3 & 5 \\
-1 & 2 & 8 \\
3 & -2 & -12 \\
4 & 1 & -5
\end{array}\right]
$$

This matrix row-reduces to

$$
\left[\begin{array}{ccc}
\boxed{1} & 0 & -2 \\
0 & \boxed{1} & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

From the form of this matrix, we can see that $\alpha_{1}=-2$ and $\alpha_{2}=3$ is an affirmative answer to our question. More convincingly,

$$
(-2)\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4
\end{array}\right]+(3)\left[\begin{array}{c}
3 \\
2 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 \\
8 \\
-12 \\
-5
\end{array}\right]
$$

C41 Contributed by Robert Beezer Statement 122
Rephrasing the question, we want to know if there are scalars α_{1} and α_{2} such that

$$
\alpha_{1}\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
3 \\
2 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
1 \\
3 \\
5
\end{array}\right]
$$

Theorem SLSLC 90 allows us to rephrase the question again as a quest for solutions to the system of four
equations in two unknowns with an augmented matrix given by

$$
\left[\begin{array}{ccc}
2 & 3 & 5 \\
-1 & 2 & 1 \\
3 & -2 & 3 \\
4 & 1 & 5
\end{array}\right]
$$

This matrix row-reduces to

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & \begin{array}{c}
1 \\
0
\end{array} \\
0 & 0
\end{array}\right]
$$

With a leading 1 in the last column of this matrix Theorem RCLS 50) we can see that the system of equations has no solution, so there are no values for α_{1} and α_{2} that will allow us to conclude that \mathbf{y} is in W. So $\mathbf{y} \notin W$.
C42 Contributed by Robert Beezer Statement 122
Form a linear combination, with unknown scalars, of R that equals \mathbf{y},

$$
a_{1}\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4 \\
0
\end{array}\right]+a_{2}\left[\begin{array}{c}
1 \\
1 \\
2 \\
2 \\
-1
\end{array}\right]+a_{3}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
-8 \\
-4 \\
-3
\end{array}\right]
$$

We want to know if there are values for the scalars that make the vector equation true since that is the definition of membership in $\langle R\rangle$. By Theorem SLSLC 90 any such values will also be solutions to the linear system represented by the augmented matrix,

$$
\left[\begin{array}{cccc}
2 & 1 & 3 & 1 \\
-1 & 1 & -1 & -1 \\
3 & 2 & 0 & -8 \\
4 & 2 & 3 & -4 \\
0 & -1 & -2 & -3
\end{array}\right]
$$

Row-reducing the matrix yields,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & -2 \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & \boxed{1} & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From this we see that the system of equations is consistent (Theorem RCLS 50), and has a unique solution. This solution will provide a linear combination of the vectors in R that equals \mathbf{y}. So $\mathbf{y} \in R$.
C43 Contributed by Robert Beezer Statement 122
Form a linear combination, with unknown scalars, of R that equals \mathbf{z},

$$
a_{1}\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4 \\
0
\end{array}\right]+a_{2}\left[\begin{array}{c}
1 \\
1 \\
2 \\
2 \\
-1
\end{array}\right]+a_{3}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
5 \\
3 \\
1
\end{array}\right]
$$

We want to know if there are values for the scalars that make the vector equation true since that is the definition of membership in $\langle R\rangle$. By Theorem SLSLC 90 any such values will also be solutions to the linear system represented by the augmented matrix,

$$
\left[\begin{array}{cccc}
2 & 1 & 3 & 1 \\
-1 & 1 & -1 & 1 \\
3 & 2 & 0 & 5 \\
4 & 2 & 3 & 3 \\
0 & -1 & -2 & 1
\end{array}\right]
$$

Row-reducing the matrix yields,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

With a leading 1 in the last column, the system is inconsistent Theorem RCLS 50), so there are no scalars a_{1}, a_{2}, a_{3} that will create a linear combination of the vectors in R that equal \mathbf{z}. So $\mathbf{z} \notin R$.

C44 Contributed by Robert Beezer Statement 123
Form a linear combination, with unknown scalars, of S that equals \mathbf{y},

$$
a_{1}\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]+a_{2}\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]+a_{4}\left[\begin{array}{c}
-6 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]
$$

We want to know if there are values for the scalars that make the vector equation true since that is the definition of membership in $\langle S\rangle$. By Theorem SLSLC 90 any such values will also be solutions to the linear system represented by the augmented matrix,

$$
\left[\begin{array}{ccccc}
-1 & 3 & 1 & -6 & -5 \\
2 & 1 & 5 & 5 & 3 \\
1 & 2 & 4 & 1 & 0
\end{array}\right]
$$

Row-reducing the matrix yields,

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 2 & 3 & 2 \\
0 & \boxed{1} & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From this we see that the system of equations is consistent (Theorem RCLS 50), and has a infinitely many solutions. Any solution will provide a linear combination of the vectors in R that equals \mathbf{y}. So $\mathbf{y} \in S$, for example,

$$
(-10)\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]+(-2)\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]+(3)\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]+(2)\left[\begin{array}{c}
-6 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
3 \\
0
\end{array}\right]
$$

C45 Contributed by Robert Beezer Statement 123
Form a linear combination, with unknown scalars, of S that equals w,

$$
a_{1}\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]+a_{2}\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right]+a_{4}\left[\begin{array}{c}
-6 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

We want to know if there are values for the scalars that make the vector equation true since that is the definition of membership in $\langle S\rangle$. By Theorem SLSLC 90 any such values will also be solutions to the linear system represented by the augmented matrix,

$$
\left[\begin{array}{ccccc}
-1 & 3 & 1 & -6 & 2 \\
2 & 1 & 5 & 5 & 1 \\
1 & 2 & 4 & 1 & 3
\end{array}\right]
$$

Row-reducing the matrix yields,

$$
\left[\begin{array}{ccccc}
\hline 1 & 0 & 2 & 3 & 0 \\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

With a leading 1 in the last column, the system is inconsistent Theorem RCLS 50), so there are no scalars $a_{1}, a_{2}, a_{3}, a_{4}$ that will create a linear combination of the vectors in S that equal \mathbf{w}. So $\mathbf{w} \notin\langle S\rangle$.
C50 Contributed by Robert Beezer Statement 123
(a) Theorem SSNS 117 provides formulas for a set S with this property, but first we must row-reduce A

$$
A \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & \boxed{1} & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

x_{3} and x_{4} would be the free variables in the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ and Theorem SSNS 117 provides the set $S=\left\{\mathbf{z}_{1}, \mathbf{z}_{2}\right\}$ where

$$
\mathbf{z}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right] \quad \mathbf{z}_{2}=\left[\begin{array}{c}
1 \\
-2 \\
0 \\
1
\end{array}\right]
$$

(b) Simply employ the components of the vector \mathbf{z} as the variables in the hogeneous system $\mathcal{L S}(A, \mathbf{0})$. The three equations of this system evaluate as follows,

$$
\begin{aligned}
2(3)+3(-5)+1(1)+4(2) & =0 \\
1(3)+2(-5)+1(1)+3(2) & =0 \\
-1(3)+0(-5)+1(1)+1(2) & =0
\end{aligned}
$$

Since each result is zero, z qualifies for membership in $\mathcal{N}(A)$.
(c) By Theorem SSNS 117 we know this must be possible (that is the moral of this exercise). Find scalars α_{1} and α_{2} so that

$$
\alpha_{1} \mathbf{z}_{1}+\alpha_{2} \mathbf{z}_{2}=\alpha_{1}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
1 \\
-2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-5 \\
1 \\
2
\end{array}\right]=\mathbf{z}
$$

Theorem SLSLC 90 allows us to convert this question into a question about a system of four equations in two variables. The augmented matrix of this system row-reduces to

$$
\left[\begin{array}{ccc}
\boxed{1} & 0 & 1 \\
0 & \boxed{1} & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

A solution is $\alpha_{1}=1$ and $\alpha_{2}=2$. (Notice too that this solution is unique!)
C60 Contributed by Robert Beezer Statement 123
Theorem SSNS 117 says that if we find the vector form of the solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$, then the fixed vectors (one per free variable) will have the desired property. Row-reduce A, viewing it as the augmented matrix of a homogeneous system with an invisible columns of zeros as the last column,

$$
\left[\begin{array}{cccc}
\hline 1 & 0 & 4 & -5 \\
0 & \boxed{1} & 2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Moving to the vector form of the solutions (Theorem VFSLS 96), with free variables x_{3} and x_{4}, solutions to the consistent system (it is homogeneous, Theorem HSC [57) can be expressed as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-4 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
5 \\
3 \\
0 \\
1
\end{array}\right]
$$

Then with S given by

$$
S=\left\{\left[\begin{array}{c}
-4 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
5 \\
3 \\
0 \\
1
\end{array}\right]\right\}
$$

Theorem SSNS 117 guarantees that

$$
\mathcal{N}(A)=\langle S\rangle=\left\langle\left\{\left[\begin{array}{c}
-4 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
5 \\
3 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

M21 Contributed by Robert Beezer Statement 123
If the columns of the coefficient matrix from Archetype C 699 are named $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ then we can discover the equation

$$
(-2) \mathbf{u}_{1}+(-3) \mathbf{u}_{2}+\mathbf{u}_{3}+\mathbf{u}_{4}=\mathbf{0}
$$

by building a homogeneous system of equations and viewing a solution to the system as scalars in a linear combination via Theorem SLSLC 90 . This particular vector equation can be rearranged to read

$$
\mathbf{u}_{4}=(2) \mathbf{u}_{1}+(3) \mathbf{u}_{2}+(-1) \mathbf{u}_{3}
$$

This can be interpreted to mean that \mathbf{u}_{4} is unnecessary in $\left\langle\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}\right\rangle$, so that

$$
\left\langle\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}\right\rangle=\left\langle\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}\right\rangle
$$

If we try to repeat this process and find a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ that equals the zero vector, we will fail. The required homogeneous system of equations (via Theorem SLSLC 90) has only a trivial solution, which will not provide the kind of equation we need to remove one of the three remaining vectors.

T10 Contributed by Robert Beezer Statement 123
This is an equality of sets, so Definition SE 670 applies.
First show that $X=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle \subseteq\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, 5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right\}\right\rangle=Y$.
Choose $\mathbf{x} \in X$. Then $\mathbf{x}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}$ for some scalars a_{1} and a_{2}. Then,

$$
\mathbf{x}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+0\left(5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right)
$$

which qualifies \mathbf{x} for membership in Y, as it is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, 5 \mathbf{v}_{1}+3 \mathbf{v}_{2}$.
Now show the opposite inclusion, $Y=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, 5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right\}\right\rangle \subseteq\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle=X$.
Choose $\mathbf{y} \in Y$. Then there are scalars a_{1}, a_{2}, a_{3} such that

$$
\mathbf{y}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3}\left(5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right)
$$

Rearranging, we obtain,

$$
\begin{aligned}
\mathbf{y} & =a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3}\left(5 \mathbf{v}_{1}+3 \mathbf{v}_{2}\right) & & \\
& =a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+5 a_{3} \mathbf{v}_{1}+3 a_{3} \mathbf{v}_{2} & & \text { Property DVAC } 83 \\
& =a_{1} \mathbf{v}_{1}+5 a_{3} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+3 a_{3} \mathbf{v}_{2} & & \text { Property CC 82 } \\
& =\left(a_{1}+5 a_{3}\right) \mathbf{v}_{1}+\left(a_{2}+3 a_{3}\right) \mathbf{v}_{2} & & \text { Property DSAC 83 }
\end{aligned}
$$

This is an expression for \mathbf{y} as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}, earning \mathbf{y} membership in X. Since X is a subset of Y, and vice versa, we see that $X=Y$, as desired.
T20 Contributed by Robert Beezer Statement 124
No matter what the elements of the set S are, we can choose the scalars in a linear combination to all be zero. Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$. Then compute

$$
\begin{aligned}
0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+0 \mathbf{v}_{3}+\cdots+0 \mathbf{v}_{p} & =\mathbf{0}+\mathbf{0}+\mathbf{0}+\cdots+\mathbf{0} \\
& =\mathbf{0}
\end{aligned}
$$

But what if we choose S to be the empty set? The convention is that the empty sum in Definition SSCV 111 evaluates to "zero," in this case this is the zero vector.

Section LI

Linear Independence

Subsection LISV
 Linearly Independent Sets of Vectors

Theorem SLSLC 90 tells us that a solution to a homogeneous system of equations is a linear combination of the columns of the coefficient matrix that equals the zero vector. We used just this situation to our advantage (twice!) in Example SCAD 119 where we reduced the set of vectors used in a span construction from four down to two, by declaring certain vectors as surplus. The next two definitions will allow us to formalize this situation.

Definition RLDCV

Relation of Linear Dependence for Column Vectors

Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$, a true statement of the form

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}=\mathbf{0}
$$

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e. $\alpha_{i}=0$, $1 \leq i \leq n$, then we say it is the trivial relation of linear dependence on S.

Definition LICV

Linear Independence of Column Vectors

The set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is linearly dependent if there is a relation of linear dependence on S that is not trivial. In the case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent set of vectors.

Notice that a relation of linear dependence is an equation. Though most of it is a linear combination, it is not a linear combination (that would be a vector). Linear independence is a property of a set of vectors. It is easy to take a set of vectors, and an equal number of scalars, all zero, and form a linear combination that equals the zero vector. When the easy way is the only way, then we say the set is linearly independent. Here's a couple of examples.

Example LDS

Linearly dependent set in \mathbb{C}^{5}
Consider the set of $n=4$ vectors from \mathbb{C}^{5},

$$
S=\left\{\left[\begin{array}{c}
2 \\
-1 \\
3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
-1 \\
5 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
-3 \\
6 \\
1
\end{array}\right],\left[\begin{array}{c}
-6 \\
7 \\
-1 \\
0 \\
1
\end{array}\right]\right\} .
$$

To determine linear independence we first form a relation of linear dependence,

$$
\alpha_{1}\left[\begin{array}{c}
2 \\
-1 \\
3 \\
1 \\
2
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
1 \\
2 \\
-1 \\
5 \\
2
\end{array}\right]+\alpha_{3}\left[\begin{array}{c}
2 \\
1 \\
-3 \\
6 \\
1
\end{array}\right]+\alpha_{4}\left[\begin{array}{c}
-6 \\
7 \\
-1 \\
0 \\
1
\end{array}\right]=\mathbf{0}
$$

We know that $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$ is a solution to this equation, but that is of no interest whatsoever. That is always the case, no matter what four vectors we might have chosen. We are curious to know if there are other, nontrivial, solutions. Theorem SLSLC 90 tells us that we can find such solutions as solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ where the coefficient matrix has these four vectors as columns,

$$
A=\left[\begin{array}{cccc}
2 & 1 & 2 & -6 \\
-1 & 2 & 1 & 7 \\
3 & -1 & -3 & -1 \\
1 & 5 & 6 & 0 \\
2 & 2 & 1 & 1
\end{array}\right]
$$

Row-reducing this coefficient matrix yields,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & -2 \\
0 & \boxed{1} & 0 & 4 \\
0 & 0 & \boxed{1} & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We could solve this homogeneous system completely, but for this example all we need is one nontrivial solution. Setting the lone free variable to any nonzero value, such as $x_{4}=1$, yields the nontrivial solution

$$
\mathbf{x}=\left[\begin{array}{c}
2 \\
-4 \\
3 \\
1
\end{array}\right]
$$

completing our application of Theorem SLSLC 90, we have

$$
2\left[\begin{array}{c}
2 \\
-1 \\
3 \\
1 \\
2
\end{array}\right]+(-4)\left[\begin{array}{c}
1 \\
2 \\
-1 \\
5 \\
2
\end{array}\right]+3\left[\begin{array}{c}
2 \\
1 \\
-3 \\
6 \\
1
\end{array}\right]+1\left[\begin{array}{c}
-6 \\
7 \\
-1 \\
0 \\
1
\end{array}\right]=\mathbf{0}
$$

This is a relation of linear dependence on S that is not trivial, so we conclude that S is linearly dependent.

Example LIS

Linearly independent set in \mathbb{C}^{5}

Consider the set of $n=4$ vectors from \mathbb{C}^{5},

$$
T=\left\{\left[\begin{array}{c}
2 \\
-1 \\
3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
-1 \\
5 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
-3 \\
6 \\
1
\end{array}\right],\left[\begin{array}{c}
-6 \\
7 \\
-1 \\
1 \\
1
\end{array}\right]\right\}
$$

To determine linear independence we first form a relation of linear dependence,

$$
\alpha_{1}\left[\begin{array}{c}
2 \\
-1 \\
3 \\
1 \\
2
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
1 \\
2 \\
-1 \\
5 \\
2
\end{array}\right]+\alpha_{3}\left[\begin{array}{c}
2 \\
1 \\
-3 \\
6 \\
1
\end{array}\right]+\alpha_{4}\left[\begin{array}{c}
-6 \\
7 \\
-1 \\
1 \\
1
\end{array}\right]=\mathbf{0}
$$

We know that $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$ is a solution to this equation, but that is of no interest whatsoever. That is always the case, no matter what four vectors we might have chosen. We are curious to know if there are other, nontrivial, solutions. Theorem SLSLC 90 tells us that we can find such solutions as solution to the homogeneous system $\mathcal{L S}(B, \mathbf{0})$ where the coefficient matrix has these four vectors as columns,

$$
B=\left[\begin{array}{cccc}
2 & 1 & 2 & -6 \\
-1 & 2 & 1 & 7 \\
3 & -1 & -3 & -1 \\
1 & 5 & 6 & 1 \\
2 & 2 & 1 & 1
\end{array}\right]
$$

Row-reducing this coefficient matrix yields,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

From the form of this matrix, we see that there are no free variables, so the solution is unique, and because the system is homogeneous, this unique solution is the trivial solution. So we now know that there is but one way to combine the four vectors of T into a relation of linear dependence, and that one way is the easy and obvious way. In this situation we say that the set, T, is linearly independent.

Example LDS 131 and Example LIS 132 relied on solving a homogeneous system of equations to determine linear independence. We can codify this process in a time-saving theorem.

Theorem LIVHS

Linearly Independent Vectors and Homogeneous Systems

Suppose that A is an $m \times n$ matrix and $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m} that are the columns of A. Then S is a linearly independent set if and only if the homeneous system $\mathcal{L S}(A, \mathbf{0})$ has a unique solution.

Proof (\Leftarrow) Suppose that $\mathcal{L S}(A, \mathbf{0})$ has a unique solution. Since it is a homogeneous system, this solution must be the trivial solution $\mathbf{x}=\mathbf{0}$. By Theorem SLSLC 90, this means that the only relation of linear dependence on S is the trivial one. So S is linearly independent.
(\Rightarrow) We will prove the contrapositive. Suppose that $\mathcal{L S}(A, 0)$ does not have a unique solution. Since it is a homogeneous system, it is consistent (Theorem HSC 57), and so must have infinitely many solutions (Theorem PSSLS [52]). One of these infinitely many solutions must be nontrivial (in fact, almost all of them are), so choose one. By Theorem SLSLC 90 this nontrivial solution will give a nontrivial relation of linear dependence on S, so we can conclude that S is a linearly dependent set.

Since Theorem LIVHS 133 is an equivalence, we can use it to determine the linear independence or dependence of any set of column vectors, just by creating a corresponding matrix and analyzing the row-reduced form. Let's illustrate this with two more examples.

Example LIHS

Linearly independent, homogeneous system

Is the set of vectors

$$
S=\left\{\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
2 \\
-1 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
4 \\
3 \\
-4 \\
5 \\
1
\end{array}\right]\right\}
$$

linearly independent or linearly dependent?
Theorem LIVHS 133 suggests we study the matrix whose columns are the vectors in S,

$$
A=\left[\begin{array}{ccc}
2 & 6 & 4 \\
-1 & 2 & 3 \\
3 & -1 & -4 \\
4 & 3 & 5 \\
2 & 4 & 1
\end{array}\right]
$$

Specifically, we are interested in the size of the solution set for the homogeneous system $\mathcal{L S}(A, \mathbf{0})$. Rowreducing A, we obtain

$$
\left[\begin{array}{ccc}
\boxed{1} & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & \boxed{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Now, $r=3$, so there are $n-r=3-3=0$ free variables and we see that $\mathcal{L S}(A, \mathbf{0})$ has a unique solution (Theorem HSC 57, Theorem FVCS [51). By Theorem LIVHS 133, the set S is linearly independent. \boxtimes

Example LDHS

Linearly dependent, homogeneous system

Is the set of vectors

$$
S=\left\{\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
2 \\
-1 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
4 \\
3 \\
-4 \\
-1 \\
2
\end{array}\right]\right\}
$$

linearly independent or linearly dependent?
Theorem LIVHS 133 suggests we study the matrix whose columns are the vectors in S,

$$
A=\left[\begin{array}{ccc}
2 & 6 & 4 \\
-1 & 2 & 3 \\
3 & -1 & -4 \\
4 & 3 & -1 \\
2 & 4 & 2
\end{array}\right]
$$

Specifically, we are interested in the size of the solution set for the homogeneous system $\mathcal{L S}(A, \mathbf{0})$. Rowreducing A, we obtain

$$
\left[\begin{array}{ccc}
\boxed{1} & 0 & -1 \\
0 & \boxed{1} & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Now, $r=2$, so there are $n-r=3-2=1$ free variables and we see that $\mathcal{L S}(A, \mathbf{0})$ has infinitely many solutions Theorem HSC 57, Theorem FVCS 51). By Theorem LIVHS 133, the set S is linearly dependent.

As an equivalence, Theorem LIVHS 133 gives us a straightforward way to determine if a set of vectors is linearly independent or dependent.

Review Example LIHS 133 and Example LDHS [134. They are very similar, differing only in the last two slots of the third vector. This resulted in slightly different matrices when row-reduced, and
slightly different values of r, the number of nonzero rows. Notice, too, that we are less interested in the actual solution set, and more interested in its form or size. These observations allow us to make a slight improvement in Theorem LIVHS 133.

Theorem LIVRN

Linearly Independent Vectors, r and n
Suppose that A is an $m \times n$ matrix and $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m} that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and only if $n=r$.

Proof Theorem LIVHS 133 says the linear independence of S is equivalent to the homogeneous linear system $\mathcal{L S}(A, \mathbf{0})$ having a unique solution. Since $\mathcal{L S}(A, \mathbf{0})$ is consistent (Theorem HSC 57) we can apply Theorem CSRN 51 to see that the solution is unique exactly when $n=r$.

So now here's an example of the most straightfoward way to determine if a set of column vectors in linearly independent or linearly dependent. While this method can be quick and easy, don't forget the logical progression from the definition of linear independence through homogeneous system of equations which makes it possible.

Example LDRN

Linearly dependent, $r<n$
Is the set of vectors

$$
S=\left\{\left[\begin{array}{c}
2 \\
-1 \\
3 \\
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
9 \\
-6 \\
-2 \\
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
4 \\
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
-2 \\
1 \\
4 \\
3 \\
2
\end{array}\right]\right\}
$$

linearly independent or linearly dependent? Theorem LIVHS 133 suggests we place these vectors into a matrix as columns and analyze the row-reduced version of the matrix,

$$
\left[\begin{array}{ccccc}
2 & 9 & 1 & -3 & 6 \\
-1 & -6 & 1 & 1 & -2 \\
3 & -2 & 1 & 4 & 1 \\
1 & 3 & 0 & 2 & 4 \\
0 & 2 & 0 & 1 & 3 \\
3 & 1 & 1 & 2 & 2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
{[1} & 0 & 0 & 0 & -1 \\
0 & \boxed{1} & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 11 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Now we need only compute that $r=4<5=n$ to recognize, via Theorem LIVHS 133 that S is a linearly dependent set. Boom!

Example LLDS

Large linearly dependent set in \mathbb{C}^{4}
Consider the set of $n=9$ vectors from \mathbb{C}^{4},

$$
R=\left\{\left[\begin{array}{c}
-1 \\
3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
7 \\
1 \\
-3 \\
6
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
-1 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
4 \\
2 \\
9
\end{array}\right],\left[\begin{array}{c}
5 \\
-2 \\
4 \\
3
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
-6 \\
4
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
5 \\
3
\end{array}\right],\left[\begin{array}{c}
-6 \\
-1 \\
1 \\
1
\end{array}\right]\right\} .
$$

To employ Theorem LIVHS 133, we form a 4×9 coefficient matrix, C,

$$
C=\left[\begin{array}{ccccccccc}
-1 & 7 & 1 & 0 & 5 & 2 & 3 & 1 & -6 \\
3 & 1 & 2 & 4 & -2 & 1 & 0 & 1 & -1 \\
1 & -3 & -1 & 2 & 4 & -6 & -3 & 5 & 1 \\
2 & 6 & -2 & 9 & 3 & 4 & 1 & 3 & 1
\end{array}\right] .
$$

To determine if the homogeneous system $\mathcal{L S}(C, \mathbf{0})$ has a unique solution or not, we would normally rowreduce this matrix. But in this particular example, we can do better. Theorem HMVEI 59 tells us that since the system is homogeneous with $n=9$ variables in $m=4$ equations, and $n>m$, there must be infinitely many solutions. Since there is not a unique solution, Theorem LIVHS 133 says the set is linearly dependent.

The situation in Example LLDS 135 is slick enough to warrant formulating as a theorem.

Theorem MVSLD

More Vectors than Size implies Linear Dependence

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is the set of vectors in \mathbb{C}^{m}, and that $n>m$. Then S is a linearly dependent set.
Proof Form the $m \times n$ coefficient matrix A that has the column vectors $\mathbf{u}_{i}, 1 \leq i \leq n$ as its columns. Consider the homogeneous system $\mathcal{L S}(A, \mathbf{0})$. By Theorem HMVEI 59 this system has infinitely many solutions. Since the system does not have a unique solution, Theorem LIVHS 133 says the columns of A form a linearly dependent set, which is the desired conclusion.

Subsection LINM
 Linear Independence and Nonsingular Matrices

We will now specialize to sets of n vectors from \mathbb{C}^{n}. This will put Theorem MVSLD 136 off-limits, while Theorem LIVHS 133 will involve square matrices. Let's begin by contrasting Archetype A 689 and Archetype B 694.

Example LDCAA

Linearly dependent columns in Archetype A

Archetype A 689 is a system of linear equations with coefficient matrix,

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Do the columns of this matrix form a linearly independent or dependent set? By Example S [67] we know that A is singular. According to the definition of nonsingular matrices, Definition NM 67, the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ has infinitely many solutions. So by Theorem LIVHS [133], the columns of A form a linearly dependent set.

Example LICAB

Linearly independent columns in Archetype B

Archetype B 694 is a system of linear equations with coefficient matrix,

$$
B=\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]
$$

Do the columns of this matrix form a linearly independent or dependent set? By Example NM 68] we know that B is nonsingular. According to the definition of nonsingular matrices, Definition NM 67, the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ has a unique solution. So by Theorem LIVHS 133, the columns of B form a linearly independent set.

That Archetype A 689] and Archetype B 694 have opposite properties for the columns of their coefficient matrices is no accident. Here's the theorem, and then we will update our equivalences for nonsingular matrices, Theorem NME1 73.

Theorem NMLIC

Nonsingular Matrices have Linearly Independent Columns

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form a linearly independent set.
Proof This is a proof where we can chain together equivalences, rather than proving the two halves separately.

$$
\begin{aligned}
A \text { nonsingular } & \Longleftrightarrow \mathcal{L S}(A, \mathbf{0}) \text { has a unique solution } & \text { Definition NM } 67 \\
& \Longleftrightarrow \text { columns of } A \text { are linearly independent } & \text { Theorem LIVHS 133 }
\end{aligned}
$$

Here's an update to Theorem NME1 73.

Theorem NME2

Nonsingular Matrix Equivalences, Round 2

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{0\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A form a linearly independent set.

Proof Theorem NMLIC 137 is yet another equivalence for a nonsingular matrix, so we can add it to the list in Theorem NME1 73.

Subsection NSSLI
 Null Spaces, Spans, Linear Independence

In Subsection SS.SSNS 116 we proved Theorem SSNS 117 which provided $n-r$ vectors that could be used with the span construction to build the entire null space of a matrix. As we have hinted in Example SCAD 119, and as we will see again going forward, linearly dependent sets carry redundant vectors with them when used in building a set as a span. Our aim now is to show that the vectors provided by Theorem SSNS 117 form a linearly independent set, so in one sense they are as efficient as possible a way to describe the null space. Notice that the vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ first appear in the vector form of solutions to arbitrary linear systems Theorem VFSLS 96]). The exact same vectors appear again in the span construction in the conclusion of Theorem SSNS [117. Since this second theorem specializes to homogeneous systems the only real difference is that the vector \mathbf{c} in Theorem VFSLS 96 is the zero vector for a homogeneous system. Finally, Theorem BNS 138 will now show that these same vectors are a linearly independent set. we'll set the stage for the proof of this theorem with a moderately large example. Study the example carefully, as it will make it easier to understand the proof.

Example LINSB

Linearly independence of null space basis

Suppose that we are interested in the null space of the a 3×7 matrix, A, which row-reduces to

$$
B=\left[\begin{array}{ccccccc}
\begin{array}{|c|c}
1 & 0 \\
0 & -2
\end{array} 4 & 0 & 3 & 9 \\
0 & \boxed{1} & 5 & 6 & 0 & 7 & 1 \\
0 & 0 & 0 & 0 & 1 & 8 & -5
\end{array}\right]
$$

The set $F=\{3,4,6,7\}$ is the set of indices for our four free variables that would be used in a description of the solution set for the homogeneous system homosystemA. Applying Theorem SSNS 117] we can begin to construct a set of four vectors whose span is the null space of A, a set of vectors we will reference as T.

$$
\left.\mathcal{N}(A)=\langle T\rangle=\left\langle\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \mathbf{z}_{4}\right\}\right\rangle=\left\langle\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

So far, we have constructed as much of these individual vectors as we can, based just on the knowledge of the contents of the set F. This has allowed us to determine the entries in slots $3,4,6$ and 7 , while we have left slots 1,2 and 5 blank. Without doing any more, lets ask if T is linearly independent? Begin with a relation of linear dependence on T, and see what we can learn about the scalars,

$$
\begin{aligned}
\mathbf{0} & =\alpha_{1} \mathbf{z}_{1}+\alpha_{2} \mathbf{z}_{2}+\alpha_{3} \mathbf{z}_{3}+\alpha_{4} \mathbf{z}_{4} \\
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] } & =\alpha_{1}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+\alpha_{2}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+\alpha_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+\alpha_{4}\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]} \\
\\
\end{array}=\left[\begin{array}{c}
\alpha_{1} \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
\alpha_{2} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
\alpha_{3} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
\alpha_{4}
\end{array}\right]=\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right]\right.
\end{aligned}
$$

Applying Definition CVE 80 to the two ends of this chain of equalities, we see that $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$. So the only relation of linear dependence on the set T is a trivial one. By Definition LICV 131 the set T is linearly independent. The important feature of this example is how the "pattern of zeros and ones" in the four vectors led to the conclusion of linear independence.

The proof of Theorem BNS 138 is really quite straightforward, and relies on the "pattern of zeros and ones" that arise in the vectors $\mathbf{z}_{i}, 1 \leq i \leq n-r$ in the entries that correspond to the free variables. Play along with Example LINSB [137] as you study the proof. Also, take a look at Example VFSAD 92, Example VFSAI 98 and Example VFSAL 100, especially at the conclusion of Step 2 (temporarily ignore the construction of the constant vector, \mathbf{c}). This proof is also a good first example of how to prove a conclusion that states a set is linearly independent.

Theorem BNS

Basis for Null Spaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r
nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ and $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$ be the sets of column indices where B does and does not (respectively) have leading 1's. Construct the $n-r$ vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ of size n as

$$
\left[\mathbf{z}_{j}\right]_{i}= \begin{cases}1 & \text { if } i \in F, i=f_{j} \\ 0 & \text { if } i \in F, i \neq f_{j} \\ -[B]_{k, f_{j}} & \text { if } i \in D, i=d_{k}\end{cases}
$$

Define the set $S=\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \ldots, \mathbf{z}_{n-r}\right\}$. Then

1. $\mathcal{N}(A)=\langle S\rangle$.
2. S is a linearly independent set.

Proof Notice first that the vectors $\mathbf{z}_{j}, 1 \leq j \leq n-r$ are exactly the same as the $n-r$ vectors defined in Theorem SSNS 117. Also, the hypotheses of Theorem SSNS 117 are the same as the hypotheses of the theorem we are currently proving. So it is then simply the conclusion of Theorem SSNS 117 that tells us that $\mathcal{N}(A)=\langle S\rangle$. That was the easy half, but the second part is not much harder. What is new here is the claim that S is a linearly independent set.

To prove the linear independence of a set, we need to start with a relation of linear dependence and somehow conclude that the scalars involved must all be zero, i.e. that the relation of linear dependence only happens in the trivial fashion. So to establish the linear independence of S, we start with

$$
\alpha_{1} \mathbf{z}_{1}+\alpha_{2} \mathbf{z}_{2}+\alpha_{3} \mathbf{z}_{3}+\cdots+\alpha_{n-r} \mathbf{z}_{n-r}=\mathbf{0}
$$

For each $j, 1 \leq j \leq n-r$, consider the equality of the individual entries of the vectors on both sides of this equality in position f_{j},

$$
\begin{aligned}
0 & =[\mathbf{0}]_{f_{j}} & & \\
& =\left[\alpha_{1} \mathbf{z}_{1}+\alpha_{2} \mathbf{z}_{2}+\alpha_{3} \mathbf{z}_{3}+\cdots+\alpha_{n-r} \mathbf{z}_{n-r}\right]_{f_{j}} & & \text { Definition CVE } 80 \\
& =\left[\alpha_{1} \mathbf{z}_{1}\right]_{f_{j}}+\left[\alpha_{2} \mathbf{z}_{2}\right]_{f_{j}}+\left[\alpha_{3} \mathbf{z}_{3}\right]_{f_{j}}+\cdots+\left[\alpha_{n-r} \mathbf{z}_{n-r}\right]_{f_{j}} & & \text { Definition CVA } 80 \\
& =\alpha_{1}\left[\mathbf{z}_{1}\right]_{f_{j}}+\alpha_{2}\left[\mathbf{z}_{2}\right]_{f_{j}}+\alpha_{3}\left[\mathbf{z}_{3}\right]_{f_{j}}+\cdots+ & & \\
& \alpha_{j-1}\left[\mathbf{z}_{j-1}\right]_{f_{j}}+\alpha_{j}\left[\mathbf{z}_{j}\right]_{f_{j}}+\alpha_{j+1}\left[\mathbf{z}_{j+1}\right]_{f_{j}}+\cdots+ & & \\
& \alpha_{n-r}\left[\mathbf{z}_{n-r}\right]_{f_{j}} & & \text { Definition CVSM } 81 \\
& =\alpha_{1}(0)+\alpha_{2}(0)+\alpha_{3}(0)+\cdots+ & & \text { Definition of } \mathbf{z}_{j}
\end{aligned}
$$

So for all $j, 1 \leq j \leq n-r$, we have $\alpha_{j}=0$, which is the conclusion that tells us that the only relation of linear dependence on $S=\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \ldots, \mathbf{z}_{n-r}\right\}$ is the trivial one, hence the set is linearly independent, as desired.

Example NSLIL

Null space spanned by linearly independent set, Archetype L
In Example VFSAL 100 we previewed Theorem SSNS 117 by finding a set of two vectors such that their span was the null space for the matrix in Archetype L 737. Writing the matrix as L, we have

$$
\mathcal{N}(L)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
2 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0 \\
1
\end{array}\right]\right\}\right\rangle .
$$

Solving the homogeneous system $\mathcal{L S}(L, \mathbf{0})$ resulted in recognizing x_{4} and x_{5} as the free variables. So look in entries 4 and 5 of the two vectors above and notice the pattern of zeros and ones that provides the linear independence of the set.

Subsection READ
 Reading Questions

1. Let S be the set of three vectors below.

$$
S=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
-4 \\
2
\end{array}\right],\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]\right\}
$$

Is S linearly independent or linearly dependent? Explain why.
2. Let S be the set of three vectors below.

$$
S=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
2
\end{array}\right],\left[\begin{array}{c}
4 \\
3 \\
-4
\end{array}\right]\right\}
$$

Is S linearly independent or linearly dependent? Explain why.
3. Based on your answer to the previous question, is the matrix below singular or nonsingular? Explain.

$$
\left[\begin{array}{ccc}
1 & 3 & 4 \\
-1 & 2 & 3 \\
0 & 2 & -4
\end{array}\right]
$$

Subsection EXC
 Exercises

Determine if the sets of vectors in Exercises C20-C25 are linearly independent or linearly dependent.
C20 $\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 5 \\ 0\end{array}\right]\right\}$
Contributed by Robert Beezer
Solution 144
C21 $\left\{\left[\begin{array}{c}-1 \\ 2 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{c}3 \\ 3 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{c}7 \\ 3 \\ -6 \\ 4\end{array}\right]\right\}$
Contributed by Robert Beezer Solution 144
$\mathbf{C} 22\left\{\left[\begin{array}{l}1 \\ 5 \\ 1\end{array}\right],\left[\begin{array}{c}6 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}9 \\ -3 \\ 8\end{array}\right],\left[\begin{array}{c}2 \\ 8 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right]\right\}$
Contributed by Robert Beezer Solution 144

$\mathbf{C} 24\left\{\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ 2 \\ -1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}4 \\ 4 \\ -2 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ -1 \\ -2 \\ 0\end{array}\right]\right\}$
Contributed by Robert Beezer
Solution 144
$\mathbf{C} 25\left\{\left[\begin{array}{c}2 \\ 1 \\ 3 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}4 \\ -2 \\ 1 \\ 3 \\ 2\end{array}\right],\left[\begin{array}{c}10 \\ -7 \\ 0 \\ 10 \\ 4\end{array}\right]\right\}$
Contributed by Robert Beezer
Solution 145
C30 For the matrix B below, find a set S that is linearly independent and spans the null space of B, that is, $\mathcal{N}(B)=\langle S\rangle$.

$$
B=\left[\begin{array}{cccc}
-3 & 1 & -2 & 7 \\
-1 & 2 & 1 & 4 \\
1 & 1 & 2 & -1
\end{array}\right]
$$

Contributed by Robert Beezer Solution 145
C31 For the matrix A below, find a linearly independent set S so that the null space of A is spanned by
S, that is, $\mathcal{N}(A)=\langle S\rangle$.

$$
A=\left[\begin{array}{ccccc}
-1 & -2 & 2 & 1 & 5 \\
1 & 2 & 1 & 1 & 5 \\
3 & 6 & 1 & 2 & 7 \\
2 & 4 & 0 & 1 & 2
\end{array}\right]
$$

Contributed by Robert Beezer Solution 145
C50 Consider each archetype that is a system of equations and consider the solutions listed for the homogeneous version of the archetype. (If only the trivial solution is listed, then assume this is the only solution to the system.) From the solution set, determine if the columns of the coefficient matrix form a linearly independent or linearly dependent set. In the case of a linearly dependent set, use one of the sample solutions to provide a nontrivial relation of linear dependence on the set of columns of the coefficient matrix (Definition RLD 305). Indicate when Theorem MVSLD 136 applies and connect this with the number of variables and equations in the system of equations.
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703 Archetype E 707
Archetype F 711

| Archetype G 716$]$ Archetype H 720 |
| :--- | :--- |

Archetype I	724

Archetype J 728
Contributed by Robert Beezer
C51 For each archetype that is a system of equations consider the homogeneous version. Write elements of the solution set in vector form (Theorem VFSLS 96) and from this extract the vectors \mathbf{z}_{j} described in Theorem BNS 138. These vectors are used in a span construction to describe the null space of the coefficient matrix for each archetype. What does it mean when we write a null space as $\langle\}\rangle$?
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703 Archetype E 707
Archetype F 711

Archetype G 716$]$	Archetype H 720

Archetype I 724]
Archetype J 728
Contributed by Robert Beezer
C52 For each archetype that is a system of equations consider the homogeneous version. Sample solutions are given and a linearly independent spanning set is given for the null space of the coefficient matrix. Write each of the sample solutions individually as a linear combination of the vectors in the spanning set for the null space of the coefficient matrix.
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703 Archetype E 707
Archetype F 711

Archetype G 716	Archetype H 720

Archetype I 724

Archetype J 728
Contributed by Robert Beezer
C60 For the matrix A below, find a set of vectors S so that (1) S is linearly independent, and (2) the span of S equals the null space of $A,\langle S\rangle=\mathcal{N}(A)$. (See Exercise SS.C60 123.)

$$
A=\left[\begin{array}{cccc}
1 & 1 & 6 & -8 \\
1 & -2 & 0 & 1 \\
-2 & 1 & -6 & 7
\end{array}\right]
$$

Contributed by Robert Beezer Solution 146
M50 Consider the set of vectors from \mathbb{C}^{3}, W, given below. Find a set T that contains three vectors from W and such that $W=\langle T\rangle$.

$$
W=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right]\right\}\right\rangle
$$

Contributed by Robert Beezer Solution 146
T10 Prove that if a set of vectors contains the zero vector, then the set is linearly dependent. (Ed. "The zero vector is death to linearly independent sets.")
Contributed by Martin Jackson
T15 Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ is a set of vectors. Prove that

$$
\left\{\mathbf{v}_{1}-\mathbf{v}_{2}, \mathbf{v}_{2}-\mathbf{v}_{3}, \mathbf{v}_{3}-\mathbf{v}_{4}, \ldots, \mathbf{v}_{n}-\mathbf{v}_{1}\right\}
$$

is a linearly dependent set.
Contributed by Robert Beezer Solution 147
T20 Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linearly independent set in \mathbb{C}^{35}. Prove that

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}+\mathbf{v}_{4}\right\}
$$

is a linearly independent set.
Contributed by Robert Beezer Solution 147
T50 Suppose that A is matrix with linearly independent columns and the linear system $\mathcal{L S}(A, \mathbf{b})$ is consistent. Show that this system has a unique solution. (Notice that we are not requiring A to be square.)
Contributed by Robert Beezer Solution 148

Subsection SOL Solutions

C20 Contributed by Robert Beezer Statement 141
With three vectors from \mathbb{C}^{3}, we can form a square matrix by making these three vectors the columns of a matrix. We do so, and row-reduce to obtain,

$$
\left[\begin{array}{ccc}
{\left[\begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
1
\end{array}\right] .\left[\begin{array}{c}
0 \\
\end{array}\right]}
\end{array}\right.
$$

the 3×3 identity matrix. So by Theorem NME2 137 the original matrix is nonsingular and its columns are therefore a linearly independent set.

C21 Contributed by Robert Beezer Statement 141
Theorem LIVRN 135 says we can answer this question by putting theses vectors into a matrix as columns and row-reducing. Doing this we obtain,

$$
\left[\begin{array}{ccc}
{[1} & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & \boxed{1} \\
0 & 0 & 0
\end{array}\right]
$$

With $n=3$ (3 vectors, 3 columns) and $r=3$ (3 leading 1's) we have $n=r$ and the theorem says the vectors are linearly independent.
C22 Contributed by Robert Beezer Statement 141
Five vectors from \mathbb{C}^{3}. Theorem MVSLD [136 says the set is linearly dependent. Boom.
C23 Contributed by Robert Beezer Statement 141 Theorem LIVRN 135 suggests we analyze a matrix whose columns are the vectors of S,

$$
A=\left[\begin{array}{cccc}
1 & 3 & 2 & 1 \\
-2 & 3 & 1 & 0 \\
2 & 1 & 2 & 1 \\
5 & 2 & -1 & 2 \\
3 & -4 & 1 & 2
\end{array}\right]
$$

Row-reducing the matrix A yields,

$$
\left[\begin{array}{cccc}
{[1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & \boxed{1} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that $r=4=n$, where r is the number of nonzero rows and n is the number of columns. By Theorem LIVRN 135, the set S is linearly independent.
C24 Contributed by Robert Beezer Statement 141
Theorem LIVRN 135 suggests we analyze a matrix whose columns are the vectors from the set,

$$
A=\left[\begin{array}{cccc}
1 & 3 & 4 & -1 \\
2 & 2 & 4 & 2 \\
-1 & -1 & -2 & -1 \\
0 & 2 & 2 & -2 \\
1 & 2 & 3 & 0
\end{array}\right]
$$

Row-reducing the matrix A yields,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 1 & 2 \\
0 & \boxed{1} & 1 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We see that $r=2 \neq 4=n$, where r is the number of nonzero rows and n is the number of columns. By Theorem LIVRN 135, the set S is linearly dependent.
C25 Contributed by Robert Beezer Statement 141
Theorem LIVRN 135 suggests we analyze a matrix whose columns are the vectors from the set,

$$
A=\left[\begin{array}{ccc}
2 & 4 & 10 \\
1 & -2 & -7 \\
3 & 1 & 0 \\
-1 & 3 & 10 \\
2 & 2 & 4
\end{array}\right]
$$

Row-reducing the matrix A yields,

$$
\left[\begin{array}{ccc}
\boxed{1} & 0 & -1 \\
0 & \boxed{1} & 3 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We see that $r=2 \neq 3=n$, where r is the number of nonzero rows and n is the number of columns. By Theorem LIVRN 135, the set S is linearly dependent.
C30 Contributed by Robert Beezer Statement 141
The requested set is described by Theorem BNS 138. It is easiest to find by using the procedure of Example VFSAL 100. Begin by row-reducing the matrix, viewing it as the coefficient matrix of a homogeneous system of equations. We obtain,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 1 & -2 \\
0 & \boxed{1} & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Now build the vector form of the solutions to this homogeneous system (Theorem VFSLS 96). The free variables are x_{3} and x_{4}, corresponding to the columns without leading 1's,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-1 \\
0 \\
1
\end{array}\right]
$$

The desired set S is simply the constant vectors in this expression, and these are the vectors \mathbf{z}_{1} and \mathbf{z}_{2} described by Theorem BNS 138 .

$$
S=\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

C31 Contributed by Robert Beezer Statement 141
Theorem BNS 138 provides formulas for $n-r$ vectors that will meet the requirements of this question.

These vectors are the same ones listed in Theorem VFSLS 96] when we solve the homogeneous system $\mathcal{L S}(A, \mathbf{0})$, whose solution set is the null space (Definition NSM 59).

To apply Theorem BNS 138 or Theorem VFSLS 96 we first row-reduce the matrix, resulting in

$$
B=\left[\begin{array}{ccccc}
\boxed{1} & 2 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 6 \\
0 & 0 & 0 & \boxed{1} & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So we see that $n-r=5-3=2$ and $F=\{2,5\}$, so the vector form of a generic solution vector is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-3 \\
0 \\
-6 \\
4 \\
1
\end{array}\right]
$$

So we have

$$
\mathcal{N}(A)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
-6 \\
4 \\
1
\end{array}\right]\right\}\right.
$$

C60 Contributed by Robert Beezer Statement 143
Theorem BNS 138 says that if we find the vector form of the solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$, then the fixed vectors (one per free variable) will have the desired properties. Row-reduce A, viewing it as the augmented matrix of a homogeneous system with an invisible columns of zeros as the last column,

$$
\left[\begin{array}{cccc}
1 & 0 & 4 & -5 \\
0 & \boxed{1} & 2 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Moving to the vector form of the solutions Theorem VFSLS (96]), with free variables x_{3} and x_{4}, solutions to the consistent system (it is homogeneous, Theorem HSC (57) can be expressed as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-4 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
5 \\
3 \\
0 \\
1
\end{array}\right]
$$

Then with S given by

$$
S=\left\{\left[\begin{array}{c}
-4 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
5 \\
3 \\
0 \\
1
\end{array}\right]\right\}
$$

Theorem BNS 138 guarantees the set has the desired properties.
M50 Contributed by Robert Beezer Statement 143
We want to first find some relations of linear dependence on $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$ that will allow us to "kick out" some vectors, in the spirit of Example SCAD 119. To find relations of linear dependence, we formulate a matrix A whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$. Then we consider the homogeneous sytem of
equations $\mathcal{L S}(A, \mathbf{0})$ by row-reducing its coefficient matrix (remember that if we formulated the augmented matrix we would just add a column of zeros). After row-reducing, we obtain

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 2 & -1 \\
0 & \boxed{1} & 0 & 1 & -2 \\
0 & 0 & \boxed{1} & 0 & 0
\end{array}\right]
$$

From this we that solutions can be obtained employing the free variables x_{4} and x_{5}. With appropriate choices we will be able to conclude that vectors \mathbf{v}_{4} and \mathbf{v}_{5} are unnecessary for creating W via a span. By Theorem SLSLC 90 the choice of free variables below lead to solutions and linear combinations, which are then rearranged.

$$
\begin{array}{rlrlr}
x_{4}=1, x_{5}=0 & \Rightarrow & (-2) \mathbf{v}_{1}+(-1) \mathbf{v}_{2}+(0) \mathbf{v}_{3}+(1) \mathbf{v}_{4}+(0) \mathbf{v}_{5}=\mathbf{0} & \Rightarrow & \mathbf{v}_{4}=2 \mathbf{v}_{1}+\mathbf{v}_{2} \\
x_{4}=0, x_{5}=1 & \Rightarrow & (1) \mathbf{v}_{1}+(2) \mathbf{v}_{2}+(0) \mathbf{v}_{3}+(0) \mathbf{v}_{4}+(1) \mathbf{v}_{5}=\mathbf{0} & \Rightarrow & \mathbf{v}_{5}=-\mathbf{v}_{1}-2 \mathbf{v}_{2}
\end{array}
$$

Since \mathbf{v}_{4} and \mathbf{v}_{5} can be expressed as linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2} we can say that \mathbf{v}_{4} and \mathbf{v}_{5} are not needed for the linear combinations used to build W (a claim that we could establish carefully with a pair of set equality arguments). Thus

$$
W=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}\right\rangle
$$

That the $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent set can be established quickly with Theorem LIVRN 135 .
There are other answers to this question, but notice that any nontrivial linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$ will have a zero coefficient on \mathbf{v}_{3}, so this vector can never be eliminated from the set used to build the span.
T15 Contributed by Robert Beezer Statement 143
Consider the following linear combination

$$
\begin{aligned}
1\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)+ & \left(\mathbf{v}_{2}-\mathbf{v}_{3}\right)+1\left(\mathbf{v}_{3}-\mathbf{v}_{4}\right)+\cdots+1\left(\mathbf{v}_{n}-\mathbf{v}_{1}\right) \\
& =\mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{2}-\mathbf{v}_{3}+\mathbf{v}_{3}-\mathbf{v}_{4}+\cdots+\mathbf{v}_{n}-\mathbf{v}_{1} \\
& =\mathbf{v}_{1}+\mathbf{0}+\mathbf{0}+\cdots+\mathbf{0}-\mathbf{v}_{1} \\
& =\mathbf{0}
\end{aligned}
$$

This is a nontrivial relation of linear dependence (Definition RLDCV 131), so by Definition LICV 131 the set is linearly dependent.

T20 Contributed by Robert Beezer Statement 143
Our hypothesis and our conclusion use the term linear independence, so it will get a workout. To establish linear independence, we begin with the definition (Definition LICV 131) and write a relation of linear dependence (Definition RLDCV 131),

$$
\alpha_{1}\left(\mathbf{v}_{1}\right)+\alpha_{2}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+\alpha_{3}\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right)+\alpha_{4}\left(\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}+\mathbf{v}_{4}\right)=\mathbf{0}
$$

Using the distributive and commutative properties of vector addition and scalar multiplication Theorem VSPCV 82) this equation can be rearranged as

$$
\left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right) \mathbf{v}_{1}+\left(\alpha_{2}+\alpha_{3}+\alpha_{4}\right) \mathbf{v}_{2}+\left(\alpha_{3}+\alpha_{4}\right) \mathbf{v}_{3}+\left(\alpha_{4}\right) \mathbf{v}_{4}=\mathbf{0}
$$

However, this is a relation of linear dependence (Definition RLDCV 131) on a linearly independent set, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ (this was our lone hypothesis). By the definition of linear independence Definition LICV [131) the scalars must all be zero. This is the homogeneous system of equations,

$$
\begin{aligned}
\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} & =0 \\
\alpha_{2}+\alpha_{3}+\alpha_{4} & =0 \\
\alpha_{3}+\alpha_{4} & =0 \\
\alpha_{4} & =0
\end{aligned}
$$

Row-reducing the coefficient matrix of this system (or backsolving) gives the conclusion

$$
\begin{array}{cccc}
\alpha_{1}=0 & \alpha_{2}=0 & \alpha_{3}=0 & \alpha_{4}=0
\end{array}
$$

This means, by Definition LICV 131, that the original set

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}+\mathbf{v}_{4}\right\}
$$

is linearly independent.
T50 Contributed by Robert Beezer Statement 143
Let $A=\left[\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{A}_{3}|\ldots| \mathbf{A}_{n}\right] . \mathcal{L S}(A, \mathbf{b})$ is consistent, so we know the system has at least one solution (Definition CS [47). We would like to show that there are no more than one solution to the system. Employing Technique U 678, suppose that \mathbf{x} and \mathbf{y} are two solution vectors for $\mathcal{L S}(A, \mathbf{b})$. By Theorem SLSLC 90 we know we can write,

$$
\begin{aligned}
\mathbf{b} & =[\mathbf{x}]_{1} A_{1}+[\mathbf{x}]_{2} A_{2}+[\mathbf{x}]_{3} A_{3}+\cdots+[\mathbf{x}]_{n} A_{n} \\
\mathbf{b} & =[\mathbf{y}]_{1} A_{1}+[\mathbf{y}]_{2} A_{2}+[\mathbf{y}]_{3} A_{3}+\cdots+[\mathbf{y}]_{n} A_{n}
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbf{0} & =\mathbf{b}-\mathbf{b} \\
& =\left([\mathbf{x}]_{1} A_{1}+[\mathbf{x}]_{2} A_{2}+[\mathbf{x}]_{3} A_{3}+\cdots+[\mathbf{x}]_{n} A_{n}\right)- \\
& \left([\mathbf{y}]_{1} A_{1}+[\mathbf{y}]_{2} A_{2}+[\mathbf{y}]_{3} A_{3}+\cdots+[\mathbf{y}]_{n} A_{n}\right) \\
& =\left([\mathbf{x}]_{1}-[\mathbf{y}]_{1}\right) A_{1}+\left([\mathbf{x}]_{2}-[\mathbf{y}]_{2}\right) A_{2}+\cdots+\left([\mathbf{x}]_{n}-[\mathbf{y}]_{n}\right) A_{n}
\end{aligned}
$$

This is a relation of linear dependence Definition RLDCV (131) on a linearly independent set (the columns of A). So the scalars must all be zero,

$$
[\mathbf{x}]_{1}-[\mathbf{y}]_{1}=0 \quad[\mathbf{x}]_{2}-[\mathbf{y}]_{2}=0 \quad \ldots \quad[\mathbf{x}]_{n}-[\mathbf{y}]_{n}=0
$$

Rearranging these equations yields the statement that $[\mathbf{x}]_{i}=[\mathbf{y}]_{i}$, for $1 \leq i \leq n$. However, this is exactly how we define vector equality (Definition CVE 80), so $\mathbf{x}=\mathbf{y}$.

Section LDS
 Linear Dependence and Spans

In any linearly dependent set there is always one vector that can be written as a linear combination of the others. This is the substance of the upcoming Theorem DLDS 149. Perhaps this will explain the use of the word "dependent." In a linearly dependent set, at least one vector "depends" on the others (via a linear combination).

Indeed, because Theorem DLDS 149 is an equivalence (Technique E 676) some authors use this condition as a definition (Technique D (673) of linear dependence. Then linear independence is defined as the logical opposite of linear dependence. Of course, we have chosen to take Definition LICV 131 as our definition, and then present Theorem DLDS 149 as a theorem.

Subsection LDSS
 Linearly Dependent Sets and Spans

If we use a linearly dependent set to construct a span, then we can always create the same infinite set with a starting set that is one vector smaller in size. We will illustrate this behavior in Example RSC5 150. However, this will not be possible if we build a span from a linearly independent set. So in a certain sense, using a linearly independent set to formulate a span is the best possible way to go about it - there aren't any extra vectors being used to build up all the necessary linear combinations. OK, here's the theorem, and then the example.

Theorem DLDS

Dependency in Linearly Dependent Sets

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a set of vectors. Then S is a linearly dependent set if and only if there is an index $t, 1 \leq t \leq n$ such that $\mathbf{u}_{\mathbf{t}}$ is a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t-1}, \mathbf{u}_{t+1}, \ldots, \mathbf{u}_{n}$.

Proof (\Rightarrow) Suppose that S is linearly dependent, so there is a nontrivial relation of linear dependence,

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}=\mathbf{0}
$$

Since the α_{i} cannot all be zero, choose one, say α_{t}, that is nonzero. Then,

$$
-\alpha_{t} \mathbf{u}_{t}=\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t-1} \mathbf{u}_{t-1}+\alpha_{t+1} \mathbf{u}_{t+1}+\cdots+\alpha_{n} \mathbf{u}_{n}
$$

and we can multiply by $\frac{-1}{\alpha_{t}}$ since $\alpha_{t} \neq 0$,

$$
\mathbf{u}_{t}=\frac{-\alpha_{1}}{\alpha_{t}} \mathbf{u}_{1}+\frac{-\alpha_{2}}{\alpha_{t}} \mathbf{u}_{2}+\frac{-\alpha_{3}}{\alpha_{t}} \mathbf{u}_{3}+\cdots+\frac{-\alpha_{t-1}}{\alpha_{t}} \mathbf{u}_{t-1}+\frac{-\alpha_{t+1}}{\alpha_{t}} \mathbf{u}_{t+1}+\cdots+\frac{-\alpha_{n}}{\alpha_{t}} \mathbf{u}_{n} .
$$

Since the values of $\frac{\alpha_{i}}{\alpha_{t}}$ are again scalars, we have expressed \mathbf{u}_{t} as the desired linear combination.
(\Leftarrow) Suppose that the vector \mathbf{u}_{t} is a linear combination of the other vectors in S. Write this linear combination as

$$
\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\beta_{3} \mathbf{u}_{3}+\cdots+\beta_{t-1} \mathbf{u}_{t-1}+\beta_{t+1} \mathbf{u}_{t+1}+\cdots+\beta_{n} \mathbf{u}_{n}=\mathbf{u}_{\mathbf{t}}
$$

and move \mathbf{u}_{t} to the other side of the equality

$$
\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\beta_{3} \mathbf{u}_{3}+\cdots+\beta_{t-1} \mathbf{u}_{t-1}+(-1) \mathbf{u}_{t}+\beta_{t+1} \mathbf{u}_{t+1}+\cdots+\beta_{n} \mathbf{u}_{n}=\mathbf{0} .
$$

Then the scalars $\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{t-1}, \beta_{t}=-1, \beta_{t+1}, \ldots, \beta_{n}$ provide a nontrivial linear combination of the vectors in S, thus establishing that S is a linearly dependent set.

This theorem can be used, sometimes repeatedly, to whittle down the size of a set of vectors used in a span construction. We have seen some of this already in Example SCAD 119, but in the next example we will detail some of the subtleties.

Example RSC5

Reducing a span in \mathbb{C}^{5}
Consider the set of $n=4$ vectors from \mathbb{C}^{5},

$$
R=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
-7 \\
6 \\
-11 \\
-2
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
2 \\
1 \\
6
\end{array}\right]\right\}
$$

and define $V=\langle R\rangle$.
To employ Theorem LIVHS 133, we form a 5×4 coefficient matrix, D,

$$
D=\left[\begin{array}{cccc}
1 & 2 & 0 & 4 \\
2 & 1 & -7 & 1 \\
-1 & 3 & 6 & 2 \\
3 & 1 & -11 & 1 \\
2 & 2 & -2 & 6
\end{array}\right]
$$

and row-reduce to understand solutions to the homogeneous system $\mathcal{L S}(D, \mathbf{0})$,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 4 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

We can find infinitely many solutions to this system, most of them nontrivial, and we choose any one we like to build a relation of linear dependence on R. Let's begin with $x_{4}=1$, to find the solution

$$
\left[\begin{array}{c}
-4 \\
0 \\
-1 \\
1
\end{array}\right]
$$

So we can write the relation of linear dependence,

$$
(-4) \mathbf{v}_{1}+0 \mathbf{v}_{2}+(-1) \mathbf{v}_{3}+1 \mathbf{v}_{4}=\mathbf{0}
$$

Theorem DLDS 149 guarantees that we can solve this relation of linear dependence for some vector in R, but the choice of which one is up to us. Notice however that \mathbf{v}_{2} has a zero coefficient. In this case, we cannot choose to solve for \mathbf{v}_{2}. Maybe some other relation of linear dependence would produce a nonzero coefficient for \mathbf{v}_{2} if we just had to solve for this vector. Unfortunately, this example has been engineered to always produce a zero coefficient here, as you can see from solving the homogeneous system. Every solution has $x_{2}=0$!

OK, if we are convinced that we cannot solve for \mathbf{v}_{2}, let's instead solve for \mathbf{v}_{3},

$$
\mathbf{v}_{3}=(-4) \mathbf{v}_{1}+0 \mathbf{v}_{2}+1 \mathbf{v}_{4}=(-4) \mathbf{v}_{1}+1 \mathbf{v}_{4} .
$$

We now claim that this particular equation will allow us to write

$$
V=\langle R\rangle=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}\right\rangle=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}\right\rangle
$$

in essence declaring \mathbf{v}_{3} as surplus for the task of building V as a span. This claim is an equality of two sets, so we will use Definition SE 670 to establish it carefully. Let $R^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ and $V^{\prime}=\left\langle R^{\prime}\right\rangle$. We want to show that $V=V^{\prime}$.

First show that $V^{\prime} \subseteq V$. Since every vector of R^{\prime} is in R, any vector we can construct in V^{\prime} as a linear combination of vectors from R^{\prime} can also be constructed as a vector in V by the same linear combination of the same vectors in R. That was easy, now turn it around.

Next show that $V \subseteq V^{\prime}$. Choose any \mathbf{v} from V. Then there are scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ so that

$$
\begin{aligned}
\mathbf{v} & =\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}+\alpha_{4} \mathbf{v}_{4} \\
& =\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3}\left((-4) \mathbf{v}_{1}+1 \mathbf{v}_{4}\right)+\alpha_{4} \mathbf{v}_{4} \\
& =\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\left(\left(-4 \alpha_{3}\right) \mathbf{v}_{1}+\alpha_{3} \mathbf{v}_{4}\right)+\alpha_{4} \mathbf{v}_{4} \\
& =\left(\alpha_{1}-4 \alpha_{3}\right) \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\left(\alpha_{3}+\alpha_{4}\right) \mathbf{v}_{4} .
\end{aligned}
$$

This equation says that \mathbf{v} can then be written as a linear combination of the vectors in R^{\prime} and hence qualifies for membership in V^{\prime}. So $V \subseteq V^{\prime}$ and we have established that $V=V^{\prime}$.

If R^{\prime} was also linearly dependent (its not), we could reduce the set even further. Notice that we could have chosen to eliminate any one of $\mathbf{v}_{1}, \mathbf{v}_{3}$ or \mathbf{v}_{4}, but somehow \mathbf{v}_{2} is essential to the creation of V since it cannot be replaced by any linear combination of $\mathbf{v}_{1}, \mathbf{v}_{3}$ or \mathbf{v}_{4}.

Subsection COV
 Casting Out Vectors

In Example RSC5 150 we used four vectors to create a span. With a relation of linear dependence in hand, we were able to "toss-out" one of these four vectors and create the same span from a subset of just three vectors from the original set of four. We did have to take some care as to just which vector we tossed-out. In the next example, we will be more methodical about just how we choose to eliminate vectors from a linearly dependent set while preserving a span.

Example COV

Casting out vectors

We begin with a set S containing seven vectors from \mathbb{C}^{4},

$$
S=\left\{\left[\begin{array}{c}
1 \\
2 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
4 \\
8 \\
0 \\
-4
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
-3 \\
4
\end{array}\right],\left[\begin{array}{c}
0 \\
9 \\
-4 \\
8
\end{array}\right],\left[\begin{array}{c}
7 \\
-13 \\
12 \\
-31
\end{array}\right],\left[\begin{array}{c}
-9 \\
7 \\
-8 \\
37
\end{array}\right]\right\}
$$

and define $W=\langle S\rangle$. The set S is obviously linearly dependent by Theorem MVSLD 136, since we have $n=7$ vectors from \mathbb{C}^{4}. So we can slim down S some, and still create W as the span of a smaller set of vectors. As a device for identifying relations of linear dependence among the vectors of S, we place the seven column vectors of S into a matrix as columns,

$$
A=\left[\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{A}_{3}|\ldots| \mathbf{A}_{7}\right]=\left[\begin{array}{ccccccc}
1 & 4 & 0 & -1 & 0 & 7 & -9 \\
2 & 8 & -1 & 3 & 9 & -13 & 7 \\
0 & 0 & 2 & -3 & -4 & 12 & -8 \\
-1 & -4 & 2 & 4 & 8 & -31 & 37
\end{array}\right]
$$

By Theorem SLSLC 90 a nontrivial solution to $\mathcal{L S}(A, \mathbf{0})$ will give us a nontrivial relation of linear dependence (Definition RLDCV 131) on the columns of A (which are the elements of the set S). The row-reduced form for A is the matrix

$$
B=\left[\begin{array}{ccccccc}
\boxed{1} & 4 & 0 & 0 & 2 & 1 & -3 \\
0 & 0 & \boxed{1} & 0 & 1 & -3 & 5 \\
0 & 0 & 0 & \boxed{1} & 2 & -6 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so we can easily create solutions to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$ using the free variables $x_{2}, x_{5}, x_{6}, x_{7}$. Any such solution will correspond to a relation of linear dependence on the columns of I. These solutions will allow us to solve for one column vector as a linear combination of some others, in the spirit of Theorem DLDS (149, and remove that vector from the set. We'll set about forming these linear combinations methodically. Set the free variable x_{2} to one, and set the other free variables to zero. Then a solution to $\mathcal{L S}(A, \mathbf{0})$ is

$$
\mathbf{x}=\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

which can be used to create the linear combination

$$
(-4) \mathbf{A}_{1}+1 \mathbf{A}_{2}+0 \mathbf{A}_{3}+0 \mathbf{A}_{4}+0 \mathbf{A}_{5}+0 \mathbf{A}_{6}+0 \mathbf{A}_{7}=\mathbf{0}
$$

This can then be arranged and solved for \mathbf{A}_{2}, resulting in \mathbf{A}_{2} expressed as a linear combination of $\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}\right\}$,

$$
\mathbf{A}_{2}=4 \mathbf{A}_{1}+0 \mathbf{A}_{3}+0 \mathbf{A}_{4}
$$

This means that \mathbf{A}_{2} is surplus, and we can create W just as well with a smaller set with this vector removed,

$$
W=\left\langle\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}, \mathbf{A}_{5}, \mathbf{A}_{6}, \mathbf{A}_{7}\right\}\right\rangle
$$

Technically, this set equality for W requires a proof, in the spirit of Example RSC5 150, but we will bypass this requirement here, and in the next few paragraphs.

Now, set the free variable x_{5} to one, and set the other free variables to zero. Then a solution to $\mathcal{L S}(I, \mathbf{0})$ is

$$
\mathbf{x}=\left[\begin{array}{c}
-2 \\
0 \\
-1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]
$$

which can be used to create the linear combination

$$
(-2) \mathbf{A}_{1}+0 \mathbf{A}_{2}+(-1) \mathbf{A}_{3}+(-2) \mathbf{A}_{4}+1 \mathbf{A}_{5}+0 \mathbf{A}_{6}+0 \mathbf{A}_{7}=\mathbf{0}
$$

This can then be arranged and solved for \mathbf{A}_{5}, resulting in \mathbf{A}_{5} expressed as a linear combination of $\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}\right\}$,

$$
\mathbf{A}_{5}=2 \mathbf{A}_{1}+1 \mathbf{A}_{3}+2 \mathbf{A}_{4}
$$

This means that \mathbf{A}_{5} is surplus, and we can create W just as well with a smaller set with this vector removed,

$$
W=\left\langle\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}, \mathbf{A}_{6}, \mathbf{A}_{7}\right\}\right\rangle
$$

Do it again, set the free variable x_{6} to one, and set the other free variables to zero. Then a solution to $\mathcal{L S}(I, \mathbf{0})$ is

$$
\mathbf{x}=\left[\begin{array}{c}
-1 \\
0 \\
3 \\
6 \\
0 \\
1 \\
0
\end{array}\right]
$$

which can be used to create the linear combination

$$
(-1) \mathbf{A}_{1}+0 \mathbf{A}_{2}+3 \mathbf{A}_{3}+6 \mathbf{A}_{4}+0 \mathbf{A}_{5}+1 \mathbf{A}_{6}+0 \mathbf{A}_{7}=\mathbf{0}
$$

This can then be arranged and solved for \mathbf{A}_{6}, resulting in \mathbf{A}_{6} expressed as a linear combination of $\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}\right\}$,

$$
\mathbf{A}_{6}=1 \mathbf{A}_{1}+(-3) \mathbf{A}_{3}+(-6) \mathbf{A}_{4}
$$

This means that \mathbf{A}_{6} is surplus, and we can create W just as well with a smaller set with this vector removed,

$$
W=\left\langle\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}, \mathbf{A}_{7}\right\}\right\rangle
$$

Set the free variable x_{7} to one, and set the other free variables to zero. Then a solution to $\mathcal{L S}(I, \mathbf{0})$ is

$$
\mathbf{x}=\left[\begin{array}{c}
3 \\
0 \\
-5 \\
-6 \\
0 \\
0 \\
1
\end{array}\right]
$$

which can be used to create the linear combination

$$
3 \mathbf{A}_{1}+0 \mathbf{A}_{2}+(-5) \mathbf{A}_{3}+(-6) \mathbf{A}_{4}+0 \mathbf{A}_{5}+0 \mathbf{A}_{6}+1 \mathbf{A}_{7}=\mathbf{0}
$$

This can then be arranged and solved for \mathbf{A}_{7}, resulting in \mathbf{A}_{7} expressed as a linear combination of $\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}\right\}$,

$$
\mathbf{A}_{7}=(-3) \mathbf{A}_{1}+5 \mathbf{A}_{3}+6 \mathbf{A}_{4}
$$

This means that \mathbf{A}_{7} is surplus, and we can create W just as well with a smaller set with this vector removed,

$$
W=\left\langle\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}\right\}\right\rangle
$$

You might think we could keep this up, but we have run out of free variables. And not coincidentally, the set $\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}\right\}$ is linearly independent (check this!). It should be clear how each free variable was used to eliminate the corresponding column from the set used to span the column space, as this will be the essence of the proof of the next theorem. The column vectors in S were not chosen entirely at random, they are the columns of Archetype I 724. See if you can mimic this example using the columns of Archetype J 728. Go ahead, we'll go grab a cup of coffee and be back before you finish up.

For extra credit, notice that the vector

$$
\mathbf{b}=\left[\begin{array}{l}
3 \\
9 \\
1 \\
4
\end{array}\right]
$$

is the vector of constants in the definition of Archetype I 724. Since the system $\mathcal{L S}(I, \mathbf{b})$ is consistent, we know by Theorem SLSLC 90 that \mathbf{b} is a linear combination of the columns of A, or stated equivalently, $\mathbf{b} \in W$. This means that \mathbf{b} must also be a linear combination of just the three columns $\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}$. Can you find such a linear combination? Did you notice that there is just a single (unique) answer? Hmmmm.

Example COV 151 deserves your careful attention, since this important example motivates the following very fundamental theorem.

Theorem BS

Basis of a Span

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ is a set of column vectors. Define $W=\langle S\rangle$ and let A be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of A, with $D=$ $\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ the set of column indices corresponding to the pivot columns of B. Then

1. $T=\left\{\mathbf{v}_{d_{1}}, \mathbf{v}_{d_{2}}, \mathbf{v}_{d_{3}}, \ldots \mathbf{v}_{d_{r}}\right\}$ is a linearly independent set.
2. $W=\langle T\rangle$.

Proof To prove that T is linearly independent, begin with a relation of linear dependence on T,

$$
\mathbf{0}=\alpha_{1} \mathbf{v}_{d_{1}}+\alpha_{2} \mathbf{v}_{d_{2}}+\alpha_{3} \mathbf{v}_{d_{3}}+\ldots+\alpha_{r} \mathbf{v}_{d_{r}}
$$

and we will try to conclude that the only possibility for the scalars α_{i} is that they are all zero. Denote the non-pivot columns of B by $F=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-r}\right\}$. Then we can preserve the equality by adding a big fat zero to the linear combination,

$$
\mathbf{0}=\alpha_{1} \mathbf{v}_{d_{1}}+\alpha_{2} \mathbf{v}_{d_{2}}+\alpha_{3} \mathbf{v}_{d_{3}}+\ldots+\alpha_{r} \mathbf{v}_{d_{r}}+0 \mathbf{v}_{f_{1}}+0 \mathbf{v}_{f_{2}}+0 \mathbf{v}_{f_{3}}+\ldots+0 \mathbf{v}_{f_{n-r}}
$$

By Theorem SLSLC 90, the scalars in this linear combination (suitably reordered) are a solution to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$. But notice that this is the solution obtained by setting each free variable to zero. If we consider the description of a solution vector in the conclusion of Theorem VFSLS 96, in the case of a homogeneous system, then we see that if all the free variables are set to zero the resulting solution vector is trivial (all zeros). So it must be that $\alpha_{i}=0,1 \leq i \leq r$. This implies by Definition LICV 131 that T is a linearly independent set.

The second conclusion of this theorem is an equality of sets (Definition SE 670). Since T is a subset of S, any linear combination of elements of the set T can also be viewed as a linear combination of elements of the set S. So $\langle T\rangle \subseteq\langle S\rangle=W$. It remains to prove that $W=\langle S\rangle \subseteq\langle T\rangle$.

For each $k, 1 \leq k \leq n-r$, form a solution \mathbf{x} to $\mathcal{L S}(A, \mathbf{0})$ by setting the free variables as follows:

$$
\begin{array}{ccccccc}
x_{f_{1}}=0 & x_{f_{2}}=0 & x_{f_{3}}=0 & \ldots & x_{f_{k}}=1 & \ldots & x_{f_{n-r}}=0
\end{array}
$$

By Theorem VFSLS 96, the remainder of this solution vector is given by,

$$
x_{d_{1}}=-[B]_{1, f_{k}} \quad x_{d_{2}}=-[B]_{2, f_{k}} \quad x_{d_{3}}=-[B]_{3, f_{k}} \quad \ldots \quad x_{d_{r}}=-[B]_{r, f_{k}}
$$

From this solution, we obtain a relation of linear dependence on the columns of A,

$$
-[B]_{1, f_{k}} \mathbf{v}_{d_{1}}-[B]_{2, f_{k}} \mathbf{v}_{d_{2}}-[B]_{3, f_{k}} \mathbf{v}_{d_{3}}-\ldots-[B]_{r, f_{k}} \mathbf{v}_{d_{r}}+1 \mathbf{v}_{f_{k}}=\mathbf{0}
$$

which can be arranged as the equality

$$
\mathbf{v}_{f_{k}}=[B]_{1, f_{k}} \mathbf{v}_{d_{1}}+[B]_{2, f_{k}} \mathbf{v}_{d_{2}}+[B]_{3, f_{k}} \mathbf{v}_{d_{3}}+\ldots+[B]_{r, f_{k}} \mathbf{v}_{d_{r}}
$$

Now, suppose we take an arbitrary element, \mathbf{w}, of $W=\langle S\rangle$ and write it as a linear combination of the elements of S, but with the terms organized according to the indices in D and F,

$$
\mathbf{w}=\alpha_{1} \mathbf{v}_{d_{1}}+\alpha_{2} \mathbf{v}_{d_{2}}+\alpha_{3} \mathbf{v}_{d_{3}}+\ldots+\alpha_{r} \mathbf{v}_{d_{r}}+\beta_{1} \mathbf{v}_{f_{1}}+\beta_{2} \mathbf{v}_{f_{2}}+\beta_{3} \mathbf{v}_{f_{3}}+\ldots+\beta_{n-r} \mathbf{v}_{f_{n-r}}
$$

From the above, we can replace each $\mathbf{v}_{f_{j}}$ by a linear combination of the $\mathbf{v}_{d_{i}}$,

$$
\begin{aligned}
& \mathbf{w}=\alpha_{1} \mathbf{v}_{d_{1}}+\alpha_{2} \mathbf{v}_{d_{2}}+\alpha_{3} \mathbf{v}_{d_{3}}+\ldots+\alpha_{r} \mathbf{v}_{d_{r}}+ \\
& \quad \beta_{1}\left([B]_{1, f_{1}} \mathbf{v}_{d_{1}}+[B]_{2, f_{1}} \mathbf{v}_{d_{2}}+[B]_{3, f_{1}} \mathbf{v}_{d_{3}}+\ldots+[B]_{r, f_{1}} \mathbf{v}_{d_{r}}\right)+ \\
& \beta_{2}\left([B]_{1, f_{2}} \mathbf{v}_{d_{1}}+[B]_{2, f_{2}} \mathbf{v}_{d_{2}}+[B]_{3, f_{2}} \mathbf{v}_{d_{3}}+\ldots+[B]_{r, f_{2}} \mathbf{v}_{d_{r}}\right)+ \\
& \beta_{3}\left([B]_{1, f_{3}} \mathbf{v}_{d_{1}}+[B]_{2, f_{3}} \mathbf{v}_{d_{2}}+[B]_{3, f_{3}} \mathbf{v}_{d_{3}}+\ldots+[B]_{r, f_{3}} \mathbf{v}_{d_{r}}\right)+ \\
& \quad \vdots \\
& \quad \beta_{n-r}\left([B]_{1, f_{n-r}} \mathbf{v}_{d_{1}}+[B]_{2, f_{n-r}} \mathbf{v}_{d_{2}}+[B]_{3, f_{n-r}} \mathbf{v}_{d_{3}}+\ldots+[B]_{r, f_{n-r}} \mathbf{v}_{d_{r}}\right)
\end{aligned}
$$

With repeated applications of several of the properties of Theorem VSPCV 82 we can rearrange this expression as,

$$
\begin{aligned}
&=\left(\alpha_{1}+\beta_{1}[B]_{1, f_{1}}+\beta_{2}[B]_{1, f_{2}}+\beta_{3}[B]_{1, f_{3}}+\ldots+\beta_{n-r}[B]_{1, f_{n-r}}\right) \mathbf{v}_{d_{1}}+ \\
&\left(\alpha_{2}+\beta_{1}[B]_{2, f_{1}}+\beta_{2}[B]_{2, f_{2}}+\beta_{3}[B]_{2, f_{3}}+\ldots+\beta_{n-r}[B]_{2, f_{n-r}}\right) \mathbf{v}_{d_{2}}+ \\
&\left(\alpha_{3}+\beta_{1}[B]_{3, f_{1}}+\beta_{2}[B]_{3, f_{2}}+\beta_{3}[B]_{3, f_{3}}+\ldots+\beta_{n-r}[B]_{3, f_{n-r}}\right) \mathbf{v}_{d_{3}}+ \\
& \quad \vdots \\
&\left(\alpha_{r}+\beta_{1}[B]_{r, f_{1}}+\beta_{2}[B]_{r, f_{2}}+\beta_{3}[B]_{r, f_{3}}+\ldots+\beta_{n-r}[B]_{r, f_{n-r}}\right) \mathbf{v}_{d_{r}}
\end{aligned}
$$

This mess expresses the vector \mathbf{w} as a linear combination of the vectors in

$$
T=\left\{\mathbf{v}_{d_{1}}, \mathbf{v}_{d_{2}}, \mathbf{v}_{d_{3}}, \ldots \mathbf{v}_{d_{r}}\right\}
$$

thus saying that $\mathbf{w} \in\langle T\rangle$. Therefore, $W=\langle S\rangle \subseteq\langle T\rangle$.
In Example COV 151, we tossed-out vectors one at a time. But in each instance, we rewrote the offending vector as a linear combination of those vectors that corresponded to the pivot columns of the reduced row-echelon form of the matrix of columns. In the proof of Theorem BS 154 , we accomplish this reduction in one big step. In Example COV 151 we arrived at a linearly independent set at exactly the same moment that we ran out of free variables to exploit. This was not a coincidence, it is the substance of our conclusion of linear independence in Theorem BS 154.

Here's a straightfoward application of Theorem BS 154.

Example RSSC4

Reducing a span in \mathbb{C}^{4}
Begin with a set of five vectors from \mathbb{C}^{4},

$$
S=\left\{\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
4 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
7 \\
1 \\
-1 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
5 \\
1
\end{array}\right]\right\}
$$

and let $W=\langle S\rangle$. To arrive at a (smaller) linearly independent set, follow the procedure described in Theorem BS 154. Place the vectors from S into a matrix as columns, and row-reduce,

$$
\left[\begin{array}{ccccc}
1 & 2 & 2 & 7 & 0 \\
1 & 2 & 0 & 1 & 2 \\
2 & 4 & -1 & -1 & 5 \\
1 & 2 & 1 & 4 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
{[1} & 2 & 0 & 1 & 2 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Columns 1 and 3 are the pivot columns ($D=\{1,3\}$) so the set

$$
T=\left\{\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

is linearly independent and $\langle T\rangle=\langle S\rangle=W$. Boom!
Since the reduced row-echelon form of a matrix is unique (Theorem RREFU 104), the procedure of Theorem BS 154 leads us to a unique set T. However, there is a wide variety of possibilites for sets T that are linearly independent and which can be employed in a span to create W. Without proof, we list two other possibilities:

$$
\begin{aligned}
& T^{\prime}=\left\{\left[\begin{array}{l}
2 \\
2 \\
4 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
-1 \\
1
\end{array}\right]\right\} \\
& T^{*}=\left\{\left[\begin{array}{l}
3 \\
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
3 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

Can you prove that T^{\prime} and T^{*} are linearly independent sets and $W=\langle S\rangle=\left\langle T^{\prime}\right\rangle=\left\langle T^{*}\right\rangle$?

Example RES

Reworking elements of a span

Begin with a set of five vectors from \mathbb{C}^{4},

$$
R=\left\{\left[\begin{array}{l}
2 \\
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
-8 \\
-1 \\
-9 \\
-4
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
-1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-10 \\
-1 \\
-1 \\
4
\end{array}\right]\right\}
$$

It is easy to create elements of $X=\langle R\rangle$ - we will create one at random,

$$
\mathbf{y}=6\left[\begin{array}{l}
2 \\
1 \\
3 \\
2
\end{array}\right]+(-7)\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]+1\left[\begin{array}{l}
-8 \\
-1 \\
-9 \\
-4
\end{array}\right]+6\left[\begin{array}{c}
3 \\
1 \\
-1 \\
-2
\end{array}\right]+2\left[\begin{array}{c}
-10 \\
-1 \\
-1 \\
4
\end{array}\right]=\left[\begin{array}{c}
9 \\
2 \\
1 \\
-3
\end{array}\right]
$$

We know we can replace R by a smaller set (since it is obviously linearly dependent by Theorem MVSLD (136) that will create the same span. Here goes,

$$
\left[\begin{array}{ccccc}
2 & -1 & -8 & 3 & -10 \\
1 & 1 & -1 & 1 & -1 \\
3 & 0 & -9 & -1 & -1 \\
2 & 1 & -4 & -2 & 4
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
\hline 1 & 0 & -3 & 0 & -1 \\
0 & \boxed{1} & 2 & 0 & 2 \\
0 & 0 & 0 & \boxed{1} & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So, if we collect the first, second and fourth vectors from R,

$$
P=\left\{\left[\begin{array}{l}
2 \\
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
-1 \\
-2
\end{array}\right]\right\}
$$

then P is linearly independent and $\langle P\rangle=\langle R\rangle=X$ by Theorem BS 154. Since we built \mathbf{y} as an element of $\langle R\rangle$ it must also be an element of $\langle P\rangle$. Can we write \mathbf{y} as a linear combination of just the three vectors in P ? The answer is, of course, yes. But let's compute an explicit linear combination just for fun. By Theorem SLSLC 90 we can get such a linear combination by solving a system of equations with the column vectors of R as the columns of a coefficient matrix, and \mathbf{y} as the vector of constants. Employing an augmented matrix to solve this system,

$$
\left[\begin{array}{cccc}
2 & -1 & 3 & 9 \\
1 & 1 & 1 & 2 \\
3 & 0 & -1 & 1 \\
2 & 1 & -2 & -3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 1 \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & \boxed{1} & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So we see, as expected, that

$$
1\left[\begin{array}{l}
2 \\
1 \\
3 \\
2
\end{array}\right]+(-1)\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]+2\left[\begin{array}{c}
3 \\
1 \\
-1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
9 \\
2 \\
1 \\
-3
\end{array}\right]=\mathbf{y}
$$

A key feature of this example is that the linear combination that expresses \mathbf{y} as a linear combination of the vectors in P is unique. This is a consequence of the linear independence of P. The linearly independent set P is smaller than R, but still just (barely) big enough to create elements of the set $X=\langle R\rangle$. There are many, many ways to write \mathbf{y} as a linear combination of the five vectors in R (the appropriate system of equations to verify this claim has two free variables in the description of the solution set), yet there is precisely one way to write \mathbf{y} as a linear combination of the three vectors in P.

Subsection READ
 Reading Questions

1. Let S be the linearly dependent set of three vectors below.

$$
S=\left\{\left[\begin{array}{c}
1 \\
10 \\
100 \\
1000
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
5 \\
23 \\
203 \\
2003
\end{array}\right]\right\}
$$

Write one vector from S as a linear combination of the other two (you should be able to do this on sight, rather than doing some computations). Convert this expression into a relation of linear dependence on S.
2. Explain why the word "dependent" is used in the definition of linear dependence.
3. Suppose that $Y=\langle P\rangle=\langle Q\rangle$, where P is a linearly dependent set and Q is linearly independent. Would you rather use P or Q to describe Y ? Why?

Subsection EXC
 Exercises
 ■■

C20 Let T be the set of columns of the matrix B below. Define $W=\langle T\rangle$. Find a set R so that (1) R has 3 vectors, (2) R is a subset of T, and (3) $W=\langle R\rangle$.

$$
B=\left[\begin{array}{cccc}
-3 & 1 & -2 & 7 \\
-1 & 2 & 1 & 4 \\
1 & 1 & 2 & -1
\end{array}\right]
$$

Contributed by Robert Beezer Solution 159
$\mathbf{C 4 0}$ Verify that the set $R^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ at the end of Example RSC5 150 is linearly independent. Contributed by Robert Beezer

C50 Consider the set of vectors from \mathbb{C}^{3}, W, given below. Find a linearly independent set T that contains three vectors from W and such that $\langle W\rangle=\langle T\rangle$.

$$
W=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}=\left\{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right]\right\}
$$

Contributed by Robert Beezer Solution 159
C51 Given the set S below, find a linearly independent set T so that $\langle T\rangle=\langle S\rangle$.

$$
S=\left\{\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right]\right\}
$$

Contributed by Robert Beezer Solution 160
C55 Let T be the set of vectors $T=\left\{\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 6\end{array}\right]\right\}$. Find two different subsets of T, named R and S, so that R and S each contain three vectors, and so that $\langle R\rangle=\langle T\rangle$ and $\langle S\rangle=\langle T\rangle$. Prove that both R and S are linearly independent.
Contributed by Robert Beezer Solution 159
C70 Reprise Example RES 156 by creating a new version of the vector \mathbf{y}. In other words, form a new, different linear combination of the vectors in R to create a new vector \mathbf{y} (but do not simplify the problem too much by choosing any of the five new scalars to be zero). Then express this new \mathbf{y} as a combination of the vectors in P.
Contributed by Robert Beezer
M10 At the conclusion of Example RSSC4 155 two alternative solutions, sets T^{\prime} and T^{*}, are proposed. Verify these claims by proving that $\langle T\rangle=\left\langle T^{\prime}\right\rangle$ and $\langle T\rangle=\left\langle T^{*}\right\rangle$.
Contributed by Robert Beezer
$\mathbf{T} 40$ Suppose that \mathbf{v}_{1} and \mathbf{v}_{2} are any two vectors from \mathbb{C}^{m}. Prove the following set equality.

$$
\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle=\left\langle\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}\right\rangle
$$

Contributed by Robert Beezer

Subsection SOL
 Solutions

$\pi+$

C20 Contributed by Robert Beezer Statement 158
$\left[\begin{array}{c}2 \\ -1 \\ 0 \\ 1\end{array}\right]$ is a solution to the homogeneous system with the matrix B as
the coefficient matrix (check this!). By Theorem SLSLC 90 it provides the scalars for a linear combination of the columns of B (the vectors in T) that equals the zero vector, a relation of linear dependence on T,

$$
2 \mathbf{w}_{1}+(-1) \mathbf{w}_{2}+(1) \mathbf{w}_{4}=\mathbf{0}
$$

We can rearrange this equation by solving for \mathbf{w}_{4},

$$
\mathbf{w}_{4}=(-2) \mathbf{w}_{1}+\mathbf{w}_{2}
$$

This equation tells us that the vector \mathbf{w}_{4} is superfluous in the span construction that creates W. So $W=\left\langle\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}\right\rangle$. The requested set is $R=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$.
C50 Contributed by Robert Beezer Statement 158
To apply Theorem BS [154], we formulate a matrix A whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$. Then we row-reduce A. After row-reducing, we obtain

$$
\left[\begin{array}{ccccc}
\hline 1 & 0 & 0 & 2 & -1 \\
0 & 1 & 0 & 1 & -2 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

From this we that the pivot columns are $D=\{1,2,3\}$. Thus

$$
T=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}
$$

is a linearly independent set and $\langle T\rangle=W$. Compare this problem with Exercise LI.M50 143].
C55 Contributed by Robert Beezer Statement 158
Let A be the matrix whose columns are the vectors in T. Then row-reduce A,

$$
A \xrightarrow{\mathrm{RREF}} B=\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & \boxed{1} & 1
\end{array}\right]
$$

From Theorem BS 154 we can form R by choosing the columns of A that correspond to the pivot columns of B. Theorem BS 154 also guarantees that R will be linearly independent.

$$
R=\left\{\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]\right\}
$$

That was easy. To find S will require a bit more work. From B we can obtain a solution to $\mathcal{L S}(A, \mathbf{0})$, which by Theorem SLSLC 90 will provide a nontrivial relation of linear dependence on the columns of A,
which are the vectors in T. To wit, choose the free variable x_{4} to be 1 , then $x_{1}=-2, x_{2}=1, x_{3}=-1$, and so

$$
(-2)\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+(1)\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]+(-1)\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]+(1)\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

this equation can be rewritten with the second vector staying put, and the other three moving to the other side of the equality,

$$
\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]=(2)\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+(1)\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]+(-1)\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right]
$$

We could have chosen other vectors to stay put, but may have then needed to divide by a nonzero scalar. This equation is enough to conclude that the second vector in T is "surplus" and can be replaced (see the careful argument in Example RSC5 150). So set

$$
S=\left\{\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right]\right\}
$$

and then $\langle S\rangle=\langle T\rangle . T$ is also a linearly independent set, which we can show directly. Make a matrix C whose columns are the vectors in S. Row-reduce B and you will obtain the identity matrix I_{3}. By Theorem LIVRN 135, the set S is linearly independent.
C51 Contributed by Robert Beezer Statement 158
Theorem BS 154 says we can make a matrix with these four vectors as columns, row-reduce, and just keep the columns with indices in the set D. Here we go, forming the relevant matrix and row-reducing,

$$
\left[\begin{array}{cccc}
2 & 3 & 1 & 5 \\
-1 & 0 & 1 & -1 \\
2 & 1 & -1 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\boxed{1} & 0 & -1 & 1 \\
0 & \boxed{1} & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Analyzing the row-reduced version of this matrix, we see that the firast two columns are pivot columns, so $D=\{1,2\}$. Theorem BS 154 says we need only "keep" the first two columns to create a set with the requisite properties,

$$
T=\left\{\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]\right\}
$$

T40 Contributed by Robert Beezer Statement 158
This is an equality of sets, so Definition SE 670] applies.
The "easy" half first. Show that $X=\left\langle\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}\right\rangle \subseteq\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle=Y$.
Choose $\mathbf{x} \in X$. Then $\mathbf{x}=a_{1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+a_{2}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)$ for some scalars a_{1} and a_{2}. Then,

$$
\begin{aligned}
\mathbf{x} & =a_{1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+a_{2}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right) \\
& =a_{1} \mathbf{v}_{1}+a_{1} \mathbf{v}_{2}+a_{2} \mathbf{v}_{1}+\left(-a_{2}\right) \mathbf{v}_{2} \\
& =\left(a_{1}+a_{2}\right) \mathbf{v}_{1}+\left(a_{1}-a_{2}\right) \mathbf{v}_{2}
\end{aligned}
$$

which qualifies \mathbf{x} for membership in Y, as it is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$.
Now show the opposite inclusion, $Y=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle \subseteq\left\langle\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}\right\rangle=X$.
Choose $\mathbf{y} \in Y$. Then there are scalars b_{1}, b_{2} such that $\mathbf{y}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}$. Rearranging, we obtain,

$$
\begin{aligned}
\mathbf{y} & =b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2} \\
& =\frac{b_{1}}{2}\left[\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\right]+\frac{b_{2}}{2}\left[\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)-\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)\right]
\end{aligned}
$$

$$
=\frac{b_{1}+b_{2}}{2}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+\frac{b_{1}-b_{2}}{2}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)
$$

This is an expression for \mathbf{y} as a linear combination of $\mathbf{v}_{1}+\mathbf{v}_{2}$ and $\mathbf{v}_{1}-\mathbf{v}_{2}$, earning \mathbf{y} membership in X. Since X is a subset of Y, and vice versa, we see that $X=Y$, as desired.

Section O
 Orthogonality

In this section we define a couple more operations with vectors, and prove a few theorems. These definitions and results are not central to what follows, but we will make use of them frequently throughout the remainder of the course on various occasions. Because we have chosen to use \mathbb{C} as our set of scalars, this subsection is a bit more, uh, ... complex than it would be for the real numbers. We'll explain as we go along how things get easier for the real numbers \mathbb{R}. If you haven't already, now would be a good time to review some of the basic properties of arithmetic with complex numbers described in Section CNO 665 . With that done, we can extend the basics of complex number arithmetic to our study of vectors in \mathbb{C}^{m}.

Subsection CAV
 Complex Arithmetic and Vectors

We know how the addition and multiplication of complex numbers is employed in defining the operations for vectors in \mathbb{C}^{m} Definition CVA 80 and Definition CVSM 81). We can also extend the idea of the conjugate to vectors.

Definition CCCV

Complex Conjugate of a Column Vector

Suppose that \mathbf{u} is a vector from \mathbb{C}^{m}. Then the conjugate of the vector, $\overline{\mathbf{u}}$, is defined by

$$
[\overline{\mathbf{u}}]_{i}=\overline{[\mathbf{u}]_{i}} \quad 1 \leq i \leq m
$$

(This definition contains Notation CCCV.)
With this definition we can show that the conjugate of a column vector behaves as we would expect with regard to vector addition and scalar multiplication.

Theorem CRVA

Conjugation Respects Vector Addition

Suppose \mathbf{x} and \mathbf{y} are two vectors from \mathbb{C}^{m}. Then

$$
\overline{\mathrm{x}+\mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathbf{y}}
$$

Proof For each $1 \leq i \leq m$,

$$
\begin{aligned}
{[\mathbf{x}+\mathbf{y}]_{i} } & =\overline{[\mathbf{x}+\mathbf{y}]_{i}} & & \text { Definition CCCV } 163 \\
& =\overline{[\mathbf{x}]_{i}+[\mathbf{y}]_{i}} & & \text { Definition CVA } 80 \\
& =\overline{[\mathbf{x}]_{i}}+\overline{[\mathbf{y}]_{i}} & & \text { Theorem CCRA } 667 \\
& =[\overline{\mathbf{x}}]_{i}+[\overline{\mathbf{y}}]_{i} & & \text { Definition CCCV } 163 \\
& =[\overline{\mathbf{x}}+\overline{\mathbf{y}}]_{i} & & \text { Definition CVA } 80
\end{aligned}
$$

Then by Definition CVE 80 we have $\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}$.

Theorem CRSM

Conjugation Respects Vector Scalar Multiplication
Suppose \mathbf{x} is a vector from \mathbb{C}^{m}, and $\alpha \in \mathbb{C}$ is a scalar. Then

$$
\overline{\alpha \mathbf{x}}=\bar{\alpha} \overline{\mathbf{x}}
$$

Proof For $1 \leq i \leq m$,

$$
\begin{aligned}
{[\overline{\alpha \mathbf{x}}]_{i} } & =\overline{[\alpha \mathbf{x}]_{i}} & & \text { Definition CCCV } 163 \\
& =\overline{\alpha[\mathbf{x}]_{i}} & & \text { Definition CVSM } 81 \\
& =\bar{\alpha} \overline{\mathbf{x}]_{i}} & & \text { Theorem CCRM } 667 \\
& =\bar{\alpha}[\overline{\mathbf{x}}]_{i} & & \text { Definition CCCV } 163 \\
& =[\bar{\alpha} \overline{\mathbf{x}}]_{i} & & \text { Definition CVSM } 81
\end{aligned}
$$

Then by Definition CVE 80 we have $\overline{\alpha \mathbf{x}}=\bar{\alpha} \overline{\mathbf{x}}$.
These two theorems together tell us how we can "push" complex conjugation through linear combinations.

Subsection IP
 Inner products

Definition IP

Inner Product

Given the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ the inner product of \mathbf{u} and \mathbf{v} is the scalar quantity in \mathbb{C},

$$
\langle\mathbf{u}, \mathbf{v}\rangle=[\mathbf{u}]_{1} \overline{[\mathbf{v}]_{1}}+[\mathbf{u}]_{2} \overline{[\mathbf{v}]_{2}}+[\mathbf{u}]_{3} \overline{[\mathbf{v}]_{3}}+\cdots+[\mathbf{u}]_{m} \overline{[\mathbf{v}]_{m}}=\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{[\mathbf{v}]_{i}}
$$

(This definition contains Notation IP.)
This operation is a bit different in that we begin with two vectors but produce a scalar. Computing one is straightforward.

Example CSIP

Computing some inner products

The scalar product of

$$
\mathbf{u}=\left[\begin{array}{c}
2+3 i \\
5+2 i \\
-3+i
\end{array}\right] \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
1+2 i \\
-4+5 i \\
0+5 i
\end{array}\right]
$$

is

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{v}\rangle & =(2+3 i)(\overline{1+2 i})+(5+2 i)(\overline{-4+5 i})+(3+i)(\overline{0+5 i}) \\
& =(2+3 i)(1-2 i)+(5+2 i)(-4-5 i)+(3+i)(0-5 i) \\
& =(8-i)+(-10-33 i)+(5+15 i) \\
& =3-19 i
\end{aligned}
$$

The scalar product of

$$
\mathbf{w}=\left[\begin{array}{c}
2 \\
4 \\
-3 \\
2 \\
8
\end{array}\right] \quad \text { and } \quad \mathbf{x}=\left[\begin{array}{c}
3 \\
1 \\
0 \\
-1 \\
-2
\end{array}\right]
$$

is

$$
\langle\mathbf{w}, \mathbf{x}\rangle=2(\overline{3})+4(\overline{1})+(-3)(\overline{0})+2(\overline{-1})+8(\overline{-2})=2(3)+4(1)+(-3) 0+2(-1)+8(-2)=-8 .
$$

In the case where the entries of our vectors are all real numbers (as in the second part of Example CSIP [164), the computation of the inner product may look familiar and be known to you as a dot product or scalar product. So you can view the inner product as a generalization of the scalar product to vectors from \mathbb{C}^{m} (rather than \mathbb{R}^{m}).

Also, note that we have chosen to conjugate the entries of the second vector listed in the inner product, while many authors choose to conjugate entries from the first component. It really makes no difference which choice is made, it just requires that subsequent definitions and theorems are consistent with the choice. You can study the conclusion of Theorem IPAC 166 as an explanation of the magnitude of the difference that results from this choice. But be careful as you read other treatments of the inner product or its use in applications, and be sure you know ahead of time which choice has been made.

There are several quick theorems we can now prove, and they will each be useful later.

Theorem IPVA

Inner Product and Vector Addition

Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{C}^{m}$. Then

$$
\begin{array}{ll}
\text { 1. } & \langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle \\
2 . & \langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle
\end{array}
$$

Proof The proofs of the two parts are very similar, with the second one requiring just a bit more effort due to the conjugation that occurs. We will prove part 2 and you can prove part 1 (Exercise O.T10 175).

$$
\begin{array}{rlrl}
\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle & =\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{[\mathbf{v}+\mathbf{w}]_{i}} & & \text { Definition IP } 164 \\
& =\sum_{i=1}^{m}[\mathbf{u}]_{i}\left(\overline{\left(\overline{\mathbf{v}]_{i}}+[\mathbf{w}]_{i}\right.}\right) & & \\
& =\sum_{i=1}^{m}[\mathbf{u}]_{i}\left(\overline{\left(\overline{\mathbf{v}]_{i}}+\overline{[\mathbf{w}]_{i}}\right)}\right. & & \text { Definition CVA } 80 \\
& =\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{[\mathbf{v}]_{i}}+[\mathbf{u}]_{i} \overline{[\mathbf{w}]_{i}} & & \text { Theorem CCRA 667 } \\
& =\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{[\mathbf{v}]_{i}}+\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{[\mathbf{w}]_{i}} & & \text { Property DCN 666 } \\
& =\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle & & \text { Property ACCN 666 } \\
& & \text { Definition IP 164 }
\end{array}
$$

Theorem IPSM

Inner Product and Scalar Multiplication

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ and $\alpha \in \mathbb{C}$. Then

1. $\langle\alpha \mathbf{u}, \mathbf{v}\rangle=\alpha\langle\mathbf{u}, \mathbf{v}\rangle$
2. $\langle\mathbf{u}, \alpha \mathbf{v}\rangle=\bar{\alpha}\langle\mathbf{u}, \mathbf{v}\rangle$

Proof The proofs of the two parts are very similar, with the second one requiring just a bit more effort due to the conjugation that occurs. We will prove part 2 and you can prove part 1 (Exercise O.T11 (175).

$$
\begin{aligned}
\langle\mathbf{u}, \alpha \mathbf{v}\rangle & =\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{[\alpha \mathbf{v}]_{i}} & & \text { Definition IP (164) } \\
& =\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{\alpha[\mathbf{v}]_{i}} & & \text { Definition CVSM 81 } \\
& =\sum_{i=1}^{m}[\mathbf{u}]_{i} \bar{\alpha} \overline{[\mathbf{v}]_{i}} & & \text { Theorem CCRM 667 } \\
& =\sum_{i=1}^{m} \bar{\alpha}[\mathbf{u}]_{i} \overline{[\mathbf{v}]_{i}} & & \\
& =\bar{\alpha} \sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{[\mathbf{v}]_{i}} & & \text { Property MCCN 666 } \\
& =\bar{\alpha}\langle\mathbf{u}, \mathbf{v}\rangle & & \text { Definition IP 164 }
\end{aligned}
$$

Theorem IPAC

Inner Product is Anti-Commutative

Suppose that \mathbf{u} and \mathbf{v} are vectors in \mathbb{C}^{m}. Then $\langle\mathbf{u}, \mathbf{v}\rangle=\overline{\langle\mathbf{v}, \mathbf{u}\rangle}$.

Proof

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{v}\rangle & =\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{\overline{\mathbf{v}]_{i}}} & & \text { Definition IP } 164 \\
& =\sum_{i=1}^{m} \overline{\overline{[\mathbf{u}]_{i}} \overline{[\mathbf{v}]_{i}}} & & \text { Theorem CCT 668 } \\
& =\sum_{i=1}^{m} \overline{\overline{[\mathbf{u}]_{i}}[\mathbf{v}]_{i}} & & \text { Theorem CCRM 667 } \\
& =\overline{\left(\sum_{i=1}^{m} \overline{[\mathbf{u}]_{i}}[\mathbf{v}]_{i}\right)} & & \text { Theorem CCRA } 667 \\
& =\overline{\left(\sum_{i=1}^{m}[\mathbf{v}]_{i} \overline{[\mathbf{u}]_{i}}\right)} & & \text { Property MCCN 666 } \\
& =\overline{\langle\mathbf{v}, \mathbf{u}\rangle} & & \text { Definition IP } 164
\end{aligned}
$$

Subsection N

Norm
NT

If treating linear algebra in a more geometric fashion, the length of a vector occurs naturally, and is what you would expect from its name. With complex numbers, we will define a similar function. Recall that if c is a complex number, then $|c|$ denotes its modulus Definition MCN 668).

Definition NV

Norm of a Vector

The norm of the vector \mathbf{u} is the scalar quantity in \mathbb{C}

$$
\|\mathbf{u}\|=\sqrt{\left|[\mathbf{u}]_{1}\right|^{2}+\left|[\mathbf{u}]_{2}\right|^{2}+\left|[\mathbf{u}]_{3}\right|^{2}+\cdots+\left|[\mathbf{u}]_{m}\right|^{2}}=\sqrt{\sum_{i=1}^{m}\left|[\mathbf{u}]_{i}\right|^{2}}
$$

(This definition contains Notation NV.)
Computing a norm is also easy to do.

Example CNSV

Computing the norm of some vectors

The norm of

$$
\mathbf{u}=\left[\begin{array}{c}
3+2 i \\
1-6 i \\
2+4 i \\
2+i
\end{array}\right]
$$

is

$$
\|\mathbf{u}\|=\sqrt{|3+2 i|^{2}+|1-6 i|^{2}+|2+4 i|^{2}+|2+i|^{2}}=\sqrt{13+37+20+5}=\sqrt{75}=5 \sqrt{3} .
$$

The norm of

$$
\mathbf{v}=\left[\begin{array}{c}
3 \\
-1 \\
2 \\
4 \\
-3
\end{array}\right]
$$

is

$$
\|\mathbf{v}\|=\sqrt{|3|^{2}+|-1|^{2}+|2|^{2}+|4|^{2}+|-3|^{2}}=\sqrt{3^{2}+1^{2}+2^{2}+4^{2}+3^{2}}=\sqrt{39}
$$

Notice how the norm of a vector with real number entries is just the length of the vector. Inner products and norms are related by the following theorem.

Theorem IPN

Inner Products and Norms

Suppose that \mathbf{u} is a vector in \mathbb{C}^{m}. Then $\|\mathbf{u}\|^{2}=\langle\mathbf{u}, \mathbf{u}\rangle$.

Proof

$$
\begin{aligned}
\|\mathbf{u}\|^{2} & =\left(\sqrt{\sum_{i=1}^{m}\left|[\mathbf{u}]_{i}\right|^{2}}\right)^{2} \\
& =\sum_{i=1}^{m}\left|[\mathbf{u}]_{i}\right|^{2} \\
& =\sum_{i=1}^{m}[\mathbf{u}]_{i} \overline{[\mathbf{u}]_{i}} \\
& =\langle\mathbf{u}, \mathbf{u}\rangle
\end{aligned}
$$

Definition NV 167

Definition MCN 668
Definition IP 164

When our vectors have entries only from the real numbers Theorem IPN 167 says that the dot product of a vector with itself is equal to the length of the vector squared.

Theorem PIP

Positive Inner Products

Suppose that \mathbf{u} is a vector in \mathbb{C}^{m}. Then $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ with equality if and only if $\mathbf{u}=\mathbf{0}$.
Proof From the proof of Theorem IPN 167 we see that

$$
\langle\mathbf{u}, \mathbf{u}\rangle=\left|[\mathbf{u}]_{1}\right|^{2}+\left|[\mathbf{u}]_{2}\right|^{2}+\left|[\mathbf{u}]_{3}\right|^{2}+\cdots+\left|[\mathbf{u}]_{m}\right|^{2}
$$

Since each modulus is squared, every term is positive, and the sum must also be positive. (Notice that in general the inner product is a complex number and cannot be compared with zero, but in the special case of $\langle\mathbf{u}, \mathbf{u}\rangle$ the result is a real number.) The phrase, "with equality if and only if" means that we want to show that the statement $\langle\mathbf{u}, \mathbf{u}\rangle=0$ (i.e. with equality) is equivalent ("if and only if") to the statement $\mathbf{u}=\mathbf{0}$.

If $\mathbf{u}=\mathbf{0}$, then it is a straightforward computation to see that $\langle\mathbf{u}, \mathbf{u}\rangle=0$. In the other direction, assume that $\langle\mathbf{u}, \mathbf{u}\rangle=0$. As before, $\langle\mathbf{u}, \mathbf{u}\rangle$ is a sum of moduli. So we have

$$
0=\langle\mathbf{u}, \mathbf{u}\rangle=\left|[\mathbf{u}]_{1}\right|^{2}+\left|[\mathbf{u}]_{2}\right|^{2}+\left|[\mathbf{u}]_{3}\right|^{2}+\cdots+\left|[\mathbf{u}]_{m}\right|^{2}
$$

Now we have a sum of squares equaling zero, so each term must be zero. Then by similar logic, $\left|[\mathbf{u}]_{i}\right|=0$ will imply that $[\mathbf{u}]_{i}=0$, since $0+0 i$ is the only complex number with zero modulus. Thus every entry of \mathbf{u} is zero and so $\mathbf{u}=\mathbf{0}$, as desired.

Notice that Theorem PIP 168 contains three implications: \mathbf{u} is any vector $\Rightarrow\langle\mathbf{u}, \mathbf{u}\rangle \geq 0, \mathbf{u}=\mathbf{0} \Rightarrow$ $\langle\mathbf{u}, \mathbf{u}\rangle=0$, and $\langle\mathbf{u}, \mathbf{u}\rangle=0 \Rightarrow \mathbf{u}=\mathbf{0}$. The results contained in Theorem PIP 168 are summarized by saying "the inner product is positive definite."

Subsection OV
 Orthogonal Vectors

"Orthogonal" is a generalization of "perpendicular." You may have used mutually perpendicular vectors in a physics class, or you may recall from a calculus class that perpendicular vectors have a zero dot product. We will now extend these ideas into the realm of higher dimensions and complex scalars.

Definition OV

Orthogonal Vectors
A pair of vectors, \mathbf{u} and \mathbf{v}, from \mathbb{C}^{m} are orthogonal if their inner product is zero, that is, $\langle\mathbf{u}, \mathbf{v}\rangle=0$.

Example TOV

Two orthogonal vectors
The vectors

$$
\mathbf{u}=\left[\begin{array}{c}
2+3 i \\
4-2 i \\
1+i \\
1+i
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
1-i \\
2+3 i \\
4-6 i \\
1
\end{array}\right]
$$

are orthogonal since

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{v}\rangle & =(2+3 i)(1+i)+(4-2 i)(2-3 i)+(1+i)(4+6 i)+(1+i)(1) \\
& =(-1+5 i)+(2-16 i)+(-2+10 i)+(1+i) \\
& =0+0 i .
\end{aligned}
$$

We extend this definition to whole sets by requiring vectors to be pairwise orthogonal. Despite using the same word, careful thought about what objects you are using will eliminate any source of confusion.

Definition OSV

Orthogonal Set of Vectors

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a set of vectors from \mathbb{C}^{m}. Then the set S is orthogonal if every pair of different vectors from S is orthogonal, that is $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=0$ whenever $i \neq j$.

The next example is trivial in some respects, but is still worthy of discussion since it is the prototypical orthogonal set.

Example SUVOS

Standard Unit Vectors are an Orthogonal Set

The standard unit vectors are the columns of the identity matrix (Definition SUV 210). Computing the inner product of two distinct vectors, $\mathbf{e}_{i}, \mathbf{e}_{j}, i \neq j$, gives,

$$
\begin{align*}
\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle & =0 \overline{0}+0 \overline{0}+\cdots+1 \overline{0}+\cdots+0 \overline{0}+\cdots+0 \overline{1}+\cdots+0 \overline{0}+0 \overline{0} \\
& =0(0)+0(0)+\cdots+1(0)+\cdots+0(1)+\cdots+0(0)+0(0) \\
& =0
\end{align*}
$$

Example AOS

An orthogonal set

The set

$$
\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}=\left\{\left[\begin{array}{c}
1+i \\
1 \\
1-i \\
i
\end{array}\right],\left[\begin{array}{c}
1+5 i \\
6+5 i \\
-7-i \\
1-6 i
\end{array}\right],\left[\begin{array}{c}
-7+34 i \\
-8-23 i \\
-10+22 i \\
30+13 i
\end{array}\right],\left[\begin{array}{c}
-2-4 i \\
6+i \\
4+3 i \\
6-i
\end{array}\right]\right\}
$$

is an orthogonal set. Since the inner product is anti-commutative Theorem IPAC 166) we can test pairs of different vectors in any order. If the result is zero, then it will also be zero if the inner product is computed in the opposite order. This means there are six pairs of different vectors to use in an inner product computation. We'll do two and you can practice your inner products on the other four.

$$
\begin{aligned}
\left\langle\mathbf{x}_{1}, \mathbf{x}_{3}\right\rangle & =(1+i)(-7-34 i)+(1)(-8+23 i)+(1-i)(-10-22 i)+(i)(30-13 i) \\
& =(27-41 i)+(-8+23 i)+(-32-12 i)+(13+30 i) \\
& =0+0 i
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle\mathbf{x}_{2}, \mathbf{x}_{4}\right\rangle & =(1+5 i)(-2+4 i)+(6+5 i)(6-i)+(-7-i)(4-3 i)+(1-6 i)(6+i) \\
& =(-22-6 i)+(41+24 i)+(-31+17 i)+(12-35 i) \\
& =0+0 i
\end{aligned}
$$

So far, this section has seen lots of definitions, and lots of theorems establishing un-surprising consequences of those definitions. But here is our first theorem that suggests that inner products and orthogonal vectors have some utility. It is also one of our first illustrations of how to arrive at linear independence as the conclusion of a theorem.

Theorem OSLI

Orthogonal Sets are Linearly Independent

Suppose that $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of nonzero vectors. Then S is linearly independent.

Proof To prove linear independence of a set of vectors, we can appeal to the definition Definition LICV 131) and begin with a relation of linear dependence (Definition RLDCV 131),

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}=\mathbf{0}
$$

Then, for every $1 \leq i \leq n$, we have

$$
\begin{aligned}
0= & 0\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle & & \\
& =\left\langle 0 \mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle & & \\
= & \left\langle\mathbf{0}, \mathbf{u}_{i}\right\rangle & & \text { Theorem IPSM } 165 \\
= & \left\langle\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}, \mathbf{u}_{i}\right\rangle & & \text { Theorem CVSM } 285 \\
= & \left\langle\alpha_{1} \mathbf{u}_{1}, \mathbf{u}_{i}\right\rangle+\left\langle\alpha_{2} \mathbf{u}_{2}, \mathbf{u}_{i}\right\rangle+\left\langle\alpha_{3} \mathbf{u}_{3}, \mathbf{u}_{i}\right\rangle+\cdots+\left\langle\alpha_{n} \mathbf{u}_{n}, \mathbf{u}_{i}\right\rangle & & \text { Theorem IPVA } 165 \\
= & \alpha_{1}\left\langle\mathbf{u}_{1}, \mathbf{u}_{i}\right\rangle+\alpha_{2}\left\langle\mathbf{u}_{2}, \mathbf{u}_{i}\right\rangle+\alpha_{3}\left\langle\mathbf{u}_{3}, \mathbf{u}_{i}\right\rangle & & \\
& +\cdots+\alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle+\cdots+\alpha_{n}\left\langle\mathbf{u}_{n}, \mathbf{u}_{i}\right\rangle & & \text { Theorem IPSM } 165 \\
= & \alpha_{1}(0)+\alpha_{2}(0)+\alpha_{3}(0)+\cdots+\alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle+\cdots+\alpha_{n}(0) & & \text { Orthogonal set } \\
= & \alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle & &
\end{aligned}
$$

So we have $0=\alpha_{i}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle$. However, since $\mathbf{u}_{i} \neq \mathbf{0}$ (the hypothesis said our vectors were nonzero), Theorem PIP 168 says that $\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle>0$. So we must conclude that $\alpha_{i}=0$ for all $1 \leq i \leq n$. But this says that S is a linearly independent set since the only way to form a relation of linear dependence is the trivial way, with all the scalars zero. Boom!

Subsection GSP
 Gram-Schmidt Procedure

The Gram-Schmidt Procedure is really a theorem. It says that if we begin with a linearly independent set of p vectors, S, then we can do a number of calculations with these vectors and produce an orthogonal set of p vectors, T, so that $\langle S\rangle=\langle T\rangle$. Given the large number of computations involved, it is indeed a procedure to do all the necessary computations, and it is best employed on a computer. However, it also has value in proofs where we may on occasion wish to replace a linearly independent set by an orthogonal set.

This is our first ocassion to use the technique of "mathematical induction" for a proof, a technique we will see again several times, especially in Chapter D 363. So study the simple example described in Technique I 680 first.

Theorem GSPCV

Gram-Schmidt Procedure, Column Vectors

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly independent set of vectors in \mathbb{C}^{m}. Define the vectors $\mathbf{u}_{i}, 1 \leq i \leq p$ by

$$
\mathbf{u}_{i}=\mathbf{v}_{i}-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{2}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{3}\right\rangle}{\left\langle\mathbf{u}_{3}, \mathbf{u}_{3}\right\rangle} \mathbf{u}_{3}-\cdots-\frac{\left\langle\mathbf{v}_{i}, \mathbf{u}_{i-1}\right\rangle}{\left\langle\mathbf{u}_{i-1}, \mathbf{u}_{i-1}\right\rangle} \mathbf{u}_{i-1}
$$

Then if $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p}\right\}$, then T is an orthogonal set of non-zero vectors, and $\langle T\rangle=\langle S\rangle$.
Proof We will prove the result by using induction on p Technique 680). To begin, we prove that T has the desired properties when $p=1$. In this case $\mathbf{u}_{1}=\mathbf{v}_{1}$ and $T=\left\{\mathbf{u}_{1}\right\}=\left\{\mathbf{v}_{1}\right\}=S$. Because S and T are equal, $\langle S\rangle=\langle T\rangle$. Equally trivial, T is an orthogonal set. If $\mathbf{u}_{1}=\mathbf{0}$, then S would be a linearly dependent set, a contradiction.

Now suppose that the theorem is true for any set of $p-1$ linearly independent vectors. Let $S=$ $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ be a linearly independent set of p vectors. Then $S^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p-1}\right\}$ is also linearly independent. So we can apply the theorem to S^{\prime} and construct the vectors $T^{\prime}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p-1}\right\}$. T^{\prime} is therefore an orthogonal set of nonzero vectors and $\left\langle S^{\prime}\right\rangle=\left\langle T^{\prime}\right\rangle$. Define

$$
\mathbf{u}_{p}=\mathbf{v}_{p}-\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}-\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{2}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}-\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{3}\right\rangle}{\left\langle\mathbf{u}_{3}, \mathbf{u}_{3}\right\rangle} \mathbf{u}_{3}-\cdots-\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{p-1}\right\rangle}{\left\langle\mathbf{u}_{p-1}, \mathbf{u}_{p-1}\right\rangle} \mathbf{u}_{p-1}
$$

and let $T=T^{\prime} \cup\left\{\mathbf{u}_{p}\right\}$. We need to now show that T has several properties by building on what we know about T^{\prime}. But first notice that the above equation has no problems with the denominators ($\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle$) being zero, since the \mathbf{u}_{i} are from T^{\prime}, which is composed of nonzero vectors.

We show that $\langle T\rangle=\langle S\rangle$, by first establishing that $\langle T\rangle \subseteq\langle S\rangle$. Suppose $\mathbf{x} \in\langle T\rangle$, so

$$
\mathbf{x}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{p} \mathbf{u}_{p}
$$

The term $a_{p} \mathbf{u}_{p}$ is a linear combination of vectors from T^{\prime} and the vector \mathbf{v}_{p}, while the remaining terms are a linear combination of vectors from T^{\prime}. Since $\left\langle T^{\prime}\right\rangle=\left\langle S^{\prime}\right\rangle$, any term that is a multiple of a vector from T^{\prime} can be rewritten as a linear combination of vectors from S^{\prime}. The remaining term $a_{p} \mathbf{v}_{p}$ is a multiple of a vector in S. So we see that \mathbf{x} can be rewritten as a linear combination of vectors from S, i.e. x $\in\langle S\rangle$.

To show that $\langle S\rangle \subseteq\langle T\rangle$, begin with $\mathbf{y} \in\langle S\rangle$, so

$$
\mathbf{y}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{p} \mathbf{v}_{p}
$$

Rearrange our defining equation for \mathbf{u}_{p} by solving for \mathbf{v}_{p}. Then the term $a_{p} \mathbf{v}_{p}$ is a multiple of a linear combination of elements of T. The remaining terms are a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p-1}$, hence an element of $\left\langle S^{\prime}\right\rangle=\left\langle T^{\prime}\right\rangle$. Thus these remaining terms can be written as a linear combination of the vectors in T^{\prime}. So \mathbf{y} is a linear combination of vectors from T, i.e. $\mathbf{y} \in\langle T\rangle$.

The elements of T^{\prime} are nonzero, but what about \mathbf{u}_{p} ? Suppose to the contrary that $\mathbf{u}_{p}=\mathbf{0}$,

$$
\begin{gathered}
\mathbf{0}=\mathbf{u}_{p}=\mathbf{v}_{p}-\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}-\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{2}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}-\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{3}\right\rangle}{\left\langle\mathbf{u}_{3}, \mathbf{u}_{3}\right\rangle} \mathbf{u}_{3}-\cdots-\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{p-1}\right\rangle}{\left\langle\mathbf{u}_{p-1}, \mathbf{u}_{p-1}\right\rangle} \mathbf{u}_{p-1} \\
\mathbf{v}_{p}=\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}+\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{2}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}+\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{3}\right\rangle}{\left\langle\mathbf{u}_{3}, \mathbf{u}_{3}\right\rangle} \mathbf{u}_{3}+\cdots+\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{p-1}\right\rangle}{\left\langle\mathbf{u}_{p-1}, \mathbf{u}_{p-1}\right\rangle} \mathbf{u}_{p-1}
\end{gathered}
$$

Since $\left\langle S^{\prime}\right\rangle=\left\langle T^{\prime}\right\rangle$ we can write the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{p-1}$ on the right side of this equation in terms of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p-1}$ and we then have the vector \mathbf{v}_{p} expressed as a linear combination of the other $p-1$ vectors in S, implying that S is a linearly dependent set Theorem DLDS (149), contrary to our lone hypothesis about S.

Finally, it is a simple matter to establish that T is an orthogonal set, though it will not appear so simple looking. Think about your objects as you work through the following - what is a vector and what is a scalar. Since T^{\prime} is an orthogonal set by induction, most pairs of elements in T are orthogonal. We just need to test inner products between \mathbf{u}_{p} and \mathbf{u}_{i}, for $1 \leq i \leq p-1$. Here we go, using summation notation,

$$
\begin{aligned}
\left\langle\mathbf{u}_{p}, \mathbf{u}_{i}\right\rangle & =\left\langle\mathbf{v}_{p}-\sum_{k=1}^{p-1} \frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{k}\right\rangle}{\left\langle\mathbf{u}_{k}, \mathbf{u}_{k}\right\rangle} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle \\
& =\left\langle\mathbf{v}_{p}, \mathbf{u}_{i}\right\rangle-\left\langle\sum_{k=1}^{p-1} \frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{k}\right\rangle}{\left\langle\mathbf{u}_{k}, \mathbf{u}_{k}\right\rangle} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle
\end{aligned}
$$

$$
\text { Theorem IPVA } 165
$$

$$
\begin{array}{ll}
=\left\langle\mathbf{v}_{p}, \mathbf{u}_{i}\right\rangle-\sum_{k=1}^{p-1}\left\langle\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{k}\right\rangle}{\left\langle\mathbf{u}_{k}, \mathbf{u}_{k}\right\rangle} \mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle & \text { Theorem IPVA } 165 \\
=\left\langle\mathbf{v}_{p}, \mathbf{u}_{i}\right\rangle-\sum_{k=1}^{p-1} \frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{k}\right\rangle}{\left\langle\mathbf{u}_{k}, \mathbf{u}_{k}\right\rangle}\left\langle\mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle & \text { Theorem IPSM } 165 \\
=\left\langle\mathbf{v}_{p}, \mathbf{u}_{i}\right\rangle-\frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{i}\right\rangle}{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle}\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle-\sum_{k \neq i} \frac{\left\langle\mathbf{v}_{p}, \mathbf{u}_{k}\right\rangle}{\left\langle\mathbf{u}_{k}, \mathbf{u}_{k}\right\rangle}(0) & \text { Induction Hypothesis } \\
=\left\langle\mathbf{v}_{p}, \mathbf{u}_{i}\right\rangle-\left\langle\mathbf{v}_{p}, \mathbf{u}_{i}\right\rangle-\sum_{k \neq i} 0 & \\
=0 &
\end{array}
$$

Example GSTV

Gram-Schmidt of three vectors

We will illustrate the Gram-Schmidt process with three vectors. Begin with the linearly independent (check this!) set

$$
S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{c}
1 \\
1+i \\
1
\end{array}\right],\left[\begin{array}{c}
-i \\
1 \\
1+i
\end{array}\right],\left[\begin{array}{l}
0 \\
i \\
i
\end{array}\right]\right\}
$$

Then

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
1+i \\
1
\end{array}\right] \\
& \mathbf{u}_{2}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{v}_{2}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}=\frac{1}{4}\left[\begin{array}{c}
-2-3 i \\
1-i \\
2+5 i
\end{array}\right] \\
& \mathbf{u}_{3}=\mathbf{v}_{3}-\frac{\left\langle\mathbf{v}_{3}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}-\frac{\left\langle\mathbf{v}_{3}, \mathbf{u}_{2}\right\rangle}{\left\langle\mathbf{u}_{2}, \mathbf{u}_{2}\right\rangle} \mathbf{u}_{2}=\frac{1}{11}\left[\begin{array}{c}
-3-i \\
1+3 i \\
-1-i
\end{array}\right]
\end{aligned}
$$

and

$$
T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\left\{\left[\begin{array}{c}
1 \\
1+i \\
1
\end{array}\right], \frac{1}{4}\left[\begin{array}{c}
-2-3 i \\
1-i \\
2+5 i
\end{array}\right], \frac{1}{11}\left[\begin{array}{c}
-3-i \\
1+3 i \\
-1-i
\end{array}\right]\right\}
$$

is an orthogonal set (which you can check) of nonzero vectors and $\langle T\rangle=\langle S\rangle$ (all by Theorem GSPCV (170). Of course, as a by-product of orthogonality, the set T is also linearly independent (Theorem OSLI 170).

One final definition related to orthogonal vectors.

Definition ONS

OrthoNormal Set
Suppose $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of vectors such that $\left\|\mathbf{u}_{i}\right\|=1$ for all $1 \leq i \leq n$. Then S is an orthonormal set of vectors.

Once you have an orthogonal set, it is easy to convert it to an orthonormal set - multiply each vector by the reciprocal of its norm, and the resulting vector will have norm 1 . This scaling of each vector will not affect the orthogonality properties (apply Theorem IPSM (165).

Example ONTV

Orthonormal set, three vectors

The set

$$
T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\left\{\left[\begin{array}{c}
1 \\
1+i \\
1
\end{array}\right], \frac{1}{4}\left[\begin{array}{c}
-2-3 i \\
1-i \\
2+5 i
\end{array}\right], \frac{1}{11}\left[\begin{array}{c}
-3-i \\
1+3 i \\
-1-i
\end{array}\right]\right\}
$$

from Example GSTV 172 is an orthogonal set. We compute the norm of each vector,

$$
\left\|\mathbf{u}_{1}\right\|=2 \quad\left\|\mathbf{u}_{2}\right\|=\frac{1}{2} \sqrt{11} \quad\left\|\mathbf{u}_{3}\right\|=\frac{\sqrt{2}}{\sqrt{11}}
$$

Converting each vector to a norm of 1 , yields an orthonormal set,

$$
\begin{aligned}
& \mathbf{w}_{1}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1+i \\
1
\end{array}\right] \\
& \mathbf{w}_{2}=\frac{1}{\frac{1}{2} \sqrt{11}} \frac{1}{4}\left[\begin{array}{c}
-2-3 i \\
1-i \\
2+5 i
\end{array}\right]=\frac{1}{2 \sqrt{11}}\left[\begin{array}{c}
-2-3 i \\
1-i \\
2+5 i
\end{array}\right] \\
& \mathbf{w}_{3}=\frac{1}{\frac{\sqrt{2}}{\sqrt{11}}} \frac{1}{11}\left[\begin{array}{c}
-3-i \\
1+3 i \\
-1-i
\end{array}\right]=\frac{1}{\sqrt{22}}\left[\begin{array}{c}
-3-i \\
1+3 i \\
-1-i
\end{array}\right]
\end{aligned}
$$

Example ONFV

Orthonormal set, four vectors

As an exercise convert the linearly independent set

$$
S=\left\{\left[\begin{array}{c}
1+i \\
1 \\
1-i \\
i
\end{array}\right],\left[\begin{array}{c}
i \\
1+i \\
-1 \\
-i
\end{array}\right],\left[\begin{array}{c}
i \\
-i \\
-1+i \\
1
\end{array}\right],\left[\begin{array}{c}
-1-i \\
i \\
1 \\
-1
\end{array}\right]\right\}
$$

to an orthogonal set via the Gram-Schmidt Process Theorem GSPCV 170) and then scale the vectors to norm 1 to create an orthonormal set. You should get the same set you would if you scaled the orthogonal set of Example AOS 169 to become an orthonormal set.

It is crazy to do all but the simplest and smallest instances of the Gram-Schmidt procedure by hand. Well, OK, maybe just once or twice to get a good understanding of Theorem GSPCV [170]. After that, let a machine do the work for you. That's what they are for. See: Computation GSP.MMA 660 .

We will see orthonormal sets again in Subsection MINM.UM 224]. They are intimately related to unitary matrices (Definition UM [224) through Theorem CUMOS [225]. Some of the utility of orthonormal sets is captured by Theorem COB 328 in Subsection B.OBC 327. Orthonormal sets appear once again in Section OD 587 where they are key in orthonormal diagonalization.

Subsection READ
 Reading Questions

1. Is the set

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
5 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{c}
8 \\
4 \\
-2
\end{array}\right]\right\}
$$

an orthogonal set? Why?
2. What is the distinction between an orthogonal set and an orthonormal set?
3. What is nice about the output of the Gram-Schmidt process?

Subsection EXC
 Exercises

C20 Complete Example AOS 169 by verifying that the four remaining inner products are zero.
Contributed by Robert Beezer
C21 Verify that the set T created in Example GSTV 172 by the Gram-Schmidt Procedure is an orthogonal set.
Contributed by Robert Beezer
T10 Prove part 1 of the conclusion of Theorem IPVA 165.
Contributed by Robert Beezer
T11 Prove part 1 of the conclusion of Theorem IPSM 165.
Contributed by Robert Beezer

Chapter M Matrices

We have made frequent use of matrices for solving systems of equations, and we have begun to investigate a few of their properties, such as the null space and nonsingularity. In this chapter, we will take a more systematic approach to the study of matrices.

Section MO
 Matrix Operations

In this section we will back up and start simple. First a definition of a totally general set of matrices.

Definition VSM

Vector Space of $m \times n$ Matrices

The vector space $M_{m n}$ is the set of all $m \times n$ matrices with entries from the set of complex numbers. (This definition contains Notation VSM.)

Subsection MEASM
 Matrix Equality, Addition, Scalar Multiplication

Just as we made, and used, a careful definition of equality for column vectors, so too, we have precise definitions for matrices.

Definition ME

Matrix Equality
The $m \times n$ matrices A and B are equal, written $A=B$ provided $[A]_{i j}=[B]_{i j}$ for all $1 \leq i \leq m, 1 \leq j \leq n$.
(This definition contains Notation ME.)
So equality of matrices translates to the equality of complex numbers, on an entry-by-entry basis. Notice that we now have yet another definition that uses the symbol "=" for shorthand. Whenever a theorem has a conclusion saying two matrices are equal (think about your objects), we will consider appealing to this definition as a way of formulating the top-level structure of the proof. We will now define two operations on the set $M_{m n}$. Again, we will overload a symbol (' + ') and a convention (juxtaposition for scalar multiplication).

Definition MA
 Matrix Addition

Given the $m \times n$ matrices A and B, define the sum of A and B as an $m \times n$ matrix, written $A+B$,
according to

$$
[A+B]_{i j}=[A]_{i j}+[B]_{i j} \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

(This definition contains Notation MA.)
So matrix addition takes two matrices of the same size and combines them (in a natural way!) to create a new matrix of the same size. Perhaps this is the "obvious" thing to do, but it doesn't relieve us from the obligation to state it carefully.

Example MA

Addition of two matrices in M_{23} If

$$
A=\left[\begin{array}{ccc}
2 & -3 & 4 \\
1 & 0 & -7
\end{array}\right] \quad B=\left[\begin{array}{ccc}
6 & 2 & -4 \\
3 & 5 & 2
\end{array}\right]
$$

then

$$
A+B=\left[\begin{array}{ccc}
2 & -3 & 4 \\
1 & 0 & -7
\end{array}\right]+\left[\begin{array}{ccc}
6 & 2 & -4 \\
3 & 5 & 2
\end{array}\right]=\left[\begin{array}{ccc}
2+6 & -3+2 & 4+(-4) \\
1+3 & 0+5 & -7+2
\end{array}\right]=\left[\begin{array}{ccc}
8 & -1 & 0 \\
4 & 5 & -5
\end{array}\right]
$$

Our second operation takes two objects of different types, specifically a number and a matrix, and combines them to create another matrix. As with vectors, in this context we call a number a scalar in order to emphasize that it is not a matrix.

Definition MSM

Matrix Scalar Multiplication
Given the $m \times n$ matrix A and the scalar $\alpha \in \mathbb{C}$, the scalar multiple of A is an $m \times n$ matrix, written αA and defined according to

$$
[\alpha A]_{i j}=\alpha[A]_{i j} \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

(This definition contains Notation MSM.)
Notice again that we have yet another kind of multiplication, and it is again written putting two symbols side-by-side. Computationally, scalar matrix multiplication is very easy.

Example MSM

Scalar multiplication in M_{32}
If

$$
A=\left[\begin{array}{cc}
2 & 8 \\
-3 & 5 \\
0 & 1
\end{array}\right]
$$

and $\alpha=7$, then

$$
\alpha A=7\left[\begin{array}{cc}
2 & 8 \\
-3 & 5 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
7(2) & 7(8) \\
7(-3) & 7(5) \\
7(0) & 7(1)
\end{array}\right]=\left[\begin{array}{cc}
14 & 56 \\
-21 & 35 \\
0 & 7
\end{array}\right]
$$

Subsection VSP
 Vector Space Properties

With definitions of matrix addition and scalar multiplication we can now state, and prove, several properties of each operation, and some properties that involve their interplay. We now collect ten of them here for later reference.

Theorem VSPM

Vector Space Properties of Matrices

Suppose that $M_{m n}$ is the set of all $m \times n$ matrices (Definition VSM 177) with addition and scalar multiplication as defined in Definition MA 177 and Definition MSM 178]. Then

- ACM Additive Closure, Matrices

If $A, B \in M_{m n}$, then $A+B \in M_{m n}$.

- SCM Scalar Closure, Matrices

If $\alpha \in \mathbb{C}$ and $A \in M_{m n}$, then $\alpha A \in M_{m n}$.

- CM Commutativity, Matrices

If $A, B \in M_{m n}$, then $A+B=B+A$.

- AAM Additive Associativity, Matrices

If $A, B, C \in M_{m n}$, then $A+(B+C)=(A+B)+C$.

- ZM Zero Vector, Matrices

There is a matrix, \mathcal{O}, called the zero matrix, such that $A+\mathcal{O}=A$ for all $A \in M_{m n}$.

- AIM Additive Inverses, Matrices

If $A \in M_{m n}$, then there exists a matrix $-A \in M_{m n}$ so that $A+(-A)=\mathcal{O}$.

- SMAM Scalar Multiplication Associativity, Matrices

If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{m n}$, then $\alpha(\beta A)=(\alpha \beta) A$.

- DMAM Distributivity across Matrix Addition, Matrices

If $\alpha \in \mathbb{C}$ and $A, B \in M_{m n}$, then $\alpha(A+B)=\alpha A+\alpha B$.

- DSAM Distributivity across Scalar Addition, Matrices

If $\alpha, \beta \in \mathbb{C}$ and $A \in M_{m n}$, then $(\alpha+\beta) A=\alpha A+\beta A$.

- OM One, Matrices

If $A \in M_{m n}$, then $1 A=A$.

Proof While some of these properties seem very obvious, they all require proof. However, the proofs are not very interesting, and border on tedious. We'll prove one version of distributivity very carefully, and you can test your proof-building skills on some of the others. We'll give our new notation for matrix entries a workout here. Compare the style of the proofs here with those given for vectors in Theorem VSPCV 82 - while the objects here are more complicated, our notation makes the proofs cleaner.

To prove Property DSAM [179], $(\alpha+\beta) A=\alpha A+\beta A$, we need to establish the equality of two matrices (see Technique GS 675). Definition ME 177 says we need to establish the equality of their entries, one-by-one. How do we do this, when we do not even know how many entries the two matrices might have? This is where Notation ME 177 comes into play. Ready? Here we go.

For any i and $j, 1 \leq i \leq m, 1 \leq j \leq n$,

$$
\begin{aligned}
{[(\alpha+\beta) A]_{i j} } & =(\alpha+\beta)[A]_{i j} & & \text { Definition MSM 178 } \\
& =\alpha[A]_{i j}+\beta[A]_{i j} & & \text { Distributivity in } \mathbb{C} \\
& =[\alpha A]_{i j}+[\beta A]_{i j} & & \text { Definition MSM } 178 \\
& =[\alpha A+\beta A]_{i j} & & \text { Definition MA 177 }
\end{aligned}
$$

There are several things to notice here. (1) Each equals sign is an equality of numbers. (2) The two ends of the equation, being true for any i and j, allow us to conclude the equality of the matrices by Definition ME 177. (3) There are several plus signs, and several instances of juxtaposition. Identify each one, and state exactly what operation is being represented by each.

For now, note the similarities between Theorem VSPM 179 about matrices and Theorem VSPCV 82 about vectors.

The zero matrix described in this theorem, \mathcal{O}, is what you would expect - a matrix full of zeros.

Definition ZM

Zero Matrix

The $m \times n$ zero matrix is written as $\mathcal{O}=\mathcal{O}_{m \times n}$ and defined by $[\mathcal{O}]_{i j}=0$, for all $1 \leq i \leq m, 1 \leq j \leq n$.
(This definition contains Notation ZM.)

Subsection TSM

Transposes and Symmetric Matrices

We describe one more common operation we can perform on matrices. Informally, to transpose a matrix is to build a new matrix by swapping its rows and columns.

Definition TM

Transpose of a Matrix
Given an $m \times n$ matrix A, its transpose is the $n \times m$ matrix A^{t} given by

$$
\left[A^{t}\right]_{i j}=[A]_{j i}, \quad 1 \leq i \leq n, 1 \leq j \leq m .
$$

(This definition contains Notation TM.)

Example TM

Transpose of a 3×4 matrix
Suppose

$$
D=\left[\begin{array}{cccc}
3 & 7 & 2 & -3 \\
-1 & 4 & 2 & 8 \\
0 & 3 & -2 & 5
\end{array}\right] .
$$

We could formulate the transpose, entry-by-entry, using the definition. But it is easier to just systematically rewrite rows as columns (or vice-versa). The form of the definition given will be more useful in proofs. So we have

$$
D^{t}=\left[\begin{array}{ccc}
3 & -1 & 0 \\
7 & 4 & 3 \\
2 & 2 & -2 \\
-3 & 8 & 5
\end{array}\right]
$$

It will sometimes happen that a matrix is equal to its transpose. In this case, we will call a matrix symmetric. These matrices occur naturally in certain situations, and also have some nice properties, so it is worth stating the definition carefully. Informally a matrix is symmetric if we can "flip" it about the main diagonal (upper-left corner, running down to the lower-right corner) and have it look unchanged.

Definition SYM

Symmetric Matrix

The matrix A is symmetric if $A=A^{t}$.

Example SYM

A symmetric 5×5 matrix
The matrix

$$
E=\left[\begin{array}{ccccc}
2 & 3 & -9 & 5 & 7 \\
3 & 1 & 6 & -2 & -3 \\
-9 & 6 & 0 & -1 & 9 \\
5 & -2 & -1 & 4 & -8 \\
7 & -3 & 9 & -8 & -3
\end{array}\right]
$$

is symmetric.
You might have noticed that Definition SYM 181 did not specify the size of the matrix A, as has been our custom. That's because it wasn't necessary. An alternative would have been to state the definition just for square matrices, but this is the substance of the next proof. Before reading the next proof, we want to offer you some advice about how to become more proficient at constructing proofs. Perhaps you can apply this advice to the next theorem. Have a peek at Technique P 681 now.

Theorem SMS

Symmetric Matrices are Square

Suppose that A is a symmetric matrix. Then A is square.
Proof We start by specifying A 's size, without assuming it is square, since we are trying to prove that, so we can't also assume it. Suppose A is an $m \times n$ matrix. Because A is symmetric, we know by Definition SM 367 that $A=A^{t}$. So, in particular, Definition ME 177 requires that A and A^{t} must have the same size. The size of A^{t} is $n \times m$. Because A has m rows and A^{t} has n rows, we conclude that $m=n$, and hence A must be square by Definition SQM 67 .

We finish this section with three easy theorems, but they illustrate the interplay of our three new operations, our new notation, and the techniques used to prove matrix equalities.

Theorem TMA

Transpose and Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $(A+B)^{t}=A^{t}+B^{t}$.
Proof The statement to be proved is an equality of matrices, so we work entry-by-entry and use Definition ME 177. Think carefully about the objects involved here, and the many uses of the plus sign.

$$
\begin{array}{rlrl}
{\left[(A+B)^{t}\right]_{i j}} & =[A+B]_{j i} & & \text { Definition TM } 180 \\
& =[A]_{j i}+[B]_{j i} & & \text { Definition MA } 177 \\
& =\left[A^{t}\right]_{i j}+\left[B^{t}\right]_{i j} & & \text { Definition TM } 180 \\
& =\left[A^{t}+B^{t}\right]_{i j} & & \text { Definition MA } 177 \\
\hline
\end{array}
$$

Since the matrices $(A+B)^{t}$ and $A^{t}+B^{t}$ agree at each entry, Definition ME 177 tells us the two matrices are equal.

Theorem TMSM

Transpose and Matrix Scalar Multiplication

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $(\alpha A)^{t}=\alpha A^{t}$.
Proof The statement to be proved is an equality of matrices, so we work entry-by-entry and use Definition ME 177. Think carefully about the objects involved here, the many uses of juxtaposition.

$$
\begin{aligned}
{\left[(\alpha A)^{t}\right]_{i j} } & =[\alpha A]_{j i} & & \text { Definition TM 180 } \\
& =\alpha[A]_{j i} & & \text { Definition MSM 178 } \\
& =\alpha\left[A^{t}\right]_{i j} & & \text { Definition TM 180 } \\
& =\left[\alpha A^{t}\right]_{i j} & & \text { Definition MSM 178 }
\end{aligned}
$$

Since the matrices $(\alpha A)^{t}$ and αA^{t} agree at each entry, Definition ME 177 tells us the two matrices are equal.

Theorem TT

Transpose of a Transpose

Suppose that A is an $m \times n$ matrix. Then $\left(A^{t}\right)^{t}=A$.
Proof We again want to prove an equality of matrices, so we work entry-by-entry and use Definition ME 177.

$$
\begin{aligned}
{\left[\left(A^{t}\right)^{t}\right]_{i j} } & =\left[A^{t}\right]_{j i} & & \text { Definition TM } 180 \\
& =[A]_{i j} & & \text { Definition TM } 180
\end{aligned}
$$

Its usually straightforward to coax the transpose of a matrix out of a computational device. See: Computation TM.MMA 661 Computation TM.TI86 663.

Subsection MCC

Matrices and Complex Conjugation

As we did with vectors Definition CCCV 163), we can define what it means to take the conjugate of a matrix.

Definition CCM

Complex Conjugate of a Matrix

Suppose A is an $m \times n$ matrix. Then the conjugate of A, written \bar{A} is an $m \times n$ matrix defined by

$$
[\bar{A}]_{i j}=\overline{[A]_{i j}}
$$

(This definition contains Notation CCM.)

Example CCM

Complex conjugate of a matrix
If

$$
A=\left[\begin{array}{ccc}
2-i & 3 & 5+4 i \\
-3+6 i & 2-3 i & 0
\end{array}\right]
$$

then

$$
\bar{A}=\left[\begin{array}{ccc}
2+i & 3 & 5-4 i \\
-3-6 i & 2+3 i & 0
\end{array}\right]
$$

The interplay between the conjugate of a matrix and the two operations on matrices is what you might expect.

Theorem CRMA

Conjugation Respects Matrix Addition

Suppose that A and B are $m \times n$ matrices. Then $\overline{A+B}=\bar{A}+\bar{B}$.

Proof

$$
\begin{aligned}
{[\overline{A+B}]_{i j} } & =\overline{[A+B]_{i j}} & & \text { Definition CCM 182 } \\
& =\overline{[A]_{i j}+[B]_{i j}} & & \text { Definition MA } 177 \\
& =\overline{[A]_{i j}}+\overline{[B]_{i j}} & & \text { Theorem CCRA 66 } \\
& =[\bar{A}]_{i j}+[\bar{B}]_{i j} & & \text { Definition CCM 182 } \\
& =[\bar{A}+\bar{B}]_{i j} & & \text { Definition MA 177 }
\end{aligned}
$$

Since the matrices $\overline{A+B}$ and $\bar{A}+\bar{B}$ are equal in each entry, Definition ME 177 says that $\overline{A+B}=\bar{A}+\bar{B}$.

Theorem CRMSM

Conjugation Respects Matrix Scalar Multiplication

Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $\overline{\alpha A}=\bar{\alpha} \bar{A}$.

Proof

$$
\begin{aligned}
{[\overline{\alpha A}]_{i j} } & =\overline{[\alpha A]_{i j}} & & \text { Definition CCM 182 } \\
& =\overline{\alpha[A]_{i j}} & & \text { Definition MSM 178 } \\
& =\bar{\alpha} \overline{[A]}_{i j} & & \text { Theorem CCRM 667 } \\
& =\bar{\alpha}[\bar{A}]_{i j} & & \text { Definition CCM 182 } \\
& =[\bar{\alpha} \bar{A}]_{i j} & & \text { Definition MSM 178 }
\end{aligned}
$$

Since the matrices $\overline{\alpha A}$ and $\bar{\alpha} \bar{A}$ are equal in each entry, Definition ME 177 says that $\overline{\alpha A}=\bar{\alpha} \bar{A}$.

Theorem CCM

Conjugate of the Conjugate of a Matrix

Suppose that A is an $m \times n$ matrix. Then $\overline{(\bar{A})}=A$.
Proof For $1 \leq i \leq m, 1 \leq j \leq n$,

$$
\begin{aligned}
{[\overline{(\bar{A})}]_{i j} } & =\overline{[\overline{[A}]_{i j}} & & \text { Definition CCM } 182 \\
& =\overline{\overline{[A]_{i j}}} & & \text { Definition CCM } 182 \\
& =[A]_{i j} & & \text { Theorem CCT } 668
\end{aligned}
$$

Since the matrices $\overline{(\bar{A})}$ and A are equal in each entry, Definition ME 177 says that $\overline{(\bar{A})}=A$.
Finally, we will need the following result about matrix conjugation and transposes later.

Theorem MCT

Matrix Conjugation and Transposes

Suppose that A is an $m \times n$ matrix. Then $\overline{\left(A^{t}\right)}=(\bar{A})^{t}$.

Proof

$$
\begin{aligned}
{\left[\overline{\left(A^{t}\right)}\right]_{i j} } & =\overline{\left[A^{t}\right]_{i j}} & & \text { Definition CCM 182 } \\
& =\overline{[A]_{j i}} & & \text { Definition TM 180 } \\
& =[\bar{A}]_{j i} & & \text { Definition CCM 182 } \\
& =\left[(\bar{A})^{t}\right]_{i j} & & \text { Definition TM 180 }
\end{aligned}
$$

Since the matrices $\overline{\left(A^{t}\right)}$ and $(\bar{A})^{t}$ are equal in each entry, Definition ME 177 says that $\overline{\left(A^{t}\right)}=(\bar{A})^{t}$.

Subsection AM
 Adjoint of a Matrix

The combination of transposing and conjugating a matrix will be important in subsequent sections, such as Subsection MINM.UM 224 and Section OD 587. We make a key definition here and prove some basic results in the same spirit as those above.

Definition A

Adjoint

If A is a square matrix, then its adjoint is $A^{*}=(\bar{A})^{t}$.
(This definition contains Notation A.)
You will see the adjoint written elsewhere variously as A^{H}, A^{*} or A^{\dagger}. Notice that Theorem MCT 184 says it does not really matter if we conjugate and then transpose, or transpose and then conjugate.

Theorem AMA

Adjoint and Matrix Addition

Suppose A and B are matrices of the same size. Then $(A+B)^{*}=A^{*}+B^{*}$.

Proof

$$
\begin{aligned}
(A+B)^{*} & =(\overline{A+B})^{t} & & \text { Definition A 184 } \\
& =(\bar{A}+\bar{B})^{t} & & \text { Theorem CRMA 183 } \\
& =(\bar{A})^{t}+(\bar{B})^{t} & & \text { Theorem TMA 181 } \\
& =A^{*}+B^{*} & & \text { Definition A 184 }
\end{aligned}
$$

Theorem AMSM

Adjoint and Matrix Scalar Multiplication
Suppose $\alpha \in \mathbb{C}$ is a scalar and A is a matrix. Then $(\alpha A)^{*}=\bar{\alpha} A^{*}$.

Proof

$$
\begin{aligned}
(\alpha A)^{*} & =(\overline{\alpha A})^{t} & & \text { Definition A 184 } \\
& =(\bar{\alpha} \bar{A})^{t} & & \text { Theorem CRMSM 183 }
\end{aligned}
$$

$$
\begin{array}{ll}
=\bar{\alpha}(\bar{A})^{t} & \text { Theorem TMSM } 182 \\
=\bar{\alpha} A^{*} & \text { Definition A 184 }
\end{array}
$$

Theorem AA

Adjoint of an Adjoint

Suppose that A is a matrix. Then $\left(A^{*}\right)^{*}=A$

Proof

$$
\begin{aligned}
\left(A^{*}\right)^{*} & =\left(\overline{\left(A^{*}\right)}\right)^{t} & & \text { Definition A 184 } \\
& =\overline{\left(\left(A^{*}\right)^{t}\right)} & & \text { Theorem MCT 184 } \\
& =\overline{\left(\left((\bar{A})^{t}\right)^{t}\right)} & & \text { Definition A 184 } \\
& =\overline{(\bar{A})} & & \text { Theorem TT 182 } \\
& =A & & \text { Theorem CCM 183 }
\end{aligned}
$$

Take note of how the theorems in this section, while simple, build on earlier theorems and definitions and never descend to the level of entry-by-entry proofs based on Definition ME 177.

Subsection READ Reading Questions

1. Perform the following matrix computation.

$$
\text { (6) }\left[\begin{array}{cccc}
2 & -2 & 8 & 1 \\
4 & 5 & -1 & 3 \\
7 & -3 & 0 & 2
\end{array}\right]+(-2)\left[\begin{array}{cccc}
2 & 7 & 1 & 2 \\
3 & -1 & 0 & 5 \\
1 & 7 & 3 & 3
\end{array}\right]
$$

2. Theorem VSPM 179 reminds you of what previous theorem? How strong is the similarity?
3. Compute the transpose of the matrix below.

$$
\left[\begin{array}{ccc}
6 & 8 & 4 \\
-2 & 1 & 0 \\
9 & -5 & 6
\end{array}\right]
$$

Subsection EXC
 Exercises
 HT

In Chapter V 79 we defined the operations of vector addition and vector scalar multiplication in Definition CVA 80] and Definition CVSM 81. These two operations formed the underpinnings of the remainder of the chapter. We have now defined similar operations for matrices in Definition MA 177 and Definition MSM 178. You will have noticed the resulting similarities between Theorem VSPCV 82 and Theorem VSPM [179].

In Exercises M20-M25, you will be asked to extend these similarities to other fundamental definitions and concepts we first saw in Chapter V 79. This sequence of problems was suggested by Martin Jackson.

M20 Suppose $S=\left\{B_{1}, B_{2}, B_{3}, \ldots, B_{p}\right\}$ is a set of matrices from $M_{m n}$. Formulate appropriate definitions for the following terms and give an example of the use of each.

1. A linear combination of elements of S.
2. A relation of linear dependence on S, both trivial and non-trivial.
3. S is a linearly independent set.
4. $\langle S\rangle$.

Contributed by Robert Beezer

M21 Show that the set S is linearly independent in $M_{2,2}$.

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Contributed by Robert Beezer
M22 Determine if the set

$$
S=\left\{\left[\begin{array}{lll}
-2 & 3 & 4 \\
-1 & 3 & -2
\end{array}\right],\left[\begin{array}{ccc}
4 & -2 & 2 \\
0 & -1 & 1
\end{array}\right],\left[\begin{array}{ccc}
-1 & -2 & -2 \\
2 & 2 & 2
\end{array}\right],\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & -2
\end{array}\right],\left[\begin{array}{ccc}
-1 & 2 & -2 \\
0 & -1 & -2
\end{array}\right]\right\}
$$

is linearly independent in $M_{2,3}$.

Contributed by Robert Beezer

M23 Determine if the matrix A is in the span of S. In other words, is $A \in\langle S\rangle$? If so write A as a linear combination of the elements of S.

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
-13 & 24 & 2 \\
-8 & -2 & -20
\end{array}\right] \\
S & =\left\{\left[\begin{array}{lll}
-2 & 3 & 4 \\
-1 & 3 & -2
\end{array}\right],\left[\begin{array}{lll}
4 & -2 & 2 \\
0 & -1 & 1
\end{array}\right],\left[\begin{array}{ccc}
-1 & -2 & -2 \\
2 & 2 & 2
\end{array}\right],\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & -2
\end{array}\right],\left[\begin{array}{ccc}
-1 & 2 & -2 \\
0 & -1 & -2
\end{array}\right]\right\}
\end{aligned}
$$

Contributed by Robert Beezer
M24 Suppose Y is the set of all 3×3 symmetric matrices (Definition SYM 181). Find a set T so that T is linearly independent and $\langle T\rangle=Y$.
Contributed by Robert Beezer

M25 Define a subset of $M_{3,3}$ by

$$
U_{33}=\left\{A \in M_{3,3} \mid[A]_{i j}=0 \text { whenever } i>j\right\}
$$

Find a set R so that R is linearly independent and $\langle R\rangle=U_{33}$.
Contributed by Robert Beezer
T13 Prove Property CM 179 of Theorem VSPM 179 . Write your proof in the style of the proof of Property DSAM [179] given in this section.
Contributed by Robert Beezer Solution 188
T17 Prove Property SMAM 179, of Theorem VSPM 179. Write your proof in the style of the proof of Property DSAM 179 given in this section.
Contributed by Robert Beezer
T18 Prove Property DMAM 179 of Theorem VSPM 179. Write your proof in the style of the proof of Property DSAM 179 given in this section.
Contributed by Robert Beezer

Subsection SOL Solutions

T13 Contributed by Robert Beezer Statement 187
For all $A, B \in M_{m n}$ and for all $1 \leq i \leq m, 1 \leq i \leq n$,

$$
\begin{aligned}
{[A+B]_{i j} } & =[A]_{i j}+[B]_{i j} & & \text { Definition MA } 177 \\
& =[B]_{i j}+[A]_{i j} & & \text { Commutativity in } \mathbb{C} \\
& =[B+A]_{i j} & & \text { Definition MA } 1777
\end{aligned}
$$

With equality of each entry of the matrices $A+B$ and $B+A$ being equal Definition ME 177 tells us the two matrices are equal.

Section MM Matrix Multiplication

We know how to add vectors and how to multiply them by scalars. Together, these operations give us the possibility of making linear combinations. Similarly, we know how to add matrices and how to multiply matrices by scalars. In this section we mix all these ideas together and produce an operation known as matrix multiplication. This will lead to some results that are both surprising and central. We begin with a definition of how to multiply a vector by a matrix.

Subsection MVP
 Matrix-Vector Product

We have repeatedly seen the importance of forming linear combinations of the columns of a matrix. As one example of this, the oft-used Theorem SLSLC 90, said that every solution to a system of linear equations gives rise to a linear combination of the column vectors of the coefficient matrix that equals the vector of constants. This theorem, and others, motivate the following central definition.

Definition MVP

Matrix-Vector Product

Suppose A is an $m \times n$ matrix with columns $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$ and \mathbf{u} is a vector of size n. Then the matrix-vector product of A with \mathbf{u} is the linear combination

$$
A \mathbf{u}=[\mathbf{u}]_{1} \mathbf{A}_{1}+[\mathbf{u}]_{2} \mathbf{A}_{2}+[\mathbf{u}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{u}]_{n} \mathbf{A}_{n}
$$

(This definition contains Notation MVP.)
So, the matrix-vector product is yet another version of "multiplication," at least in the sense that we have yet again overloaded juxtaposition of two symbols as our notation. Remember your objects, an $m \times n$ matrix times a vector of size n will create a vector of size m. So if A is rectangular, then the size of the vector changes. With all the linear combinations we have performed so far, this computation should now seem second nature.

Example MTV

A matrix times a vector

Consider

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 2 & 3 & 4 \\
-3 & 2 & 0 & 1 & -2 \\
1 & 6 & -3 & -1 & 5
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{c}
2 \\
1 \\
-2 \\
3 \\
-1
\end{array}\right]
$$

Then

$$
A \mathbf{u}=2\left[\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right]+1\left[\begin{array}{l}
4 \\
2 \\
6
\end{array}\right]+(-2)\left[\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right]+3\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right]+(-1)\left[\begin{array}{c}
4 \\
-2 \\
5
\end{array}\right]=\left[\begin{array}{l}
7 \\
1 \\
6
\end{array}\right] .
$$

This definition now makes it possible to represent systems of linear equations compactly in terms of an operation.

Theorem SLEMM

Systems of Linear Equations as Matrix Multiplication

Solutions to the linear system $\mathcal{L S}(A, \mathbf{b})$ are the solutions for \mathbf{x} in the vector equation $A \mathbf{x}=\mathbf{b}$.
Proof This theorem says that two sets (of solutions) are equal. So we need to show that one set of solutions is a subset of the other, and vice versa (recall Definition SE 670). Let $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$ be the columns of A. Both of these set inclusions then follow from the following chain of equivalences,

$$
\begin{array}{ll}
\mathbf{x} \text { is a solution to } \mathcal{L S}(A, \mathbf{b}) \\
\Longleftrightarrow[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n}=\mathbf{b} & \text { Theorem SLSLC } 90 \\
\Longleftrightarrow \mathbf{x} \text { is a solution to } A \mathbf{x}=\mathbf{b} & \text { Definition MVP } 189 \\
\hline
\end{array}
$$

Example MNSLE

Matrix notation for systems of linear equations

Consider the system of linear equations from Example NSLE 27.

$$
\begin{aligned}
2 x_{1}+4 x_{2}-3 x_{3}+5 x_{4}+x_{5} & =9 \\
3 x_{1}+x_{2}+x_{4}-3 x_{5} & =0 \\
-2 x_{1}+7 x_{2}-5 x_{3}+2 x_{4}+2 x_{5} & =-3
\end{aligned}
$$

has coefficient matrix

$$
A=\left[\begin{array}{ccccc}
2 & 4 & -3 & 5 & 1 \\
3 & 1 & 0 & 1 & -3 \\
-2 & 7 & -5 & 2 & 2
\end{array}\right]
$$

and vector of constants

$$
\mathbf{b}=\left[\begin{array}{c}
9 \\
0 \\
-3
\end{array}\right]
$$

and so will be described compactly by the vector equation $A \mathbf{x}=\mathbf{b}$.
The matrix-vector product is a very natural computation. We have motivated it by its connections with systems of equations, but here is a another example.

Example MBC

Money's best cities

Every year Money magazine selects several cities in the United States as the "best" cities to live in, based on a wide arrary of statistics about each city. This is an example of how the editors of Money might arrive at a single number that consolidates the statistics about a city. We will analyze Los Angeles, Chicago and New York City, based on four criteria: average high temperature in July (Farenheit), number of colleges and universities in a 30 -mile radius, number of toxic waste sites in the Superfund clean-up program and a personal crime index based on FBI statistics (average $=100$, smaller is safer). It should be apparent how to generalize the example to a greater number of cities and a greater number of statistics.

We begin by building a table of statistics. The rows will be labeled with the cities, and the columns with statistical categories. These values are from Money's website in early 2005.

City	Temp	Colleges	Superfund	Crime
Los Angeles	77	28	93	254
Chicago	84	38	85	363
New York	84	99	1	193

Conceivably these data might reside in a spreadsheet. Now we must combine the statistics for each city. We could accomplish this by weighting each category, scaling the values and summing them. The sizes of the weights would depend upon the numerical size of each statistic generally, but more importantly, they would reflect the editors opinions or beliefs about which statistics were most important to their readers. Is the crime index more important than the number of colleges and universities? Of course, there is no right answer to this question.

Suppose the editors finally decide on the following weights to employ: temperature, 0.23 ; colleges, 0.46 ; Superfund, -0.05 ; crime, -0.20 . Notice how negative weights are used for undesirable statistics. Then, for example, the editors would compute for Los Angeles,

$$
(0.23)(77)+(0.46)(28)+(-0.05)(93)+(-0.20)(254)=-24.86
$$

This computation might remind you of an inner product, but we will produce the computations for all of the cities as a matrix-vector product. Write the table of raw statistics as a matrix

$$
T=\left[\begin{array}{cccc}
77 & 28 & 93 & 254 \\
84 & 38 & 85 & 363 \\
84 & 99 & 1 & 193
\end{array}\right]
$$

and the weights as a vector

$$
\mathbf{w}=\left[\begin{array}{c}
0.23 \\
0.46 \\
-0.05 \\
-0.20
\end{array}\right]
$$

then the matrix-vector product Definition MVP 189) yields

$$
T \mathbf{w}=(0.23)\left[\begin{array}{l}
77 \\
84 \\
84
\end{array}\right]+(0.46)\left[\begin{array}{c}
28 \\
38 \\
99
\end{array}\right]+(-0.05)\left[\begin{array}{c}
93 \\
85 \\
1
\end{array}\right]+(-0.20)\left[\begin{array}{c}
254 \\
363 \\
193
\end{array}\right]=\left[\begin{array}{c}
-24.86 \\
-40.05 \\
26.21
\end{array}\right]
$$

This vector contains a single number for each of the cities being studied, so the editors would rank New York best, Los Angeles next, and Chicago third. Of course, the mayor's offices in Chicago and Los Angeles are free to counter with a different set of weights that cause their city to be ranked best. These alternative weights would be chosen to play to each cities' strengths, and minimize their problem areas.

If a speadsheet were used to make these computations, a row of weights would be entered somewhere near the table of data and the formulas in the spreadsheet would effect a matrix-vector product. This example is meant to illustrate how "linear" computations (addition, multiplication) can be organized as a matrix-vector product.

Another example would be the matrix of numerical scores on examinations and exercises for students in a class. The rows would correspond to students and the columns to exams and assignments. The instructor could then assign weights to the different exams and assignments, and via a matrix-vector product, compute a single score for each student.

Later (much later) we will need the following theorem, which is really a technical lemma (see Technique LC (682). Since we are in a position to prove it now, we will. But you can safely skip it now, if you promise to come back later to study the proof when the theorem is employed.

Theorem EMMVP

Equal Matrices and Matrix-Vector Products

Suppose that A and B are $m \times n$ matrices such that $A \mathbf{x}=B \mathbf{x}$ for every $\mathbf{x} \in \mathbb{C}^{n}$. Then $A=B$.
Proof Since $A \mathbf{x}=B \mathbf{x}$ for all $\mathbf{x} \in \mathbb{C}^{n}$, choose \mathbf{x} to be a vector of all zeros, with a lone 1 in the i-th slot.

Then

$$
\begin{aligned}
A \mathbf{x} & =\left[\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{A}_{3}|\ldots| \mathbf{A}_{n}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \\
& =0 \mathbf{A}_{1}+0 \mathbf{A}_{2}+0 \mathbf{A}_{3}+\cdots+0 \mathbf{A}_{i-1}+1 \mathbf{A}_{i}+0 \mathbf{A}_{i+1}+\cdots+0 \mathbf{A}_{n} \quad \text { Definition MVP 189 } \\
& =\mathbf{A}_{i}
\end{aligned}
$$

Similarly, $B \mathbf{x}=\mathbf{B}_{i}$, so $\mathbf{A}_{i}=\mathbf{B}_{i}, 1 \leq i \leq n$ and so all the columns of A and B are equal. Then our definition of column vector equality (Definition CVE 80) establishes that the individual entries of A and B in each column are equal. So by Definition ME [177] the matrices A and B are equal.

The hypotheses of this theorem could be weakened to suppose only the equality of the matrix-vector products for just the standard unit vectors (Definition SUV 210) or any other basis (Definition B 321) of \mathbb{C}^{n}. However, when we apply this theorem we will only need this weaker form.

Subsection MM
 Matrix Multiplication

We now define how to multiply two matrices together. Stop for a minute and think about how you might define this new operation.

Many books would present this definition much earlier in the course. However, we have taken great care to delay it as long as possible and to present as many ideas as practical based mostly on the notion of linear combinations. Towards the conclusion of the course, or when you perhaps take a second course in linear algebra, you may be in a position to appreciate the reasons for this. For now, understand that matrix multiplication is a central definition and perhaps you will appreciate its importance more by having saved it for later.

Definition MM

Matrix Multiplication

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix with columns $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}, \ldots, \mathbf{B}_{p}$. Then the matrix product of A with B is the $m \times p$ matrix where column i is the matrix-vector product $A \mathbf{B}_{i}$. Symbolically,

$$
A B=A\left[\mathbf{B}_{1}\left|\mathbf{B}_{2}\right| \mathbf{B}_{3}|\ldots| \mathbf{B}_{p}\right]=\left[A \mathbf{B}_{1}\left|A \mathbf{B}_{2}\right| A \mathbf{B}_{3}|\ldots| A \mathbf{B}_{p}\right] .
$$

Example PTM

Product of two matrices

Set

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -1 & 4 & 6 \\
0 & -4 & 1 & 2 & 3 \\
-5 & 1 & 2 & -3 & 4
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 6 & 2 & 1 \\
-1 & 4 & 3 & 2 \\
1 & 1 & 2 & 3 \\
6 & 4 & -1 & 2 \\
1 & -2 & 3 & 0
\end{array}\right]
$$

Then

$$
A B=\left[\left.A\left[\begin{array}{c}
1 \\
-1 \\
1 \\
6 \\
1
\end{array}\right]\left|A\left[\begin{array}{c}
6 \\
4 \\
1 \\
4 \\
-2
\end{array}\right]\right| A\left[\begin{array}{c}
2 \\
3 \\
2 \\
-1 \\
3
\end{array}\right] \right\rvert\, A\left[\begin{array}{l}
1 \\
2 \\
3 \\
2 \\
0
\end{array}\right]\right]=\left[\begin{array}{cccc}
28 & 17 & 20 & 10 \\
20 & -13 & -3 & -1 \\
-18 & -44 & 12 & -3
\end{array}\right] .
$$

Is this the definition of matrix multiplication you expected? Perhaps our previous operations for matrices caused you to think that we might multiply two matrices of the same size, entry-by-entry? Notice that our current definition uses matrices of different sizes (though the number of columns in the first must equal the number of rows in the second), and the result is of a third size. Notice too in the previous example that we cannot even consider the product $B A$, since the sizes of the two matrices in this order aren't right.

But it gets weirder than that. Many of your old ideas about "multiplication" won't apply to matrix multiplication, but some still will. So make no assumptions, and don't do anything until you have a theorem that says you can. Even if the sizes are right, matrix multiplication is not commutative - order matters.

Example MMNC

Matrix multiplication is not commutative

Set

$$
A=\left[\begin{array}{cc}
1 & 3 \\
-1 & 2
\end{array}\right] \quad B=\left[\begin{array}{ll}
4 & 0 \\
5 & 1
\end{array}\right]
$$

Then we have two square, 2×2 matrices, so Definition MM 192 allows us to multiply them in either order. We find

$$
A B=\left[\begin{array}{cc}
19 & 3 \\
6 & 2
\end{array}\right] \quad B A=\left[\begin{array}{cc}
4 & 12 \\
4 & 17
\end{array}\right]
$$

and $A B \neq B A$. Not even close. It should not be hard for you to construct other pairs of matrices that do not commute (try a couple of 3×3 's). Can you find a pair of non-identical matrices that do commute? \boxtimes

Matrix multiplication is fundamental, so it is a natural procedure for any computational device. See: Computation MM.MMA 661.

Subsection MMEE
 Matrix Multiplication, Entry-by-Entry

While certain "natural" properties of multiplication don't hold, many more do. In the next subsection, we'll state and prove the relevant theorems. But first, we need a theorem that provides an alternate means of multiplying two matrices. In many texts, this would be given as the definition of matrix multiplication. We prefer to turn it around and have the following formula as a consequence of our definition. It will prove useful for proofs of matrix equality, where we need to examine products of matrices, entry-by-entry.

Theorem EMP

Entries of Matrix Products

Suppose A is an $m \times n$ matrix and $B=$ is an $n \times p$ matrix. Then for $1 \leq i \leq m, 1 \leq j \leq p$, the individual entries of $A B$ are given by

$$
[A B]_{i j}=[A]_{i 1}[B]_{1 j}+[A]_{i 2}[B]_{2 j}+[A]_{i 3}[B]_{3 j}+\cdots+[A]_{i n}[B]_{n j}
$$

$$
=\sum_{k=1}^{n}[A]_{i k}[B]_{k j}
$$

Proof Denote the columns of A as the vectors $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$ and the columns of B as the vectors $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}, \ldots, \mathbf{B}_{p}$. Then for $1 \leq i \leq m, 1 \leq j \leq p$,

$$
\begin{aligned}
{[A B]_{i j} } & =\left[A \mathbf{B}_{j}\right]_{i} & & \text { Definition MM 192 } \\
& =\left[\left[\mathbf{B}_{j}\right]_{1} \mathbf{A}_{1}+\left[\mathbf{B}_{j}\right]_{2} \mathbf{A}_{2}+\left[\mathbf{B}_{j}\right]_{3} \mathbf{A}_{3}+\cdots+\left[\mathbf{B}_{j}\right]_{n} \mathbf{A}_{n}\right]_{i} & & \text { Definition MVP 189 } \\
& \left.=\left[\left[\mathbf{B}_{j}\right]_{1} \mathbf{A}_{1}\right]_{i}+\left[\left[\mathbf{B}_{j}\right]_{2} \mathbf{A}_{2}\right]_{i}+\left[\left[\mathbf{B}_{j}\right]_{3} \mathbf{A}_{3}\right]+\cdots+\left[\mathbf{B}_{j}\right]_{n} \mathbf{A}_{n}\right]_{i} & & \text { Definition CVA } 80 \\
& =\left[\mathbf{B}_{j}\right]_{1}\left[\mathbf{A}_{1}\right]_{i}+\left[\mathbf{B}_{j}\right]_{2}\left[\mathbf{A}_{2}\right]_{i}+\left[\mathbf{B}_{j}\right]_{3}\left[\mathbf{A}_{3}\right]_{i}+\cdots+\left[\mathbf{B}_{j}\right]_{n}\left[\mathbf{A}_{n}\right]_{i} & & \text { Definition CVSM } 81 \\
& =[B]_{1 j}[A]_{i 1}+[B]_{2 j}[A]_{i 2}+[B]_{3 j}[A]_{i 3}+\cdots+[B]_{n j}[A]_{i n} & & \text { Notation ME 177 } \\
& =[A]_{i 1}[B]_{1 j}+[A]_{i 2}[B]_{2 j}+[A]_{i 3}[B]_{3 j}+\cdots+[A]_{i n}[B]_{n j} & & \text { Commutativity in } \mathbb{C} \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j} & &
\end{aligned}
$$

Example PTMEE

Product of two matrices, entry-by-entry

Consider again the two matrices from Example PTM 192

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -1 & 4 & 6 \\
0 & -4 & 1 & 2 & 3 \\
-5 & 1 & 2 & -3 & 4
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 6 & 2 & 1 \\
-1 & 4 & 3 & 2 \\
1 & 1 & 2 & 3 \\
6 & 4 & -1 & 2 \\
1 & -2 & 3 & 0
\end{array}\right]
$$

Then suppose we just wanted the entry of $A B$ in the second row, third column:

$$
\begin{aligned}
{[A B]_{23} } & =[A]_{21}[B]_{13}+[A]_{22}[B]_{23}+[A]_{23}[B]_{33}+[A]_{24}[B]_{43}+[A]_{25}[B]_{53} \\
& =(0)(2)+(-4)(3)+(1)(2)+(2)(-1)+(3)(3)=-3
\end{aligned}
$$

Notice how there are 5 terms in the sum, since 5 is the common dimension of the two matrices (column count for A, row count for B). In the conclusion of Theorem EMP 193, it would be the index k that would run from 1 to 5 in this computation. Here's a bit more practice.

The entry of third row, first column:

$$
\begin{aligned}
{[A B]_{31} } & =[A]_{31}[B]_{11}+[A]_{32}[B]_{21}+[A]_{33}[B]_{31}+[A]_{34}[B]_{41}+[A]_{35}[B]_{51} \\
& =(-5)(1)+(1)(-1)+(2)(1)+(-3)(6)+(4)(1)=-18
\end{aligned}
$$

To get some more practice on your own, complete the computation of the other 10 entries of this product. Construct some other pairs of matrices (of compatible sizes) and compute their product two ways. First use Definition MM 192. Since linear combinations are straightforward for you now, this should be easy to do and to do correctly. Then do it again, using Theorem EMP 193. Since this process may take some practice, use your first computation to check your work.

Theorem EMP 193 is the way most people compute matrix products by hand. It will also be very useful for the theorems we are going to prove shortly. However, the definition (Definition MM 192]) is frequently the most useful for its connections with deeper ideas like the null space and the upcoming column space.

Subsection PMM
 Properties of Matrix Multiplication

In this subsection, we collect properties of matrix multiplication and its interaction with the zero matrix (Definition ZM [180), the identity matrix (Definition IM 68), matrix addition (Definition MA 177), scalar matrix multiplication (Definition MSM [178]), the inner product (Definition IP [164]), conjugation (Theorem MMCC (198), and the transpose (Definition TM 180). Whew! Here we go. These are great proofs to practice with, so try to concoct the proofs before reading them, they'll get progressively more complicated as we go.

Theorem MMZM

Matrix Multiplication and the Zero Matrix
Suppose A is an $m \times n$ matrix. Then

1. $A \mathcal{O}_{n \times p}=\mathcal{O}_{m \times p}$
2. $\mathcal{O}_{p \times m} A=\mathcal{O}_{p \times n}$

Proof We'll prove (1) and leave (2) to you. Entry-by-entry,

$$
\begin{aligned}
{\left[A \mathcal{O}_{n \times p}\right]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}\left[\mathcal{O}_{n \times p}\right]_{k j} \\
& =\sum_{k=1}^{n}[A]_{i k} 0 \\
& =\sum_{k=1}^{n} 0=0 .
\end{aligned}
$$

Theorem EMP 193

$$
=\sum_{k=1}^{n}[A]_{i k} 0 \quad \text { Definition ZM } 180
$$

So every entry of the product is the scalar zero, i.e. the result is the zero matrix.

Theorem MMIM

Matrix Multiplication and Identity Matrix

Suppose A is an $m \times n$ matrix. Then

1. $A I_{n}=A$
2. $I_{m} A=A$

Proof Again, we'll prove (1) and leave (2) to you. Entry-by-entry,

$$
\begin{aligned}
{\left[A I_{n}\right]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}\left[I_{n}\right]_{k j} \\
& =[A]_{i j}\left[I_{n}\right]_{j j}+\sum_{k=1, k \neq j}^{n}[A]_{i k}\left[I_{n}\right]_{k j} \\
& =[A]_{i j}(1)+\sum_{k=1, k \neq j}^{n}[A]_{i k}(0) \\
& =[A]_{i j}+\sum_{k=1, k \neq j}^{n} 0 \\
& =[A]_{i j}
\end{aligned}
$$

Theorem EMP 193

$$
=[A]_{i j}(1)+\sum_{k=1, k \neq j}^{n}[A]_{i k}(0) \quad \text { Definition IM 68 }
$$

So the matrices A and $A I_{n}$ are equal, entry-by-entry, and by the definition of matrix equality Definition ME 177) we can say they are equal matrices.

It is this theorem that gives the identity matrix its name. It is a matrix that behaves with matrix
multiplication like the scalar 1 does with scalar multiplication. To multiply by the identity matrix is to have no effect on the other matrix.

Theorem MMDAA

Matrix Multiplication Distributes Across Addition

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then

1. $A(B+C)=A B+A C$
2. $(B+C) D=B D+C D$

Proof We'll do (1), you do (2). Entry-by-entry,

$$
\begin{aligned}
{[A(B+C)]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}[B+C]_{k j} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n}[A]_{i k}\left([B]_{k j}+[C]_{k j}\right) & & \text { Definition MA 177 } \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}+[A]_{i k}[C]_{k j} & & \text { Distributivity in } \mathbb{C} \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}+\sum_{k=1}^{n}[A]_{i k}[C]_{k j} & & \text { Commutativity in } \mathbb{C} \\
& =[A B]_{i j}+[A C]_{i j} & & \text { Theorem EMP 193 } \\
& =[A B+A C]_{i j} & & \text { Definition MA 177 }
\end{aligned}
$$

So the matrices $A(B+C)$ and $A B+A C$ are equal, entry-by-entry, and by the definition of matrix equality (Definition ME 177) we can say they are equal matrices.

Theorem MMSMM

Matrix Multiplication and Scalar Matrix Multiplication

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(A B)=(\alpha A) B=A(\alpha B)$.

Proof These are equalities of matrices. We'll do the first one, the second is similar and will be good practice for you.

$$
\begin{aligned}
{[\alpha(A B)]_{i j} } & =\alpha[A B]_{i j} & & \text { Definition MSM 178 } \\
& =\alpha \sum_{k=1}^{n}[A]_{i k}[B]_{k j} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n} \alpha[A]_{i k}[B]_{k j} & & \text { Distributivity in } \mathbb{C} \\
& =\sum_{k=1}^{n}[\alpha A]_{i k}[B]_{k j} & & \text { Definition MSM 178 } \\
& =[(\alpha A) B]_{i j} & & \text { Theorem EMP 193 }
\end{aligned}
$$

So the matrices $\alpha(A B)$ and $(\alpha A) B$ are equal, entry-by-entry, and by the definition of matrix equality (Definition ME 177) we can say they are equal matrices.

Theorem MMA

Matrix Multiplication is Associative

Suppose A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix. Then $A(B D)=(A B) D$.
Proof A matrix equality, so we'll go entry-by-entry, no surprise there.

$$
\begin{aligned}
{[A(B D)]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}[B D]_{k j} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n}[A]_{i k}\left(\sum_{\ell=1}^{p}[B]_{k \ell}[D]_{\ell j}\right) & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n} \sum_{\ell=1}^{p}[A]_{i k}[B]_{k \ell}[D]_{\ell j} & & \text { Distributivity in } \mathbb{C}
\end{aligned}
$$

We can switch the order of the summation since these are finite sums,

$$
=\sum_{\ell=1}^{p} \sum_{k=1}^{n}[A]_{i k}[B]_{k \ell}[D]_{\ell j} \quad \text { Commutativity in } \mathbb{C}
$$

As $[D]_{\ell_{j}}$ does not depend on the index k, we can factor it out of the inner sum,

$$
\begin{array}{ll}
=\sum_{\ell=1}^{p}[D]_{\ell j}\left(\sum_{k=1}^{n}[A]_{i k}[B]_{k \ell}\right) & \\
=\sum_{\ell=1}^{p}[D]_{\ell j}[A B]_{i \ell} & \\
=\sum_{\ell=1}^{p}[A B]_{i \ell}[D]_{\ell j} & \\
=[(A B) D]_{i j} & \\
\text { Theorem EMP 193 } \\
& \\
\text { Theorem EMP 193 }
\end{array}
$$

So the matrices $(A B) D$ and $A(B D)$ are equal, entry-by-entry, and by the definition of matrix equality (Definition ME 177) we can say they are equal matrices.

Theorem MMIP

Matrix Multiplication and Inner Products

If we consider the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{m}$ as $m \times 1$ matrices then

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{t} \overline{\mathbf{v}}
$$

Proof

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{v}\rangle & =\sum_{k=1}^{m}[\mathbf{u}]_{k} \overline{[\mathbf{v}]_{k}} & & \text { Definition IP 164 } \\
& =\sum_{k=1}^{m}[\mathbf{u}]_{k 1} \overline{[\mathbf{v}]_{k 1}} & & \text { Column vectors as matrices } \\
& =\sum_{k=1}^{m}\left[\mathbf{u}^{t}\right]_{1 k} \overline{[\mathbf{v}]_{k 1}} & & \text { Definition TM 180 } \\
& =\sum_{k=1}^{m}\left[\mathbf{u}^{t}\right]_{1 k}[\overline{\mathbf{v}}]_{k 1} & & \text { Definition CCCV 163 }
\end{aligned}
$$

$$
=\left[\mathbf{u}^{t} \overline{\mathbf{v}}\right]_{11} \quad \text { Theorem EMP } 193
$$

To finish we just blur the distinction between a 1×1 matrix ($\left.\mathbf{u}^{t} \overline{\mathbf{v}}\right)$ and its lone entry.

Theorem MMCC

Matrix Multiplication and Complex Conjugation

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $\overline{A B}=\bar{A} \bar{B}$.
Proof To obtain this matrix equality, we will work entry-by-entry,

$$
\begin{aligned}
{[\overline{A B}]_{i j} } & =\overline{[A B]_{i j}} & & \text { Definition CM 26 } \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n} \overline{[A]_{i k}[B]_{k j}} & & \text { Theorem CCRA 667 } \\
& =\sum_{k=1}^{n} \overline{[A]_{i k}} \overline{[B]_{k j}} & & \\
& =\sum_{k=1}^{n}[\bar{A}]_{i k}[\bar{B}]_{k j} & & \text { Theorem CCRM 667 } \\
& =[\bar{A} \bar{B}]_{i j} & & \text { Theorem EMP 193 }
\end{aligned}
$$

So the matrices $\overline{A B}$ and $\bar{A} \bar{B}$ are equal, entry-by-entry, and by the definition of matrix equality Definition ME 177) we can say they are equal matrices.

Another theorem in this style, and its a good one. If you've been practicing with the previous proofs you should be able to do this one yourself.

Theorem MMT

Matrix Multiplication and Transposes

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(A B)^{t}=B^{t} A^{t}$.
Proof This theorem may be surprising but if we check the sizes of the matrices involved, then maybe it will not seem so far-fetched. First, $A B$ has size $m \times p$, so its transpose has size $p \times m$. The product of B^{t} with A^{t} is a $p \times n$ matrix times an $n \times m$ matrix, also resulting in a $p \times m$ matrix. So at least our objects are compatible for equality (and would not be, in general, if we didn't reverse the order of the operation).

Here we go again, entry-by-entry,

$$
\begin{aligned}
{\left[(A B)^{t}\right]_{i j} } & =[A B]_{j i} & & \text { Definition TM 180 } \\
& =\sum_{k=1}^{n}[A]_{j k}[B]_{k i} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n}[B]_{k i}[A]_{j k} & & \text { Commutativity in } \mathbb{C} \\
& =\sum_{k=1}^{n}\left[B^{t}\right]_{i k}\left[A^{t}\right]_{k j} & & \text { Definition TM 180 } \\
& =\left[B^{t} A^{t}\right]_{i j} & & \text { Theorem EMP 193 }
\end{aligned}
$$

So the matrices $(A B)^{t}$ and $B^{t} A^{t}$ are equal, entry-by-entry, and by the definition of matrix equality Definition ME (177) we can say they are equal matrices.

This theorem seems odd at first glance, since we have to switch the order of A and B. But if we simply consider the sizes of the matrices involved, we can see that the switch is necessary for this reason alone. That the individual entries of the products then come along to be equal is a bonus.

As the adjoint of a matrix is a composition of a conjugate and a transpose, its interaction with matrix multiplication is similar to that of a transpose. Here's the last of our long list of basic properties of matrix multiplication.

Theorem MMAD

Matrix Multiplication and Adjoints

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Then $(A B)^{*}=B^{*} A^{*}$.

Proof

$$
\begin{aligned}
(A B)^{*} & =(\overline{A B})^{t} & & \text { Definition A } 184 \\
& =(\bar{A} \bar{B})^{t} & & \text { Theorem MMCC 198 } \\
& =(\bar{B})^{t}(\bar{A})^{t} & & \text { Theorem MMT 198 } \\
& =B^{*} A^{*} & & \text { Definition A 184 }
\end{aligned}
$$

Notice how none of these proofs above relied on writing out huge general matrices with lots of ellipses (${ }^{\prime} . .$. ") and trying to formulate the equalities a whole matrix at a time. This messy business is a "proof technique" to be avoided at all costs. Notice too how the proof of Theorem MMAD 199 does not use an entry-by-entry approach, but simply builds on previous results about matrix multiplication's interaction with conjugation and transposes.

These theorems, along with Theorem VSPM 179 and the other results in Section MO 177, give you the "rules" for how matrices interact with the various operations we have defined on matrices (addition, scalar multiplication, matrix multiplication, conjugation, transposes and adjoints). Use them and use them often. But don't try to do anything with a matrix that you don't have a rule for. Together, we would informally call all these operations, and the attendant theorems, "the algebra of matrices." Notice, too, that every column vector is just a $n \times 1$ matrix, so these theorems apply to column vectors also. Finally, these results, taken as a whole, may make us feel that the definition of matrix multiplication is not so unnatural.

Subsection HM
 Hermitian Matrices
 π

The adjoint of a matrix has a basic property when employed in a matrix-vector product as part of an inner product. At this point, you could even use the following result as a motivation for the definition of an adjoint.

Theorem AIP

Adjoint and Inner Product

Suppose that A is an $m \times n$ matrix and $\mathbf{x} \in \mathbb{C}^{n}, \mathbf{y} \in \mathbb{C}^{m}$. Then $\langle A \mathbf{x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, A^{*} \mathbf{y}\right\rangle$.

Proof

$$
\begin{aligned}
\langle A \mathbf{x}, \mathbf{y}\rangle & =(A \mathbf{x})^{t} \overline{\mathbf{y}} & & \text { Theorem MMIP } 197 \\
& =\mathbf{x}^{t} A^{t} \overline{\mathbf{y}} & & \text { Theorem MMT } 198
\end{aligned}
$$

$$
\begin{array}{ll}
=\mathbf{x}^{t}(\overline{\bar{A}})^{t} \overline{\mathbf{y}} & \\
=\mathbf{x}^{t} \overline{\left((\bar{A})^{t}\right)} \overline{\mathbf{y}} & \\
=\mathbf{x}^{t} \overline{\left(A^{*}\right) \overline{\mathbf{y}}} & \text { Theorem CCM 183 } \\
=\mathbf{x}^{t} \overline{\left(A^{*} \mathbf{y}\right)} & \text { Definition A 184 } \\
=\left\langle\mathbf{x}, A^{*} \mathbf{y}\right\rangle & \\
\text { Theorem MMCC 198 } \\
\hline \text { Theorem MMIP 197 }
\end{array}
$$

Sometimes a matrix is equal to its adjoint (Definition A 184), and these matrices have interesting properties. One of the most common situations where this occurs is when a matrix has only real number entries. Then we are simply talking about symmetric matrices (Definition SYM 181), so you can view this as a generalization of a symmetric matrix.

Definition HM

Hermitian Matrix

The square matrix A is Hermitian (or self-adjoint) if $A=A^{*}$.
Again, the set of real matrices that are Hermitian is exactly the set of symmetric matrices. In Section PEE 413 we will uncover some amazing properties of Hermitian matrices, so when you get there, run back here to remind yourself of this definition. Further properties will also appear in various sections of the Topics Part T 781). Right now we prove a fundamental result about Hermitian matrices, matrix vector products and inner products. As a characterization, this could be employed as a definition of a Hermitian matrix and some authors take this approach.
Theorem HMIP

Hermitian Matrices and Inner Products

Suppose that A is a square matrix of size n. Then A is Hermitian if and only if $\langle A \mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{x}, A \mathbf{y}\rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$.

Proof (\Rightarrow) This is the "easy half" of the proof, and makes the rationale for a definition of Hermitian matrices most obvious. Assume A is Hermitian,

$$
\begin{aligned}
\langle A \mathbf{x}, \mathbf{y}\rangle & =\left\langle\mathbf{x}, A^{*} \mathbf{y}\right\rangle & & \text { Theorem AIP } 199 \\
& =\langle\mathbf{x}, A \mathbf{y}\rangle & & \text { Definition HM } 200
\end{aligned}
$$

(\Leftarrow) This "half" will take a bit more work. Assume that $\langle A \mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{x}, A \mathbf{y}\rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$. Choose any $\mathrm{x} \in \mathbb{C}^{n}$. We want to show that $A=A^{*}$ by establishing that $A \mathrm{x}=A^{*} \mathbf{x}$. With only this much motivation, consider the inner product,

$$
\begin{aligned}
\left\langle A \mathbf{x}-A^{*} \mathrm{x}, A \mathrm{x}-A^{*} \mathrm{x}\right\rangle & =\left\langle A \mathbf{x}-A^{*} \mathbf{x}, A \mathbf{x}\right\rangle-\left\langle A \mathbf{x}-A^{*} \mathbf{x}, A^{*} \mathbf{x}\right\rangle & & \text { Theorem IPVA } 165 \\
& =\left\langle A \mathbf{x}-A^{*} \mathbf{x}, A \mathbf{x}\right\rangle-\left\langle A\left(A \mathbf{x}-A^{*} \mathbf{x}\right), \mathbf{x}\right\rangle & & \text { Theorem AIP 199 } \\
& =\left\langle A\left(A \mathbf{x}-A^{*} \mathbf{x}\right), \mathbf{x}\right\rangle-\left\langle A\left(A \mathbf{x}-A^{*} \mathbf{x}\right), \mathbf{x}\right\rangle & & \text { Hypothesis } \\
& =0 & & \text { Property AICN 667 }
\end{aligned}
$$

Because this inner product equals zero, and has the same vector in each argument ($A \mathbf{x}-A^{*} \mathbf{x}$), Theorem PIP 168 gives the conclusion that $A \mathrm{x}-A^{*} \mathbf{x}=\mathbf{0}$. With $A \mathbf{x}=A^{*} \mathbf{x}$ for all $\mathrm{x} \in \mathbb{C}^{n}$, Theorem EMMVP 191 says $A=A^{*}$, which is the defining property of a Hermitian matrix (Definition HM 200).

So, informally, Hermitian matrices are those that can be tossed around from one side of an inner product to the other with reckless abandon. We'll see later what this buys us.

Subsection READ

1. Form the matrix vector product of

$$
\left[\begin{array}{cccc}
2 & 3 & -1 & 0 \\
1 & -2 & 7 & 3 \\
1 & 5 & 3 & 2
\end{array}\right] \quad \text { with } \quad\left[\begin{array}{c}
2 \\
-3 \\
0 \\
5
\end{array}\right]
$$

2. Multiply together the two matrices below (in the order given).

$$
\left[\begin{array}{cccc}
2 & 3 & -1 & 0 \\
1 & -2 & 7 & 3 \\
1 & 5 & 3 & 2
\end{array}\right] \quad\left[\begin{array}{cc}
2 & 6 \\
-3 & -4 \\
0 & 2 \\
3 & -1
\end{array}\right]
$$

3. Rewrite the system of linear equations below as a vector equality and using a matrix-vector product. (This question does not ask for a solution to the system. But it does ask you to express the system of equations in a new form using tools from this section.)

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=0 \\
x_{1}+2 x_{2}+x_{3}=3 \\
x_{1}+3 x_{2}+3 x_{3}=7
\end{array}
$$

Subsection EXC
 Exercises
 ■ாா

C20 Compute the product of the two matrices below, $A B$. Do this using the definitions of the matrixvector product (Definition MVP (189) and the definition of matrix multiplication (Definition MM (192).

$$
A=\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 5 & -3 & 4 \\
2 & 0 & 2 & -3
\end{array}\right]
$$

Contributed by Robert Beezer Solution 204
T10 Suppose that A is a square matrix and there is a vector, \mathbf{b}, such that $\mathcal{L S}(A, \mathbf{b})$ has a unique solution. Prove that A is nonsingular. Give a direct proof (perhaps appealing to Theorem PSPHS 102) rather than just negating a sentence from the text discussing a similar situation.
Contributed by Robert Beezer Solution 204
T20 Prove the second part of Theorem MMZM 195.
Contributed by Robert Beezer
T21 Prove the second part of Theorem MMIM 195.
Contributed by Robert Beezer
T22 Prove the second part of Theorem MMDAA 196.
Contributed by Robert Beezer
T23 Prove the second part of Theorem MMSMM 196.
Contributed by Robert Beezer Solution 204
T31 Suppose that A is an $m \times n$ matrix and $\mathbf{x}, \mathbf{y} \in \mathcal{N}(A)$. Prove that $\mathbf{x}+\mathbf{y} \in \mathcal{N}(A)$.
Contributed by Robert Beezer
T32 Suppose that A is an $m \times n$ matrix, $\alpha \in \mathbb{C}$, and $\mathbf{x} \in \mathcal{N}(A)$. Prove that $\alpha \mathbf{x} \in \mathcal{N}(A)$.
Contributed by Robert Beezer
T40 Suppose that A is an $m \times n$ matrix and B is an $n \times p$ matrix. Prove that the null space of B is a subset of the null space of $A B$, that is $\mathcal{N}(B) \subseteq \mathcal{N}(A B)$. Provide an example where the opposite is false, in other words give an example where $\mathcal{N}(A B) \nsubseteq \mathcal{N}(B)$.
Contributed by Robert Beezer Solution 204
T41 Suppose that A is an $n \times n$ nonsingular matrix and B is an $n \times p$ matrix. Prove that the null space of B is equal to the null space of $A B$, that is $\mathcal{N}(B)=\mathcal{N}(A B)$. (Compare with Exercise MM.T40 202.) Contributed by Robert Beezer Solution 205

T50 Suppose \mathbf{u} and \mathbf{v} are any two solutions of the linear system $\mathcal{L S}(A, \mathbf{b})$. Prove that $\mathbf{u}-\mathbf{v}$ is an element of the null space of A, that is, $\mathbf{u}-\mathbf{v} \in \mathcal{N}(A)$.
Contributed by Robert Beezer
T51 Give a new proof of Theorem PSPHS (102) replacing applications of Theorem SLSLC 90 with matrix-vector products (Theorem SLEMM [190]).
Contributed by Robert Beezer Solution 205
T52 Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}, \mathbf{b} \in \mathbb{C}^{m}$ and A is an $m \times n$ matrix. If \mathbf{x}, \mathbf{y} and $\mathbf{x}+\mathbf{y}$ are each a solution to the linear system $\mathcal{L S}(A, \mathbf{b})$, what interesting can you say about \mathbf{b} ? Form an implication with the existence
of the three solutions as the hypothesis and an interesting statement about $\mathcal{L S}(A, \mathbf{b})$ as the conclusion, and then give a proof.
Contributed by Robert Beezer Solution 205

Subsection SOL Solutions

C20 Contributed by Robert Beezer Statement 202
By Definition MM 192,

$$
A B=\left[\left.\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left|\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
5 \\
0
\end{array}\right]\right|\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right] \right\rvert\,\left[\begin{array}{cc}
2 & 5 \\
-1 & 3 \\
2 & -2
\end{array}\right]\left[\begin{array}{c}
4 \\
-2
\end{array}\right]\right]
$$

Repeated applications of Definition MVP 189 give

$$
\begin{aligned}
& =\left[\left.1\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]+2\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right]\left|5\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]+0\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right]\right|-3\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]+2\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right] \right\rvert\, 4\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]+(-3)\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right]\right] \\
& =\left[\begin{array}{cccc}
12 & 10 & 4 & -7 \\
5 & -5 & 9 & -13 \\
-2 & 10 & -10 & 14
\end{array}\right]
\end{aligned}
$$

T10 Contributed by Robert Beezer Statement 202
Since $\mathcal{L S}(A, b)$ has at least one solution, we can apply Theorem PSPHS 102. Because the solution is assumed to be unique, the null space of A must be trivial. Then Theorem NMTNS 70 implies that A is nonsingular.

The converse of this statement is a trivial application of Theorem NMUS 70. That said, we could extend our NSMxx series of theorems with an added equivalence for nonsingularity, "Given a single vector of constants, \mathbf{b}, the system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution."
T23 Contributed by Robert Beezer Statement 202
We'll run the proof entry-by-entry.

$$
\begin{aligned}
{[\alpha(A B)]_{i j} } & =\alpha[A B]_{i j} & & \text { Definition MSM 178 } \\
& =\alpha \sum_{k=1}^{n}[A]_{i k}[B]_{k j} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n} \alpha[A]_{i k}[B]_{k j} & & \text { Distributivity in } \mathbb{C} \\
& =\sum_{k=1}^{n}[A]_{i k} \alpha[B]_{k j} & & \text { Commutativity in } \mathbb{C} \\
& =\sum_{k=1}^{n}[A]_{i k}[\alpha B]_{k j} & & \text { Definition MSM 178 } \\
& =[A(\alpha B)]_{i j} & & \text { Theorem EMP 193 }
\end{aligned}
$$

So the matrices $\alpha(A B)$ and $A(\alpha B)$ are equal, entry-by-entry, and by the definition of matrix equality (Definition ME 177) we can say they are equal matrices.

T40 Contributed by Robert Beezer Statement 202
To prove that one set is a subset of another, we start with an element of the smaller set and see if we can determine that it is a member of the larger set Definition SSET 669). Suppose $\mathbf{x} \in \mathcal{N}(B)$. Then we know that $B \mathbf{x}=\mathbf{0}$ by Definition NSM 59. Consider

$$
(A B) \mathbf{x}=A(B \mathbf{x})
$$

$$
\begin{array}{ll}
=A \mathbf{0} & \text { Hypothesis } \\
=\mathbf{0} & \\
\hline
\end{array}
$$

This establishes that $\mathbf{x} \in \mathcal{N}(A B)$, so $\mathcal{N}(B) \subseteq \mathcal{N}(A B)$.
To show that the inclusion does not hold in the opposite direction, choose B to be any nonsingular matrix of size n. Then $\mathcal{N}(B)=\{\mathbf{0}\}$ by Theorem NMTNS 70. Let A be the square zero matrix, \mathcal{O}, of the same size. Then $A B=\mathcal{O} B=\mathcal{O}$ by Theorem MMZM 195 and therefore $\mathcal{N}(A B)=\mathbb{C}^{n}$, and is not a subset of $\mathcal{N}(B)=\{\mathbf{0}\}$.

T41 Contributed by Robert Beezer Statement 202
From the solution to Exercise MM.T40 202 we know that $\mathcal{N}(B) \subseteq \mathcal{N}(A B)$. So to establish the set equality (Definition SE $[670]$) we need to show that $\mathcal{N}(A B) \subseteq \mathcal{N}(B)$.

Suppose $\mathbf{x} \in \mathcal{N}(A B)$. Then we know that $A B \mathbf{x}=\mathbf{0}$ by Definition NSM 59. Consider

$$
\begin{aligned}
B \mathbf{x} & =I_{n} B \mathbf{x} & & \text { Theorem MMIM 195 } \\
& =\left(A^{-1} A\right) B \mathbf{x} & & \text { Theorem NI 223 } \\
& =A^{-1}(A B) \mathbf{x} & & \\
& =\mathbf{0} & & \text { Theorem MMZM 195 }
\end{aligned}
$$

This establishes that $\mathbf{x} \in \mathcal{N}(B)$, so $\mathcal{N}(A B) \subseteq \mathcal{N}(B)$ and combined with the solution to Exercise MM.T40 202 we have $\mathcal{N}(B)=\mathcal{N}(A B)$ when A is nonsingular.
T51 Contributed by Robert Beezer Statement 202
We will work with the vector equality representations of the relevant systems of equations, as described by Theorem SLEMM 190.
(\Leftarrow) Suppose $\mathbf{y}=\mathbf{w}+\mathbf{z}$ and $\mathbf{z} \in \mathcal{N}(A)$. Then

$$
\begin{aligned}
A \mathbf{y} & =A(\mathbf{w}+\mathbf{z}) & & \text { Subsitution } \\
& =A \mathbf{w}+A \mathbf{z} & & \text { Theorem MMDAA } 196 \\
& =\mathbf{b}+\mathbf{0} & & \mathbf{z} \in \mathcal{N}(A) \\
& =\mathbf{b} & & \text { Property ZC 82 }
\end{aligned}
$$

demonstrating that \mathbf{y} is a solution.
(\Rightarrow) Suppose \mathbf{y} is a solution to $\mathcal{L S}(A, b)$. Then

$$
\begin{aligned}
A(\mathbf{y}-\mathbf{w}) & =A \mathbf{y}-A \mathbf{w} & & \text { Theorem MMDAA } 196 \\
& =\mathbf{b}-\mathbf{b} & & \mathbf{y}, \mathbf{w} \text { solutions to } A \mathbf{x}=\mathbf{b} \\
& =\mathbf{0} & & \text { Property AIC } 82
\end{aligned}
$$

which says that $\mathbf{y}-\mathbf{w} \in \mathcal{N}(A)$. In other words, $\mathbf{y}-\mathbf{w}=\mathbf{z}$ for some vector $\mathbf{z} \in \mathcal{N}(A)$. Rewritten, this is $\mathbf{y}=\mathbf{w}+\mathbf{z}$, as desired.
T52 Contributed by Robert Beezer Statement 202
$\mathcal{L S}(A, \mathbf{b})$ must be homogeneous. To see this consider that

$$
\begin{aligned}
\mathbf{b} & =A \mathbf{x} \\
& =A \mathbf{x}+\mathbf{0} \\
& =A \mathbf{x}+A \mathbf{y}-A \mathbf{y}
\end{aligned}
$$

Theorem SLEMM 190
Property ZC 82
Property AIC 82

$$
\begin{aligned}
& =A(\mathbf{x}+\mathbf{y})-A \mathbf{y} \\
& =\mathbf{b}-\mathbf{b} \\
& =\mathbf{0}
\end{aligned}
$$

$$
\text { Theorem MMDAA } 196
$$

$$
\text { Theorem SLEMM } 190
$$

$$
\text { Property AIC } 82
$$

By Definition HS 57 we see that $\mathcal{L S}(A, \mathbf{b})$ is homogeneous.

Section MISLE
 Matrix Inverses and Systems of Linear Equations

We begin with a familiar example, performed in a novel way.

Example SABMI

Solutions to Archetype B with a matrix inverse

Archetype B 694 is the system of $m=3$ linear equations in $n=3$ variables,

$$
\begin{aligned}
-7 x_{1}-6 x_{2}-12 x_{3} & =-33 \\
5 x_{1}+5 x_{2}+7 x_{3} & =24 \\
x_{1}+4 x_{3} & =5
\end{aligned}
$$

By Theorem SLEMM 190 we can represent this system of equations as

$$
A \mathbf{x}=\mathbf{b}
$$

where

$$
A=\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
-33 \\
24 \\
5
\end{array}\right]
$$

We'll pull a rabbit out of our hat and present the 3×3 matrix B,

$$
B=\left[\begin{array}{ccc}
-10 & -12 & -9 \\
\frac{13}{2} & 8 & \frac{11}{2} \\
\frac{5}{2} & 3 & \frac{5}{2}
\end{array}\right]
$$

and note that

$$
B A=\left[\begin{array}{ccc}
-10 & -12 & -9 \\
\frac{13}{2} & 8 & \frac{11}{2} \\
\frac{5}{2} & 3 & \frac{5}{2}
\end{array}\right]\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Now apply this computation to the problem of solving the system of equations,

$$
\begin{aligned}
\mathbf{x} & =I_{3} \mathbf{x} \\
& =(B A) \mathbf{x} \\
& =B(A \mathbf{x}) \\
& =B \mathbf{b}
\end{aligned}
$$

Theorem MMIM 195
Substitution
Theorem MMA 196
Substitution

So we have

$$
\mathbf{x}=B \mathbf{b}=\left[\begin{array}{ccc}
-10 & -12 & -9 \\
\frac{13}{2} & 8 & \frac{11}{2} \\
\frac{5}{2} & 3 & \frac{5}{2}
\end{array}\right]\left[\begin{array}{c}
-33 \\
24 \\
5
\end{array}\right]=\left[\begin{array}{c}
-3 \\
5 \\
2
\end{array}\right]
$$

So with the help and assistance of B we have been able to determine a solution to the system represented by $A \mathbf{x}=\mathbf{b}$ through judicious use of matrix multiplication. We know by Theorem NMUS 70 that since the coefficient matrix in this example is nonsingular, there would be a unique solution, no matter what the choice of \mathbf{b}. The derivation above amplifies this result, since we were forced to conclude that $\mathbf{x}=B \mathbf{b}$ and
the solution couldn't be anything else. You should notice that this argument would hold for any particular value of \mathbf{b}.

The matrix B of the previous example is called the inverse of A. When A and B are combined via matrix multiplication, the result is the identity matrix, which can be inserted "in front" of \mathbf{x} as the first step in finding the solution. This is entirely analogous to how we might solve a single linear equation like $3 x=12$.

$$
x=1 x=\left(\frac{1}{3}(3)\right) x=\frac{1}{3}(3 x)=\frac{1}{3}(12)=4
$$

Here we have obtained a solution by employing the "multiplicative inverse" of $3,3^{-1}=\frac{1}{3}$. This works fine for any scalar multiple of x, except for zero, since zero does not have a multiplicative inverse. For matrices, it is more complicated. Some matrices have inverses, some do not. And when a matrix does have an inverse, just how would we compute it? In other words, just where did that matrix B in the last example come from? Are there other matrices that might have worked just as well?

Subsection IM
 Inverse of a Matrix

Definition MI

Matrix Inverse

Suppose A and B are square matrices of size n such that $A B=I_{n}$ and $B A=I_{n}$. Then A is invertible and B is the inverse of A. In this situation, we write $B=A^{-1}$.
(This definition contains Notation MI.)
Notice that if B is the inverse of A, then we can just as easily say A is the inverse of B, or A and B are inverses of each other.

Not every square matrix has an inverse. In Example SABMI 207 the matrix B is the inverse the coefficient matrix of Archetype B 694. To see this it only remains to check that $A B=I_{3}$. What about Archetype A 689? It is an example of a square matrix without an inverse.

Example MWIAA

A matrix without an inverse, Archetype A
Consider the coefficient matrix from Archetype A 689,

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Suppose that A is invertible and does have an inverse, say B. Choose the vector of constants

$$
\mathbf{b}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]
$$

and consider the system of equations $\mathcal{L S}(A, \mathbf{b})$. Just as in Example SABMI 207, this vector equation would have the unique solution $\mathbf{x}=B \mathbf{b}$.

However, the system $\mathcal{L S}(A, \mathbf{b})$ is inconsistent. Form the augmented matrix $[A \mid \mathbf{b}]$ and row-reduce to

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & \boxed{1} & -1 & 0 \\
0 & 0 & 0 & \boxed{1}
\end{array}\right]
$$

which allows to recognize the inconsistency by Theorem RCLS 50.
So the assumption of A 's inverse leads to a logical inconsistency (the system can't be both consistent and inconsistent), so our assumption is false. A is not invertible.

Its possible this example is less than satisfying. Just where did that particular choice of the vector \mathbf{b} come from anyway? Stay tuned for an application of the future Theorem CSCS 232 in Example CSAA 235.

Let's look at one more matrix inverse before we embark on a more systematic study.

Example MI

Matrix inverse

Consider the matrix,

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 1 & 2 & 1 \\
-2 & -3 & 0 & -5 & -1 \\
1 & 1 & 0 & 2 & 1 \\
-2 & -3 & -1 & -3 & -2 \\
-1 & -3 & -1 & -3 & 1
\end{array}\right]
$$

And the matrix

$$
B=\left[\begin{array}{ccccc}
-3 & 3 & 6 & -1 & -2 \\
0 & -2 & -5 & -1 & 1 \\
1 & 2 & 4 & 1 & -1 \\
1 & 0 & 1 & 1 & 0 \\
1 & -1 & -2 & 0 & 1
\end{array}\right]
$$

Then

$$
A B=\left[\begin{array}{ccccc}
1 & 2 & 1 & 2 & 1 \\
-2 & -3 & 0 & -5 & -1 \\
1 & 1 & 0 & 2 & 1 \\
-2 & -3 & -1 & -3 & -2 \\
-1 & -3 & -1 & -3 & 1
\end{array}\right]\left[\begin{array}{ccccc}
-3 & 3 & 6 & -1 & -2 \\
0 & -2 & -5 & -1 & 1 \\
1 & 2 & 4 & 1 & -1 \\
1 & 0 & 1 & 1 & 0 \\
1 & -1 & -2 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
B A=\left[\begin{array}{ccccc}
-3 & 3 & 6 & -1 & -2 \\
0 & -2 & -5 & -1 & 1 \\
1 & 2 & 4 & 1 & -1 \\
1 & 0 & 1 & 1 & 0 \\
1 & -1 & -2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & 2 & 1 & 2 & 1 \\
-2 & -3 & 0 & -5 & -1 \\
1 & 1 & 0 & 2 & 1 \\
-2 & -3 & -1 & -3 & -2 \\
-1 & -3 & -1 & -3 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

so by Definition MI 208, we can say that A is invertible and write $B=A^{-1}$.
We will now concern ourselves less with whether or not an inverse of a matrix exists, but instead with how you can find one when it does exist. In Section MINM 221 we will have some theorems that allow us to more quickly and easily determine when a matrix is invertible.

Subsection CIM Computing the Inverse of a Matrix

We will have occasion in this subsection (and later) to reference the following frequently used vectors, so we will make a useful definition now.

Definition SUV

Standard Unit Vectors

Let $\mathbf{e}_{j} \in \mathbb{C}^{m}$ denote the column vector that is column j of the $m \times m$ identity matrix I_{m}. Then the set

$$
\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{m}\right\}=\left\{\mathbf{e}_{j} \mid 1 \leq j \leq m\right\}
$$

is the set of standard unit vectors in \mathbb{C}^{m}.
We will make reference to these vectors often. Notice that \mathbf{e}_{j} is a column vector full of zeros, with a lone 1 in the j-th position, so an alternate definition is

$$
\left[\mathbf{e}_{j}\right]_{i}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

We've seen that the matrices from Archetype B 694 and Archetype K 733 both have inverses, but these inverse matrices have just dropped from the sky. How would we compute an inverse? And just when is a matrix invertible, and when is it not? Writing a putative inverse with n^{2} unknowns and solving the resultant n^{2} equations is one approach. Applying this approach to 2×2 matrices can get us somewhere, so just for fun, let's do it.
Theorem TTMI
Two-by-Two Matrix Inverse
Suppose

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then A is invertible if and only if $a d-b c \neq 0$. When A is invertible, we have

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Proof (\Leftarrow) If $a d-b c \neq 0$ then the displayed formula is legitimate (we are not dividing by zero), and it is a simple matter to actually check that $A^{-1} A=A A^{-1}=I_{2}$.
(\Rightarrow) Assume that A is invertible, and proceed with a proof by contradiction Technique CD 678), by assuming also that $a d-b c=0$. This means that $a d=b c$. Let

$$
B=\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]
$$

be a putative inverse of A. This means that

$$
I_{2}=A B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

Working on the matrices on both ends of this equation, we will multiply the top row by c and the bottom row by a.

$$
\left[\begin{array}{ll}
c & 0 \\
0 & a
\end{array}\right]=\left[\begin{array}{ll}
a c e+b c g & a c f+b c h \\
a c e+a d g & a c f+a d h
\end{array}\right]
$$

We are assuming that $a d=b c$, so we can replace two occurences of $a d$ by $b c$ in the bottom row of the right matrix.

$$
\left[\begin{array}{ll}
c & 0 \\
0 & a
\end{array}\right]=\left[\begin{array}{ll}
a c e+b c g & a c f+b c h \\
a c e+b c g & a c f+b c h
\end{array}\right]
$$

The matrix on the right now has two rows that are identical, and therefore the same must be true of the matrix on the left. Given the form of the matrix on the left, identical rows implies that $a=0$ and $c=0$.

With this information, the product $A B$ becomes

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2}=A B=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]=\left[\begin{array}{ll}
b g & b h \\
d g & d h
\end{array}\right]
$$

So $b g=d h=1$ and thus b, g, d, h are all nonzero. But then $b h$ and $d g$ (the "other corners") must also be nonzero, so this is (finally) a contradiction. So our assumption was false and we see that $a d-b c \neq 0$ whenever A has an inverse.

There are several ways one could try to prove this theorem, but there is a continual temptation to divide by one of the eight entries involved (a through f), but we can never be sure if these numbers are zero or not. This could lead to an analysis by cases, which is messy, messy, messy. Note how the above proof never divides, but always multiplies, and how zero/nonzero considerations are handled. Pay attention to the expression $a d-b c$, we will see it again in a while.

This theorem is cute, and it is nice to have a formula for the inverse, and a condition that tells us when we can use it. However, this approach becomes impractical for larger matrices, even though it is possible to demonstrate that, in theory, there is a general formula. (Think for a minute about extending this result to just 3×3 matrices. For starters, we need 18 letters!) Instead, we will work column-by-column. Let's first work an example that will motivate the main theorem and remove some of the previous mystery.

Example CMI

Computing a matrix inverse

Consider the matrix defined in Example MI 209 as,

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 1 & 2 & 1 \\
-2 & -3 & 0 & -5 & -1 \\
1 & 1 & 0 & 2 & 1 \\
-2 & -3 & -1 & -3 & -2 \\
-1 & -3 & -1 & -3 & 1
\end{array}\right]
$$

For its inverse, we desire a matrix B so that $A B=I_{5}$. Emphasizing the structure of the columns and employing the definition of matrix multiplication Definition MM 192,

$$
\begin{aligned}
A B & =I_{5} \\
A\left[\mathbf{B}_{1}\left|\mathbf{B}_{2}\right| \mathbf{B}_{3}\left|\mathbf{B}_{4}\right| \mathbf{B}_{5}\right] & =\left[\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \mathbf{e}_{3}\left|\mathbf{e}_{4}\right| \mathbf{e}_{5}\right] \\
{\left[A \mathbf{B}_{1}\left|A \mathbf{B}_{2}\right| A \mathbf{B}_{3}\left|A \mathbf{B}_{4}\right| A \mathbf{B}_{5}\right] } & =\left[\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \mathbf{e}_{3}\left|\mathbf{e}_{4}\right| \mathbf{e}_{5}\right] .
\end{aligned}
$$

Equating the matrices column-by-column we have

$$
A \mathbf{B}_{1}=\mathbf{e}_{1} \quad A \mathbf{B}_{2}=\mathbf{e}_{2} \quad A \mathbf{B}_{3}=\mathbf{e}_{3} \quad A \mathbf{B}_{4}=\mathbf{e}_{4} \quad A \mathbf{B}_{5}=\mathbf{e}_{5} .
$$

Since the matrix B is what we are trying to compute, we can view each column, \mathbf{B}_{i}, as a column vector of unknowns. Then we have five systems of equations to solve, each with 5 equations in 5 variables. Notice that all 5 of these systems have the same coefficient matrix. We'll now solve each system in turn,

Row-reduce the augmented matrix of the linear system $\mathcal{L S}\left(A, \mathbf{e}_{1}\right)$,

$$
\left[\begin{array}{cccccc}
1 & 2 & 1 & 2 & 1 & 1 \\
-2 & -3 & 0 & -5 & -1 & 0 \\
1 & 1 & 0 & 2 & 1 & 0 \\
-2 & -3 & -1 & -3 & -2 & 0 \\
-1 & -3 & -1 & -3 & 1 & 0
\end{array}\right] \xrightarrow{\text { RREF }}
$$

$$
\left[\begin{array}{cccccc}
{[1} & 0 & 0 & 0 & 0 & -3 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & \boxed{1} & 1
\end{array}\right] \text { so } \quad \mathbf{B}_{1}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

Row-reduce the augmented matrix of the linear system $\mathcal{L S}\left(A, \mathbf{e}_{2}\right)$,

$$
\left[\begin{array}{cccccc}
1 & 2 & 1 & 2 & 1 & 0 \\
-2 & -3 & 0 & -5 & -1 & 1 \\
1 & 1 & 0 & 2 & 1 & 0 \\
-2 & -3 & -1 & -3 & -2 & 0 \\
-1 & -3 & -1 & -3 & 1 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccccc}
\left.\begin{array}{|ccc}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) 3 \\
0 & 1 & 0 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right] \text { so } \quad \mathbf{B}_{2}=\left[\begin{array}{c}
3 \\
-2 \\
2 \\
0 \\
-1
\end{array}\right]
$$

Row-reduce the augmented matrix of the linear system $\mathcal{L S}\left(A, \mathbf{e}_{3}\right)$,

$$
\left[\begin{array}{cccccc}
1 & 2 & 1 & 2 & 1 & 0 \\
-2 & -3 & 0 & -5 & -1 & 0 \\
1 & 1 & 0 & 2 & 1 & 1 \\
-2 & -3 & -1 & -3 & -2 & 0 \\
-1 & -3 & -1 & -3 & 1 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
\hline 1 & 0 & 0 & 0 & 0 & 6 \\
0 & \boxed{1} & 0 & 0 & 0 & -5 \\
0 & 0 & \boxed{1} & 0 & 0 & 4 \\
0 & 0 & 0 & \boxed{1} & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -2
\end{array}\right] \text { so } \quad \mathbf{B}_{3}=\left[\begin{array}{c}
6 \\
-5 \\
4 \\
1 \\
-2
\end{array}\right]
$$

Row-reduce the augmented matrix of the linear system $\mathcal{L S}\left(A, \mathbf{e}_{4}\right)$,

$$
\left[\begin{array}{cccccc}
1 & 2 & 1 & 2 & 1 & 0 \\
-2 & -3 & 0 & -5 & -1 & 0 \\
1 & 1 & 0 & 2 & 1 & 0 \\
-2 & -3 & -1 & -3 & -2 & 1 \\
-1 & -3 & -1 & -3 & 1 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
\left.\begin{array}{|cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 \\
0
\end{array}\right] \text { so } \quad \mathbf{B}_{4}=\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
1 \\
0
\end{array}\right]
\end{array}\right.
$$

Row-reduce the augmented matrix of the linear system $\mathcal{L S}\left(A, \mathbf{e}_{5}\right)$,

$$
\left[\begin{array}{cccccc}
1 & 2 & 1 & 2 & 1 & 0 \\
-2 & -3 & 0 & -5 & -1 & 0 \\
1 & 1 & 0 & 2 & 1 & 0 \\
-2 & -3 & -1 & -3 & -2 & 0 \\
-1 & -3 & -1 & -3 & 1 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
\left.\begin{array}{|cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -2 \\
0 & \boxed{1} & 0 & 0 \\
0 & 1 \\
0 & 0 & \boxed{1} & 0 \\
0 & -1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 1 & 1
\end{array}\right] \text { so } \quad \mathbf{B}_{5}=\left[\begin{array}{c}
-2 \\
1 \\
-1 \\
0 \\
1
\end{array}\right]
\end{array}\right.
$$

We can now collect our 5 solution vectors into the matrix B,

$$
\begin{aligned}
B & =\left[\mathbf{B}_{1}\left|\mathbf{B}_{2}\right| \mathbf{B}_{3}\left|\mathbf{B}_{4}\right| \mathbf{B}_{5}\right] \\
& =\left[\left[\begin{array}{c}
-3 \\
0 \\
1 \\
1 \\
1
\end{array}\right]\left|\left[\begin{array}{c}
3 \\
-2 \\
2 \\
0 \\
-1
\end{array}\right]\right|\left[\begin{array}{c}
6 \\
-5 \\
4 \\
1 \\
-2
\end{array}\right]\left|\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
1 \\
0
\end{array}\right]\right|\left[\begin{array}{c}
-2 \\
1 \\
-1 \\
0 \\
1
\end{array}\right]\right] \\
& =\left[\begin{array}{ccccc}
-3 & 3 & 6 & -1 & -2 \\
0 & -2 & -5 & -1 & 1 \\
1 & 2 & 4 & 1 & -1 \\
1 & 0 & 1 & 1 & 0 \\
1 & -1 & -2 & 0 & 1
\end{array}\right]
\end{aligned}
$$

By this method, we know that $A B=I_{5}$. Check that $B A=I_{5}$, and then we will know that we have the inverse of A.

Notice how the five systems of equations in the preceding example were all solved by exactly the same sequence of row operations. Wouldn't it be nice to avoid this obvious duplication of effort? Our main theorem for this section follows, and it mimics this previous example, while also avoiding all the overhead.

Theorem CINM

Computing the Inverse of a Nonsingular Matrix

Suppose A is a nonsingular square matrix of size n. Create the $n \times 2 n$ matrix M by placing the $n \times n$ identity matrix I_{n} to the right of the matrix A. Let N be a matrix that is row-equivalent to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n columns of N. Then $A J=I_{n}$.
Proof A is nonsingular, so by Theorem NMRRI 68 there is a sequence of row operations that will convert A into I_{n}. It is this same sequence of row operations that will convert M into N, since having the identity matrix in the first n columns of N is sufficient to guarantee that N is in reduced row-echelon form.

If we consider the systems of linear equations, $\mathcal{L S}\left(A, \mathbf{e}_{i}\right), 1 \leq i \leq n$, we see that the aforementioned sequence of row operations will also bring the augmented matrix of each of these systems into reduced rowechelon form. Furthermore, the unique solution to $\mathcal{L S}\left(A, \mathbf{e}_{i}\right)$ appears in column $n+1$ of the row-reduced augmented matrix of the system and is identical to column $n+i$ of N. Let $\mathbf{N}_{1}, \mathbf{N}_{2}, \mathbf{N}_{3}, \ldots, \mathbf{N}_{2 n}$ denote the columns of N. So we find,

$$
\begin{aligned}
A J & =A\left[\mathbf{N}_{n+1}\left|\mathbf{N}_{n+2}\right| \mathbf{N}_{n+3}|\ldots| \mathbf{N}_{n+n}\right] & & \\
& =\left[A \mathbf{N}_{n+1}\left|A \mathbf{N}_{n+2}\right| A \mathbf{N}_{n+3}|\ldots| A \mathbf{N}_{n+n}\right] & & \text { Definition MM } 192 \\
& =\left[\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \mathbf{e}_{3}|\ldots| \mathbf{e}_{n}\right] & & \\
& =I_{n} & & \text { Definition IM } 68
\end{aligned}
$$

as desired.
We have to be just a bit careful here about both what this theorem says and what it doesn't say. If A is a nonsingular matrix, then we are guaranteed a matrix B such that $A B=I_{n}$, and the proof gives us a process for constructing B. However, the definition of the inverse of a matrix (Definition MI 208) requires that $B A=I_{n}$ also. So at this juncture we must compute the matrix product in the "opposite" order before we claim B as the inverse of A. However, we'll soon see that this is always the case, in Theorem OSIS 222, so the title of this theorem is not inaccurate.

What if A is singular? At this point we only know that Theorem CINM 213 cannot be applied. The question of A 's inverse is still open. (But see Theorem NI 223] in the next section.) We'll finish by computing the inverse for the coefficient matrix of Archetype B [694], the one we just pulled from a hat in Example SABMI 207. There are more examples in the Archetypes Appendix A 685) to practice with, though notice that it is silly to ask for the inverse of a rectangular matrix (the sizes aren't right) and not every square matrix has an inverse (remember Example MWIAA 208?).

Example CMIAB

Computing a matrix inverse, Archetype B
Archetype B 694 has a coefficient matrix given as

$$
B=\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]
$$

Exercising Theorem CINM 213 we set

$$
M=\left[\begin{array}{cccccc}
-7 & -6 & -12 & 1 & 0 & 0 \\
5 & 5 & 7 & 0 & 1 & 0 \\
1 & 0 & 4 & 0 & 0 & 1
\end{array}\right]
$$

which row reduces to

$$
N=\left[\begin{array}{cccccc}
1 & 0 & 0 & -10 & -12 & -9 \\
0 & 1 & 0 & \frac{13}{2} & 8 & \frac{11}{2} \\
0 & 0 & 1 & \frac{5}{2} & 3 & \frac{5}{2}
\end{array}\right] .
$$

So

$$
B^{-1}=\left[\begin{array}{ccc}
-10 & -12 & -9 \\
\frac{13}{2} & 8 & \frac{11}{2} \\
\frac{5}{2} & 3 & \frac{5}{2}
\end{array}\right]
$$

once we check that $B^{-1} B=I_{3}$ (the product in the opposite order is a consequence of the theorem). \boxtimes
While we can use a row-reducing procedure to compute any needed inverse, most computational devices have a built-in procedure to compute the inverse of a matrix straightaway. See: Computation MI.MMA 661 .

Subsection PMI
 Properties of Matrix Inverses

The inverse of a matrix enjoys some nice properties. We collect a few here. First, a matrix can have but one inverse.

Theorem MIU

Matrix Inverse is Unique

Suppose the square matrix A has an inverse. Then A^{-1} is unique.
Proof As described in Technique U 678, we will assume that A has two inverses. The hypothesis tells there is at least one. Suppose then that B and C are both inverses for A. Then, repeated use of Definition MI 208 and Theorem MMIM 195 plus one application of Theorem MMA 196 gives

$$
\begin{aligned}
B & =B I_{n} & & \text { Theorem MMIM } 195 \\
& =B(A C) & & \text { Definition MI 208 } \\
& =(B A) C & & \text { Theorem MMA 196 } \\
& =I_{n} C & & \text { Definition MI 208 } \\
& =C & & \text { Theorem MMIM 195 }
\end{aligned}
$$

So we conclude that B and C are the same, and cannot be different. So any matrix that acts like an inverse, must be the inverse.

When most of us dress in the morning, we put on our socks first, followed by our shoes. In the evening we must then first remove our shoes, followed by our socks. Try to connect the conclusion of the following theorem with this everyday example.

Theorem SS

Socks and Shoes

Suppose A and B are invertible matrices of size n. Then $(A B)^{-1}=B^{-1} A^{-1}$ and $A B$ is an invertible matrix.

Proof At the risk of carrying our everyday analogies too far, the proof of this theorem is quite easy when we compare it to the workings of a dating service. We have a statement about the inverse of the matrix $A B$, which for all we know right now might not even exist. Suppose $A B$ was to sign up for a dating service with two requirements for a compatible date. Upon multiplication on the left, and on the right, the result should be the identity matrix. In other words, $A B$'s ideal date would be its inverse.

Now along comes the matrix $B^{-1} A^{-1}$ (which we know exists because our hypothesis says both A and B are invertible and we can form the product of these two matrices), also looking for a date. Let's see if
$B^{-1} A^{-1}$ is a good match for $A B$. First they meet at a non-committal neutral location, say a coffee shop, for quiet conversation:

$$
\begin{aligned}
\left(B^{-1} A^{-1}\right)(A B) & =B^{-1}\left(A^{-1} A\right) B & & \text { Theorem MMA 196 } \\
& =B^{-1} I_{n} B & & \text { Definition MI 208 } \\
& =B^{-1} B & & \text { Theorem MMIM 195 } \\
& =I_{n} & & \text { Definition MI 208 }
\end{aligned}
$$

The first date having gone smoothly, a second, more serious, date is arranged, say dinner and a show:

$$
\begin{aligned}
(A B)\left(B^{-1} A^{-1}\right) & =A\left(B B^{-1}\right) A^{-1} & & \text { Theorem MMA 196 } \\
& =A I_{n} A^{-1} & & \text { Definition MI 208 } \\
& =A A^{-1} & & \text { Theorem MMIM 195 } \\
& =I_{n} & & \text { Definition MI 208 }
\end{aligned}
$$

So the matrix $B^{-1} A^{-1}$ has met all of the requirements to be $A B$'s inverse (date) and with the ensuing marriage proposal we can announce that $(A B)^{-1}=B^{-1} A^{-1}$.

Theorem MIMI

Matrix Inverse of a Matrix Inverse

Suppose A is an invertible matrix. Then A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$.
Proof As with the proof of Theorem SS 214, we examine if A is a suitable inverse for A^{-1} (by definition, the opposite is true).

$$
A A^{-1}=I_{n} \quad \text { Definition MI } 208
$$

and

$$
\begin{array}{ll}
A^{-1} A=I_{n} & \text { Definition MI } 208 \\
\hline
\end{array}
$$

The matrix A has met all the requirements to be the inverse of A^{-1}, and so is invertible and we can write $A=\left(A^{-1}\right)^{-1}$.

Theorem MIT

Matrix Inverse of a Transpose

Suppose A is an invertible matrix. Then A^{t} is invertible and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
Proof As with the proof of Theorem SS 214, we see if $\left(A^{-1}\right)^{t}$ is a suitable inverse for A^{t}. Apply Theorem MMT 198 to see that

$$
\begin{aligned}
\left(A^{-1}\right)^{t} A^{t} & =\left(A A^{-1}\right)^{t} & & \text { Theorem MMT 198 } \\
& =I_{n}^{t} & & \text { Definition MT 208 } \\
& =I_{n} & & I_{n} \text { is symmetric }
\end{aligned}
$$

and

$$
\begin{aligned}
A^{t}\left(A^{-1}\right)^{t} & =\left(A^{-1} A\right)^{t} & & \text { Theorem MMT } 198 \\
& =I_{n}^{t} & & \text { Definition MI } 208 \\
& =I_{n} & & I_{n} \text { is symmetric }
\end{aligned}
$$

The matrix $\left(A^{-1}\right)^{t}$ has met all the requirements to be the inverse of A^{t}, and so is invertible and we can write $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.

Theorem MISM

Matrix Inverse of a Scalar Multiple

Suppose A is an invertible matrix and α is a nonzero scalar. Then $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$ and αA is invertible.
Proof As with the proof of Theorem SS 214, we see if $\frac{1}{\alpha} A^{-1}$ is a suitable inverse for αA.

$$
\begin{aligned}
\left(\frac{1}{\alpha} A^{-1}\right)(\alpha A) & =\left(\frac{1}{\alpha} \alpha\right)\left(A A^{-1}\right) & & \text { Theorem MMSMM 196 } \\
& =1 I_{n} & & \text { Scalar multiplicative inverses } \\
& =I_{n} & & \text { Property OM 179 }
\end{aligned}
$$

and

$$
\begin{aligned}
(\alpha A)\left(\frac{1}{\alpha} A^{-1}\right) & =\left(\alpha \frac{1}{\alpha}\right)\left(A^{-1} A\right) & & \text { Theorem MMSMM 196 } \\
& =1 I_{n} & & \text { Scalar multiplicative inverses } \\
& =I_{n} & & \text { Property OM 179 }
\end{aligned}
$$

The matrix $\frac{1}{\alpha} A^{-1}$ has met all the requirements to be the inverse of αA, so we can write $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$.
Notice that there are some likely theorems that are missing here. For example, it would be tempting to think that $(A+B)^{-1}=A^{-1}+B^{-1}$, but this is false. Can you find a counterexample (see Exercise MISLE.T10 218)?

Subsection READ
 Reading Questions

1. Compute the inverse of the matrix below.

$$
\left[\begin{array}{cc}
4 & 10 \\
2 & 6
\end{array}\right]
$$

2. Compute the inverse of the matrix below.

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
1 & -2 & -3 \\
-2 & 4 & 6
\end{array}\right]
$$

3. Explain why Theorem SS 214 has the title it does. (Do not just state the theorem, explain the choice of the title making reference to the theorem itself.)

Subsection EXC
 Exercises

C21 Verify that B is the inverse of A.

$$
A=\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
-2 & -1 & 2 & -3 \\
1 & 1 & 0 & 2 \\
-1 & 2 & 0 & 2
\end{array}\right] \quad B=\left[\begin{array}{cccc}
4 & 2 & 0 & -1 \\
8 & 4 & -1 & -1 \\
-1 & 0 & 1 & 0 \\
-6 & -3 & 1 & 1
\end{array}\right]
$$

Contributed by Robert Beezer Solution 219
C22 Recycle the matrices A and B from Exercise MISLE.C21 217 and set

$$
\mathbf{c}=\left[\begin{array}{c}
2 \\
1 \\
-3 \\
2
\end{array}\right] \quad \mathbf{d}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Employ the matrix B to solve the two linear systems $\mathcal{L S}(A, \mathbf{c})$ and $\mathcal{L S}(A, \mathbf{d})$.
Contributed by Robert Beezer Solution 219
C23 If it exists, find the inverse of the 2×2 matrix

$$
A=\left[\begin{array}{ll}
7 & 3 \\
5 & 2
\end{array}\right]
$$

and check your answer. (See Theorem TTM 210.)
Contributed by Robert Beezer
C24 If it exists, find the inverse of the 2×2 matrix

$$
A=\left[\begin{array}{ll}
6 & 3 \\
4 & 2
\end{array}\right]
$$

and check your answer. (See Theorem TTMT 210.)
Contributed by Robert Beezer
C25 At the conclusion of Example CMI 211, verify that $B A=I_{5}$ by computing the matrix product.
Contributed by Robert Beezer
C26 Let

$$
D=\left[\begin{array}{ccccc}
1 & -1 & 3 & -2 & 1 \\
-2 & 3 & -5 & 3 & 0 \\
1 & -1 & 4 & -2 & 2 \\
-1 & 4 & -1 & 0 & 4 \\
1 & 0 & 5 & -2 & 5
\end{array}\right]
$$

Compute the inverse of D, D^{-1}, by forming the 5×10 matrix $\left[D \mid I_{5}\right]$ and row-reducing Theorem CINM (213). Then use a calculator to compute D^{-1} directly.

Contributed by Robert Beezer Solution 219
C27 Let

$$
E=\left[\begin{array}{ccccc}
1 & -1 & 3 & -2 & 1 \\
-2 & 3 & -5 & 3 & -1 \\
1 & -1 & 4 & -2 & 2 \\
-1 & 4 & -1 & 0 & 2 \\
1 & 0 & 5 & -2 & 4
\end{array}\right]
$$

Compute the inverse of E, E^{-1}, by forming the 5×10 matrix $\left[E \mid I_{5}\right]$ and row-reducing Theorem CINM (213). Then use a calculator to compute E^{-1} directly.

Contributed by Robert Beezer Solution 219
C28 Let

$$
C=\left[\begin{array}{cccc}
1 & 1 & 3 & 1 \\
-2 & -1 & -4 & -1 \\
1 & 4 & 10 & 2 \\
-2 & 0 & -4 & 5
\end{array}\right]
$$

Compute the inverse of C, C^{-1}, by forming the 4×8 matrix [$C \mid I_{4}$] and row-reducing Theorem CINM (213). Then use a calculator to compute C^{-1} directly.

Contributed by Robert Beezer Solution 219
C40 Find all solutions to the system of equations below, making use of the matrix inverse found in Exercise MISLE.C28 218.

$$
\begin{aligned}
x_{1}+x_{2}+3 x_{3}+x_{4} & =-4 \\
-2 x_{1}-x_{2}-4 x_{3}-x_{4} & =4 \\
x_{1}+4 x_{2}+10 x_{3}+2 x_{4} & =-20 \\
-2 x_{1}-4 x_{3}+5 x_{4} & =9
\end{aligned}
$$

Contributed by Robert Beezer Solution 219
C41 Use the inverse of a matrix to find all the solutions to the following system of equations.

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-3 \\
2 x_{1}+5 x_{2}-x_{3} & =-4 \\
-x_{1}-4 x_{2} & =2
\end{aligned}
$$

Contributed by Robert Beezer Solution 220
C42 Use a matrix inverse to solve the linear system of equations.

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =5 \\
x_{1}-2 x_{3} & =-8 \\
2 x_{1}-x_{2}-x_{3} & =-6
\end{aligned}
$$

Contributed by Robert Beezer Solution 220
T10 Construct an example to demonstrate that $(A+B)^{-1}=A^{-1}+B^{-1}$ is not true for all square matrices A and B of the same size.
Contributed by Robert Beezer Solution 220

Subsection SOL Solutions

C21 Contributed by Robert Beezer Statement 217
Check that both matrix products (Definition MM 192) $A B$ and $B A$ equal the 4×4 identity matrix I_{4} (Definition IM 68).
C22 Contributed by Robert Beezer Statement 217
Represent each of the two systems by a vector equality, $A \mathbf{x}=\mathbf{c}$ and $A \mathbf{y}=\mathbf{d}$. Then in the spirit of Example SABMI 207, solutions are given by

$$
\mathbf{x}=B \mathbf{c}=\left[\begin{array}{c}
8 \\
21 \\
-5 \\
-16
\end{array}\right]
$$

$$
\mathbf{y}=B \mathbf{d}=\left[\begin{array}{c}
5 \\
10 \\
0 \\
-7
\end{array}\right]
$$

Notice how we could solve many more systems having A as the coefficient matrix, and how each such system has a unique solution. You might check your work by substituting the solutions back into the systems of equations, or forming the linear combinations of the columns of A suggested by Theorem SLSLC 90 .
C26 Contributed by Robert Beezer Statement 217
The inverse of D is

$$
D^{-1}=\left[\begin{array}{ccccc}
-7 & -6 & -3 & 2 & 1 \\
-7 & -4 & 2 & 2 & -1 \\
-5 & -2 & 3 & 1 & -1 \\
-6 & -3 & 1 & 1 & 0 \\
4 & 2 & -2 & -1 & 1
\end{array}\right]
$$

C27 Contributed by Robert Beezer Statement 217
The matrix E has no inverse, though we do not yet have a theorem that allows us to reach this conclusion. However, when row-reducing the matrix $\left[E \mid I_{5}\right]$, the first 5 columns will not row-reduce to the 5×5 identity matrix, so we are a t a loss on how we might compute the inverse. When requesting that your calculator compute E^{-1}, it should give some indication that E does not have an inverse.

C28 Contributed by Robert Beezer Statement 218
Employ Theorem CINM 213,

$$
\left[\begin{array}{cccccccc}
1 & 1 & 3 & 1 & 1 & 0 & 0 & 0 \\
-2 & -1 & -4 & -1 & 0 & 1 & 0 & 0 \\
1 & 4 & 10 & 2 & 0 & 0 & 1 & 0 \\
-2 & 0 & -4 & 5 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccccc}
\hline 1 & 0 & 0 & 0 & 38 & 18 & -5 & -2 \\
0 & \boxed{1} & 0 & 0 & 96 & 47 & -12 & -5 \\
0 & 0 & \boxed{1} & 0 & -39 & -19 & 5 & 2 \\
0 & 0 & 0 & \boxed{1} & -16 & -8 & 2 & 1
\end{array}\right]
$$

And therefore we see that C is nonsingular (C row-reduces to the identity matrix, Theorem NMRRI 68) and by Theorem CINM 213,

$$
C^{-1}=\left[\begin{array}{cccc}
38 & 18 & -5 & -2 \\
96 & 47 & -12 & -5 \\
-39 & -19 & 5 & 2 \\
-16 & -8 & 2 & 1
\end{array}\right]
$$

C40 Contributed by Robert Beezer Statement 218
View this system as $\mathcal{L S}(C, \mathbf{b})$, where C is the 4×4 matrix from Exercise MISLE.C28 $\left[218\right.$ and $\mathbf{b}=\left[\begin{array}{c}-4 \\ 4 \\ -20 \\ 9\end{array}\right]$.

Since C was seen to be nonsingular in Exercise MISLE.C28 218 Theorem SNCM 223 says the solution, which is unique by Theorem NMUS 70, is given by

$$
C^{-1} \mathbf{b}=\left[\begin{array}{cccc}
38 & 18 & -5 & -2 \\
96 & 47 & -12 & -5 \\
-39 & -19 & 5 & 2 \\
-16 & -8 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
-4 \\
4 \\
-20 \\
9
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
-2 \\
1
\end{array}\right]
$$

Notice that this solution can be easily checked in the original system of equations.
C41 Contributed by Robert Beezer Statement 218
The coefficient matrix of this system of equations is

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & 5 & -1 \\
-1 & -4 & 0
\end{array}\right]
$$

and the vector of constants is $\mathbf{b}=\left[\begin{array}{c}-3 \\ -4 \\ 2\end{array}\right]$. So by Theorem SLEMM 190 we can convert the system to the form $A \mathbf{x}=\mathbf{b}$. Row-reducing this matrix yields the identity matrix so by Theorem NMRRI 68 we know A is nonsingular. This allows us to apply Theorem SNCM 223 to find the unique solution as

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}
-4 & 4 & 3 \\
1 & -1 & -1 \\
-3 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
-3 \\
-4 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]
$$

Remember, you can check this solution easily by evaluating the matrix-vector product $A \mathbf{x}$ Definition MVP [189).
C42 Contributed by Robert Beezer Statement 218
We can reformulate the linear system as a vector equality with a matrix-vector product via Theorem SLEMM 190. The system is then represented by $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 0 & -2 \\
2 & -1 & -1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
5 \\
-8 \\
-6
\end{array}\right]
$$

According to Theorem SNCM 223, if A is nonsingular then the (unique) solution will be given by $A^{-1} \mathbf{b}$. We attempt the computation of A^{-1} through Theorem CINM 213], or with our favorite computational device and obtain,

$$
A^{-1}=\left[\begin{array}{lll}
2 & 3 & -2 \\
3 & 5 & -4 \\
1 & 1 & -1
\end{array}\right]
$$

So by Theorem NI 223, we know A is nonsingular, and so the unique solution is

$$
A^{-1} \mathbf{b}=\left[\begin{array}{lll}
2 & 3 & -2 \\
3 & 5 & -4 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
5 \\
-8 \\
-6
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1 \\
3
\end{array}\right]
$$

T10 Contributed by Robert Beezer Statement 218
Let D be any 2×2 matrix that has an inverse (Theorem TTMI 210 can help you construct such a matrix, I_{2} is a simple choice). Set $A=D$ and $B=(-1) D$. While A^{-1} and B^{-1} both exist, what is $(A+B)^{-1}$? Can the proposed statement be a theorem?

Section MINM
 Matrix Inverses and Nonsingular Matrices

We saw in Theorem CINM 213 that if a square matrix A is nonsingular, then there is a matrix B so that $A B=I_{n}$. In other words, B is halfway to being an inverse of A. We will see in this section that B automatically fulfills the second condition $\left(B A=I_{n}\right)$. Example MWIAA 208 showed us that the coefficient matrix from Archetype A 689 had no inverse. Not coincidentally, this coefficient matrix is singular. We'll make all these connections precise now. Not many examples or definitions in this section, just theorems.

Subsection NMI
 Nonsingular Matrices are Invertible

We need a couple of technical results for starters. Some books would call these minor, but essential, results "lemmas." We'll just call 'em theorems. See Technique LC 682 for more on the distinction.

The first of these technical results is interesting in that the hypothesis says something about a product of two square matrices and the conclusion then says the same thing about each individual matrix in the product.

Theorem NPNT

Nonsingular Product has Nonsingular Terms

Suppose that A and B are square matrices of size n and the product $A B$ is nonsingular. Then A and B are both nonsingular.
Proof We'll do the proof in two parts, each as a proof by contradiction (Technique CD (678). Establishing that B is nonsingular is the easier part, so we will do it first, but in reality, we will need to know that B is nonsingular when we prove that A is nonsingular.

You can also think of this proof as being a study of four possible conclusions in the table below. One of the four rows must happen (the list is exhaustive). In the proof we learn that the first three rows lead to contradictions, and so are impossible. That leaves the fourth row as a certainty, which is our desired conclusion.

A	B	Case
Singular	Singular	1
Nonsingular	Singular	1
Singular	Nonsingular	2
Nonsingular	Nonsingular	

Case 1. Suppose B is singular. Then there is a nonzero vector \mathbf{z} that is a solution to $\mathcal{L S}(B, \mathbf{0})$. So

$$
\begin{array}{rlrl}
(A B) \mathbf{z} & =A(B \mathbf{z}) & & \text { Theorem MMA } 196 \\
& =A \mathbf{0} & & \text { Theorem SLEMM 190 } \\
& =\mathbf{0} & & \text { Theorem MMZM } 195 \\
\hline
\end{array}
$$

Because \mathbf{z} is a nonzero solution to $\mathcal{L S}(A B, \mathbf{0})$, we conclude that $A B$ is singular Definition NM 67). This is a contradiction, so B is nonsingular, as desired.

Case 2. Suppose A is singular. Then there is a nonzero vector \mathbf{y} that is a solution to $\mathcal{L S}(A, \mathbf{0})$. Now use this vector \mathbf{y} and consider the linear system $\mathcal{L S}(B, \mathbf{y})$. Since we know B is nonsingular (from Case 1),
the system has a unique solution, which we will call \mathbf{w}. We claim \mathbf{w} is not the zero vector either. Assuming the opposite, suppose that $\mathbf{w}=\mathbf{0}$ Technique CD (678). Then

$$
\begin{aligned}
\mathbf{y} & =B \mathbf{w} & & \text { Theorem SLEMM } 190 \\
& =B \mathbf{0} & & \text { Hypothesis } \\
& =\mathbf{0} & & \text { Theorem MMZM } 195
\end{aligned}
$$

contrary to \mathbf{y} being nonzero. So $\mathbf{w} \neq \mathbf{0}$. The pieces are in place, so here we go,

$$
\begin{aligned}
(A B) \mathbf{w} & =A(B \mathbf{w}) \\
& =A \mathbf{y} \\
& =\mathbf{0}
\end{aligned}
$$

$$
\text { Theorem MMA } 196
$$

$$
\text { Theorem SLEMM } 190
$$

Theorem SLEMM 190

So \mathbf{w} is a nonzero solution to $\mathcal{L S}(A B, \mathbf{0})$, and thus we can say that $A B$ is singular (Definition NM 67). This is a contradiction, so A is nonsingular, as desired.

This is a powerful result, because it allows us to begin with a hypothesis that something complicated (the matrix product $A B$) has the property of being nonsingular, and we can then conclude that the simpler constituents (A and B individually) then also have the property of being nonsingular. If we had thought that the matrix product was an artificial construction, results like this would make us begin to think twice.

The contrapositive of this result is equally interesting. It says that if either A or B (or both) is a singular matrix, then the product $A B$ is also singular. Notice how the negation of the theorem's conclusion (A and B both nonsingular) becomes the statement "at least one of A and B is singular." (See Technique CP 677.)

Theorem OSIS

One-Sided Inverse is Sufficient

Suppose A and B are square matrices of size n such that $A B=I_{n}$. Then $B A=I_{n}$.
Proof The matrix I_{n} is nonsingular (since it row-reduces easily to I_{n}, Theorem NMRRI 68). So A and B are nonsingular by Theorem NPNT 221, so in particular B is nonsingular. We can therefore apply Theorem CINM 213 to assert the existence of a matrix C so that $B C=I_{n}$. This application of Theorem CINM [213] could be a bit confusing, mostly because of the names of the matrices involved. B is nonsingular, so there must be a "right-inverse" for B, and we're calling it C.

Now

$$
\begin{aligned}
B A & =(B A) I_{n} \\
& =(B A)(B C) \\
& =B(A B) C \\
& =B I_{n} C \\
& =B C \\
& =I_{n}
\end{aligned}
$$

| Theorem MMIM 195 |
| :--- | :--- |
| Theorem CINM 213 |
| Theorem MMA 196 |
| Hypothesis |
| Theorem MMIM 195 |
| Theorem CINM 213 |

which is the desired conclusion.
So Theorem OSIS 222 tells us that if A is nonsingular, then the matrix B guaranteed by Theorem CINM 213 will be both a "right-inverse" and a "left-inverse" for A, so A is invertible and $A^{-1}=B$.

So if you have a nonsingular matrix, A, you can use the procedure described in Theorem CINM 213 to find an inverse for A. If A is singular, then the procedure in Theorem CINM 213 will fail as the first
n columns of M will not row-reduce to the identity matrix. However, we can say a bit more. When A is singular, then A does not have an inverse (which is very different from saying that the procedure in Theorem CINM 213 fails to find an inverse). This may feel like we are splitting hairs, but its important that we do not make unfounded assumptions. These observations motivate the next theorem.

Theorem NI

Nonsingularity is Invertibility

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.
Proof $\quad(\Leftarrow)$ Suppose A is invertible, and suppose that \mathbf{x} is any solution to the homogeneous system $\mathcal{L S}(A, \mathbf{0})$. Then

$$
\begin{aligned}
\mathbf{x} & =I_{n} \mathbf{x} & & \text { Theorem MMIM 195 } \\
& =\left(A^{-1} A\right) \mathbf{x} & & \text { Definition MI 208 } \\
& =A^{-1}(A \mathbf{x}) & & \text { Theorem MMA 196 } \\
& =A^{-1} \mathbf{0} & & \text { Theorem SLEMM 190 } \\
& =\mathbf{0} & & \text { Theorem MMZM 195 }
\end{aligned}
$$

So the only solution to $\mathcal{L S}(A, \mathbf{0})$ is the zero vector, so by Definition NM 67, A is nonsingular.
(\Rightarrow) Suppose now that A is nonsingular. By Theorem CINM 213] we find B so that $A B=I_{n}$. Then Theorem OSIS 222 tells us that $B A=I_{n}$. So B is A 's inverse, and by construction, A is invertible.

So for a square matrix, the properties of having an inverse and of having a trivial null space are one and the same. Can't have one without the other.

Theorem NME3

Nonsingular Matrix Equivalences, Round 3

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{0\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.

Proof We can update our list of equivalences for nonsingular matrices (Theorem NME2 137) with the equivalent condition from Theorem NI 223 .

In the case that A is a nonsingular coefficient matrix of a system of equations, the inverse allows us to very quickly compute the unique solution, for any vector of constants.

Theorem SNCM

Solution with Nonsingular Coefficient Matrix

Suppose that A is nonsingular. Then the unique solution to $\mathcal{L S}(A, \mathbf{b})$ is $A^{-1} \mathbf{b}$.
Proof By Theorem NMUS 70 we know already that $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every choice of b. We need to show that the expression stated is indeed a solution (the solution). That's easy, just "plug it in" to the corresponding vector equation representation (Theorem SLEMM 190),

$$
A\left(A^{-1} \mathbf{b}\right)=\left(A A^{-1}\right) \mathbf{b} \quad \text { Theorem MMA } 196
$$

$$
\begin{array}{ll}
=I_{n} \mathbf{b} & \text { Definition MI 208 } \\
=\mathbf{b} & \text { Theorem MMIM } 195
\end{array}
$$

Since $A \mathbf{x}=\mathbf{b}$ is true when we substitute $A^{-1} \mathbf{b}$ for $\mathbf{x}, A^{-1} \mathbf{b}$ is a (the!) solution to $\mathcal{L S}(A, \mathbf{b})$.

Subsection UM
 Unitary Matrices

Recall that the adjoint of a matrix is $A^{*}=(\bar{A})^{t}$ Definition A 184).

Definition UM

Unitary Matrices
Suppose that Q is a square matrix of size n such that $Q^{*} Q=I_{n}$. Then we say Q is unitary.
This condition may seem rather far-fetched at first glance. Would there be any matrix that behaved this way? Well, yes, here's one.

Example UM3

Unitary matrix of size 3

$$
Q=\left[\begin{array}{ccc}
\frac{1+i}{\sqrt{5}} & \frac{3+2 i}{\sqrt{55}} & \frac{2+2 i}{\sqrt{22}} \\
\frac{1-i}{\sqrt{5}} & \frac{2+2 i}{\sqrt{55}} & \frac{-3+i}{\sqrt{22}} \\
\frac{i}{\sqrt{5}} & \frac{3-5 i}{\sqrt{55}} & -\frac{2}{\sqrt{22}}
\end{array}\right]
$$

The computations get a bit tiresome, but if you work your way through the computation of $Q^{*} Q$, you will arrive at the 3×3 identity matrix I_{3}.

Unitary matrices do not have to look quite so gruesome. Here's a larger one that is a bit more pleasing.

Example UPM

Unitary permutation matrix

The matrix

$$
P=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

is unitary as can be easily checked. Notice that it is just a rearrangement of the columns of the 5×5 identity matrix, I_{5} (Definition IM 68).

An interesting exercise is to build another 5×5 unitary matrix, R, using a different rearrangement of the columns of I_{5}. Then form the product $P R$. This will be another unitary matrix Exercise MINM.T10 (228). If you were to build all $5!=5 \times 4 \times 3 \times 2 \times 1=120$ matrices of this type you would have a set that remains closed under matrix multiplication. It is an example of another algebraic structure known as a group since together the set and the one operation (matrix multiplication here) is closed, associative, has an identity (I_{5}), and inverses Theorem UMI 225). Notice though that the operation in this group is not commutative!

If a matrix A has only real number entries (we say it is a real matrix) then the defining property of being unitary simplifies to $A^{t} A=I_{n}$. In this case we, and everybody else, calls the matrix orthogonal, so you may often encounter this term in your other reading when the complex numbers are not under consideration.

Unitary matrices have easily computed inverses. They also have columns that form orthonormal sets. Here are the theorems that show us that unitary matrices are not as strange as they might initially appear.

Theorem UMI

Unitary Matrices are Invertible

Suppose that Q is a unitary matrix of size n. Then Q is nonsingular, and $Q^{-1}=Q^{*}$.
Proof By Definition UM [224, we know that $Q^{*} Q=I_{n}$. The matrix I_{n} is nonsingular (since it rowreduces easily to I_{n}, Theorem NMRRI 68). So by Theorem NPNT 221, Q and Q^{*} are both nonsingular matrices.

The equation $Q^{*} Q=I_{n}$ gets us halfway to an inverse of Q, and Theorem OSIS 222 tells us that then $Q Q^{*}=I_{n}$ also. So Q and Q^{*} are inverses of each other (Definition MI (208).

Theorem CUMOS

Columns of Unitary Matrices are Orthonormal Sets

Suppose that A is a square matrix of size n with columns $S=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$. Then A is a unitary matrix if and only if S is an orthonormal set.
Proof The proof revolves around recognizing that a typical entry of the product $A^{*} A$ is an inner product of columns of A. Here are the details to support this claim.

$$
\begin{aligned}
{\left[A^{*} A\right]_{i j} } & =\sum_{k=1}^{n}\left[A^{*}\right]_{i k}[A]_{k j} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n}\left[(\bar{A})^{t}\right]_{i k}[A]_{k j} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n}[\bar{A}]_{k i}[A]_{k j} & & \text { Definition TM 180 } \\
& =\sum_{k=1}^{n} \overline{[A]_{k i}}[A]_{k j} & & \text { Definition CCM 182 } \\
& =\sum_{k=1}^{n}[A]_{k j} \overline{[A]_{k i}} & & \text { Commutativity in } \mathbb{C} \\
& =\sum_{k=1}^{n}\left[\mathbf{A}_{j}\right]_{k} \overline{\left[\mathbf{A}_{i}\right]_{k}} & & \text { Notation } \\
& =\left\langle\mathbf{A}_{j}, \mathbf{A}_{i}\right\rangle & & \text { Definition IP 164 }
\end{aligned}
$$

We now employ this equality in a chain of equivalences,

$$
\begin{array}{rlrl}
S & =\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\} \text { is an orthonormal set } \\
& \Longleftrightarrow\left\langle\mathbf{A}_{j}, \mathbf{A}_{i}\right\rangle= \begin{cases}0 & \text { if } i \neq j \\
1 & \text { if } i=j\end{cases} \\
& \Longleftrightarrow\left[A^{*} A\right]_{i j}= \begin{cases}0 & \text { if } i \neq j \\
1 & \text { if } i=j\end{cases} & & \text { Definition ONS } 172 \\
& \Longleftrightarrow\left[A^{*} A\right]_{i j}=\left[I_{n}\right]_{i j}, 1 \leq i \leq n, 1 \leq j \leq n & & \text { Substitution of above } \\
& \Longleftrightarrow A^{*} A=I_{n} & \text { Definition IM } 68 \\
& \Longleftrightarrow A \text { is a unitary matrix } & \text { Definition ME } 177 \\
\hline
\end{array}
$$

Example OSMC

Orthonormal set from matrix columns

The matrix

$$
Q=\left[\begin{array}{ccc}
\frac{1+i}{\sqrt{5}} & \frac{3+2 i}{\sqrt{55}} & \frac{2+2 i}{\sqrt{22}} \\
\frac{1-i}{\sqrt{5}} & \frac{2+2 i}{\sqrt{55}} & \frac{-3+i}{\sqrt{22}} \\
\frac{i}{\sqrt{5}} & \frac{3-5 i}{\sqrt{55}} & -\frac{2}{\sqrt{22}}
\end{array}\right]
$$

from Example UM3 224 is a unitary matrix. By Theorem CUMOS 225, its columns

$$
\left\{\left[\begin{array}{c}
\frac{1+i}{\sqrt{5}} \\
\frac{1-i}{\sqrt{5}} \\
\frac{i}{\sqrt{5}}
\end{array}\right],\left[\begin{array}{c}
\frac{3+2 i}{\sqrt{55}} \\
\frac{2+2 i}{\sqrt{55}} \\
\frac{3-5 i}{\sqrt{55}}
\end{array}\right],\left[\begin{array}{c}
\frac{2+2 i}{\sqrt{22}} \\
\frac{-3+i}{\sqrt{22}} \\
-\frac{2}{\sqrt{22}}
\end{array}\right]\right\}
$$

form an orthonormal set. You might find checking the six inner products of pairs of these vectors easier than doing the matrix product $Q^{*} Q$. Or, because the inner product is anti-commutative Theorem IPAC 166) you only need check three inner products (see Exercise MINM.T12 228).

When using vectors and matrices that only have real number entries, orthogonal matrices are those matrices with inverses that equal their transpose. Similarly, the inner product is the familiar dot product. Keep this special case in mind as you read the next theorem.

Theorem UMPIP

Unitary Matrices Preserve Inner Products

Suppose that Q is a unitary matrix of size n and \mathbf{u} and \mathbf{v} are two vectors from \mathbb{C}^{n}. Then

$$
\langle Q \mathbf{u}, Q \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle \quad \text { and } \quad\|Q \mathbf{v}\|=\|\mathbf{v}\|
$$

Proof

$$
\begin{aligned}
\langle Q \mathbf{u}, Q \mathbf{v}\rangle & =(Q \mathbf{u})^{t} \overline{Q \mathbf{v}} & & \text { Theorem MMIP 197 } \\
& =\mathbf{u}^{t} Q^{t} \overline{Q \mathbf{v}} & & \text { Theorem MMT 198 } \\
& =\mathbf{u}^{t} Q^{t} \bar{Q} \overline{\mathbf{v}} & & \text { Theorem MMCC 198 } \\
& =\mathbf{u}^{t}(\overline{\bar{Q}})^{t} \bar{Q} \overline{\mathbf{v}} & & \text { Definition CCM 182, Theorem CCT 668 } \\
& =\mathbf{u}^{t} \overline{(\bar{Q})^{t}} \bar{Q} \overline{\mathbf{v}} & & \text { Theorem MCT 184 } \\
& =\mathbf{u}^{t} \overline{(\bar{Q})^{t} Q} \overline{\mathbf{v}} & & \text { Theorem MMCC 198 } \\
& =\mathbf{u}^{t} \overline{Q^{*} Q} \overline{\mathbf{v}} & & \text { Definition A 184 } \\
& =\mathbf{u}^{t} \overline{I_{n} \overline{\mathbf{v}}} & & \text { Definition UM 224 } \\
& =\mathbf{u}^{t} I_{n} \overline{\mathbf{v}} & & I_{n} \text { has real entries } \\
& =\mathbf{u}^{t} \overline{\mathbf{v}} & & \text { Theorem MMIM 195 } \\
& =\langle\mathbf{u}, \mathbf{v}\rangle & & \text { Theorem MMIP 197 }
\end{aligned}
$$

The second conclusion is just a specialization of the first conclusion.

$$
\begin{aligned}
\|Q \mathbf{v}\| & =\sqrt{\|Q \mathbf{v}\|^{2}} & & \\
& =\sqrt{\langle Q \mathbf{v}, Q \mathbf{v}\rangle} & & \text { Theorem IPN } 167 \\
& =\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle} & & \text { Previous conclusion } \\
& =\sqrt{\|\mathbf{v}\|^{2}} & & \text { Theorem IPN } 167
\end{aligned}
$$

$$
=\|\mathbf{v}\|
$$

A final reminder: the terms "dot product," "symmetric matrix" and "orthogonal matrix" used in reference to vectors or matrices with real number entries correspond to the terms inner product, Hermitian matrix and unitary matrix when we generalize to include complex number entries.

Subsection READ
 Reading Questions

1. Show how to use the inverse of a matrix to solve the system of equations below and state the resulting solution.

$$
\begin{aligned}
4 x_{1}+10 x_{2} & =12 \\
2 x_{1}+6 x_{2} & =4
\end{aligned}
$$

2. In the reading questions for Section MISLE 207 you were asked to find the inverse of the 3×3 matrix below.

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
1 & -2 & -3 \\
-2 & 4 & 6
\end{array}\right]
$$

Because the matrix was not nonsingular, you had no theorems at that point that would allow you to compute the inverse. Explain why you now know that the inverse does not exist (which is different than not being able to compute it) by quoting the relevant theorem's acronym.
3. Is the matrix A unitary? Why?

$$
A=\left[\begin{array}{cc}
\frac{1}{\sqrt{22}}(4+2 i) & \frac{1}{\sqrt{374}}(5+3 i) \\
\frac{1}{\sqrt{22}}(-1-i) & \frac{1}{\sqrt{374}}(12+14 i)
\end{array}\right]
$$

Subsection EXC
 Exercises
 ■■■

C40 Solve the system of equations below using the inverse of a matrix.

$$
\begin{array}{r}
x_{1}+x_{2}+3 x_{3}+x_{4}=5 \\
-2 x_{1}-x_{2}-4 x_{3}-x_{4}=-7 \\
x_{1}+4 x_{2}+10 x_{3}+2 x_{4}=9 \\
-2 x_{1}-4 x_{3}+5 x_{4}=9
\end{array}
$$

Contributed by Robert Beezer Solution [229
M20 Construct an example of a 4×4 unitary matrix.
Contributed by Robert Beezer Solution 229
T10 Suppose that Q and P are unitary matrices of size n. Prove that $Q P$ is a unitary matrix. Contributed by Robert Beezer

T11 Prove that Hermitian matrices Definition HM 200) have real entries on the diagonal. More precisely, suppose that A is a Hermitian matrix of size n. Then $[A]_{i i} \in \mathbb{R}, 1 \leq i \leq n$.
Contributed by Robert Beezer
T12 Suppose that we are checking if a square matrix of size n is unitary. Show that a straightforward application of Theorem CUMOS 225 requires the computation of n^{2} inner products when the matrix is unitary, and fewer when the matrix is not orthogonal. Then show that this maximum number of inner products can be reduced to $\frac{1}{2} n(n+1)$ in light of Theorem IPAC 166 .
Contributed by Robert Beezer

Subsection SOL Solutions
 "!

C40 Contributed by Robert Beezer Statement 228
The coefficient matrix and vector of constants for the system are

$$
\left[\begin{array}{cccc}
1 & 1 & 3 & 1 \\
-2 & -1 & -4 & -1 \\
1 & 4 & 10 & 2 \\
-2 & 0 & -4 & 5
\end{array}\right]
$$

$$
\mathbf{b}=\left[\begin{array}{c}
5 \\
-7 \\
9 \\
9
\end{array}\right]
$$

A^{-1} can be computed by using a calculator, or by the method of Theorem CINM 213. Then Theorem SNCM 223 says the unique solution is

$$
A^{-1} \mathbf{b}=\left[\begin{array}{cccc}
38 & 18 & -5 & -2 \\
96 & 47 & -12 & -5 \\
-39 & -19 & 5 & 2 \\
-16 & -8 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
5 \\
-7 \\
9 \\
9
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1 \\
3
\end{array}\right]
$$

M20 Contributed by Robert Beezer Statement 228
The 4×4 identity matrix, I_{4}, would be one example (Definition IM 68). Any of the 23 other rearrangements of the columns of I_{4} would be a simple, but less trivial, example. See Example UPM 224 .

Section CRS
 Column and Row Spaces

Theorem SLSLC 90 showed us that there is a natural correspondence between solutions to linear systems and linear combinations of the columns of the coefficient matrix. This idea motivates the following important definition.

Definition CSM

Column Space of a Matrix

Suppose that A is an $m \times n$ matrix with columns $\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}$. Then the column space of A, written $\mathcal{C}(A)$, is the subset of \mathbb{C}^{m} containing all linear combinations of the columns of A,

$$
\mathcal{C}(A)=\left\langle\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}\right\}\right\rangle
$$

(This definition contains Notation CSM.)
Some authors refer to the column space of a matrix as the range, but we will reserve this term for use with linear transformations (Definition RLT 483).

Subsection CSSE
 Column Spaces and Systems of Equations

Upon encountering any new set, the first question we ask is what objects are in the set, and which objects are not? Here's an example of one way to answer this question, and it will motivate a theorem that will then answer the question precisely.

Example CSMCS

Column space of a matrix and consistent systems

Archetype D 703 and Archetype E 707 are linear systems of equations, with an identical 3×4 coefficient matrix, which we call A here. However, Archetype D 703 is consistent, while Archetype E 707 is not. We can explain this difference by employing the column space of the matrix A.

The column vector of constants, \mathbf{b}, in Archetype D 703 is

$$
\mathbf{b}=\left[\begin{array}{c}
8 \\
-12 \\
4
\end{array}\right]
$$

One solution to $\mathcal{L S}(A, \mathbf{b})$, as listed, is

$$
\mathbf{x}=\left[\begin{array}{l}
7 \\
8 \\
1 \\
3
\end{array}\right]
$$

By Theorem SLSLC 90, we can summarize this solution as a linear combination of the columns of A that equals \mathbf{b},

$$
7\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]+8\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]+1\left[\begin{array}{c}
7 \\
-5 \\
4
\end{array}\right]+3\left[\begin{array}{l}
-7 \\
-6 \\
-5
\end{array}\right]=\left[\begin{array}{c}
8 \\
-12 \\
4
\end{array}\right]=\mathbf{b} .
$$

This equation says that \mathbf{b} is a linear combination of the columns of A, and then by Definition CSM 231, we can say that $\mathbf{b} \in \mathcal{C}(A)$.

On the other hand, Archetype E 707) is the linear system $\mathcal{L S}(A, \mathbf{c})$, where the vector of constants is

$$
\mathbf{c}=\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right]
$$

and this system of equations is inconsistent. This means $\mathbf{c} \notin \mathcal{C}(A)$, for if it were, then it would equal a linear combination of the columns of A and Theorem SLSLC 90 would lead us to a solution of the system $\mathcal{L S}(A, \mathbf{c})$.

So if we fix the coefficient matrix, and vary the vector of constants, we can sometimes find consistent systems, and sometimes inconsistent systems. The vectors of constants that lead to consistent systems are exactly the elements of the column space. This is the content of the next theorem, and since it is an equivalence, it provides an alternate view of the column space.

Theorem CSCS

Column Spaces and Consistent Systems

Suppose A is an $m \times n$ matrix and \mathbf{b} is a vector of size m. Then $\mathbf{b} \in \mathcal{C}(A)$ if and only if $\mathcal{L S}(A, \mathbf{b})$ is consistent.

Proof (\Rightarrow) Suppose $\mathbf{b} \in \mathcal{C}(A)$. Then we can write \mathbf{b} as some linear combination of the columns of A. By Theorem SLSLC 90 we can use the scalars from this linear combination to form a solution to $\mathcal{L S}(A, \mathbf{b})$, so this system is consistent.
(\Leftarrow) If $\mathcal{L S}(A, \mathbf{b})$ is consistent, there is a solution that may be used with Theorem SLSLC 90 to write \mathbf{b} as a linear combination of the columns of A. This qualifies \mathbf{b} for membership in $\mathcal{C}(A)$.

This theorem tells us that asking if the system $\mathcal{L S}(A, \mathbf{b})$ is consistent is exactly the same question as asking if \mathbf{b} is in the column space of A. Or equivalently, it tells us that the column space of the matrix A is precisely those vectors of constants, \mathbf{b}, that can be paired with A to create a system of linear equations $\mathcal{L S}(A, \mathbf{b})$ that is consistent.

Employing Theorem SLEMM 190 we can form the chain of equivalences

$$
\mathbf{b} \in \mathcal{C}(A) \Longleftrightarrow \mathcal{L S}(A, \mathbf{b}) \text { is consistent } \Longleftrightarrow A \mathbf{x}=\mathbf{b} \text { for some } \mathbf{x}
$$

Thus, an alternative (and popular) definition of the column space of an $m \times n$ matrix A is

$$
\mathcal{C}(A)=\left\{\mathbf{y} \in \mathbb{C}^{m} \mid \mathbf{y}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{C}^{n}\right\}
$$

We recognize this as saying create all the matrix vector products possible with the matrix A by letting \mathbf{x} range over all of the possibilities. By Definition MVP [189] we see that this means take all possible linear combinations of the columns of A - precisely the definition of the column space (Definition CSM 231) we have chosen.

Given a vector \mathbf{b} and a matrix A it is now very mechanical to test if $\mathbf{b} \in \mathcal{C}(A)$. Form the linear system $\mathcal{L S}(A, \mathbf{b})$, row-reduce the augmented matrix, $[A \mid \mathbf{b}]$, and test for consistency with Theorem RCLS 50 . Here's an example of this procedure.

Example MCSM

Membership in the column space of a matrix

Consider the column space of the 3×4 matrix A,

$$
A=\left[\begin{array}{cccc}
3 & 2 & 1 & -4 \\
-1 & 1 & -2 & 3 \\
2 & -4 & 6 & -8
\end{array}\right]
$$

We first show that $\mathbf{v}=\left[\begin{array}{c}18 \\ -6 \\ 12\end{array}\right]$ is in the column space of $A, \mathbf{v} \in \mathcal{C}(A)$. Theorem CSCS 232 says we need only check the consistency of $\mathcal{L S}(A, \mathbf{v})$. Form the augmented matrix and row-reduce,

$$
\left[\begin{array}{ccccc}
3 & 2 & 1 & -4 & 18 \\
-1 & 1 & -2 & 3 & -6 \\
2 & -4 & 6 & -8 & 12
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
1 & 0 & 1 & -2 & 6 \\
0 & \boxed{1} & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Without a leading 1 in the final column, Theorem RCLS 50 tells us the system is consistent and therefore by Theorem CSCS 232, $\mathbf{v} \in \mathcal{C}(A)$.

If we wished to demonstrate explicitly that \mathbf{v} is a linear combination of the columns of A, we can find a solution (any solution) of $\mathcal{L S}(A, \mathbf{v})$ and use Theorem SLSLC 90 to construct the desired linear combination. For example, set the free variables to $x_{3}=2$ and $x_{4}=1$. Then a solution has $x_{2}=1$ and $x_{1}=6$. Then by Theorem SLSLC 90,

$$
\mathbf{v}=\left[\begin{array}{c}
18 \\
-6 \\
12
\end{array}\right]=6\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]+1\left[\begin{array}{c}
2 \\
1 \\
-4
\end{array}\right]+2\left[\begin{array}{c}
1 \\
-2 \\
6
\end{array}\right]+1\left[\begin{array}{c}
-4 \\
3 \\
-8
\end{array}\right]
$$

Now we show that $\mathbf{w}=\left[\begin{array}{c}2 \\ 1 \\ -3\end{array}\right]$ is not in the column space of $A, \mathbf{w} \notin \mathcal{C}(A)$. Theorem CSCS need only check the consistency of $\mathcal{L S}(A, \mathbf{w})$. Form the augmented matrix and row-reduce,

$$
\left[\begin{array}{ccccc}
3 & 2 & 1 & -4 & 2 \\
-1 & 1 & -2 & 3 & 1 \\
2 & -4 & 6 & -8 & -3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
\boxed{1} & 0 & 1 & -2 & 0 \\
0 & \boxed{1} & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

With a leading 1 in the final column, Theorem RCLS 50 tells us the system is inconsistent and therefore by Theorem CSCS 232, w $\notin \mathcal{C}(A)$.

Subsection CSSOC
 Column Space Spanned by Original Columns

So we have a foolproof, automated procedure for determining membership in $\mathcal{C}(A)$. While this works just fine a vector at a time, we would like to have a more useful description of the set $\mathcal{C}(A)$ as a whole. The next example will preview the first of two fundamental results about the column space of a matrix.

Example CSTW

Column space, two ways

Consider the 5×7 matrix A,

$$
\left[\begin{array}{ccccccc}
2 & 4 & 1 & -1 & 1 & 4 & 4 \\
1 & 2 & 1 & 0 & 2 & 4 & 7 \\
0 & 0 & 1 & 4 & 1 & 8 & 7 \\
1 & 2 & -1 & 2 & 1 & 9 & 6 \\
-2 & -4 & 1 & 3 & -1 & -2 & -2
\end{array}\right]
$$

According to the definition Definition CSM 231), the column space of A is

$$
\mathcal{C}(A)=\left\langle\left\{\left[\begin{array}{c}
2 \\
1 \\
0 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
4 \\
2 \\
0 \\
2 \\
-4
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
4 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
4 \\
4 \\
8 \\
9 \\
-2
\end{array}\right],\left[\begin{array}{c}
4 \\
7 \\
7 \\
6 \\
-2
\end{array}\right]\right\}\right\rangle
$$

While this is a concise description of an infinite set, we might be able to describe the span with fewer than seven vectors. This is the substance of Theorem BS 154. So we take these seven vectors and make them the columns of matrix, which is simply the original matrix A again. Now we row-reduce,

$$
\left[\begin{array}{ccccccc}
2 & 4 & 1 & -1 & 1 & 4 & 4 \\
1 & 2 & 1 & 0 & 2 & 4 & 7 \\
0 & 0 & 1 & 4 & 1 & 8 & 7 \\
1 & 2 & -1 & 2 & 1 & 9 & 6 \\
-2 & -4 & 1 & 3 & -1 & -2 & -2
\end{array}\right] \xrightarrow{\operatorname{RREF}}\left[\begin{array}{ccccccc}
\hline 1 & 2 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The pivot columns are $D=\{1,3,4,5\}$, so we can create the set

$$
T=\left\{\left[\begin{array}{c}
2 \\
1 \\
0 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
4 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
1 \\
1 \\
-1
\end{array}\right]\right\}
$$

and know that $\mathcal{C}(A)=\langle T\rangle$ and T is a linearly independent set of columns from the set of columns of A. \boxtimes
We will now formalize the previous example, which will make it trivial to determine a linearly independent set of vectors that will span the column space of a matrix, and is constituted of just columns of A.

Theorem BCS

Basis of the Column Space

Suppose that A is an $m \times n$ matrix with columns $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots, \mathbf{A}_{n}$, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ be the set of column indices where B has leading 1's. Let $T=\left\{\mathbf{A}_{d_{1}}, \mathbf{A}_{d_{2}}, \mathbf{A}_{d_{3}}, \ldots, \mathbf{A}_{d_{r}}\right\}$. Then

1. T is a linearly independent set.
2. $\mathcal{C}(A)=\langle T\rangle$.

Proof Definition CSM 231 describes the column space as the span of the set of columns of A. Theorem BS 154 tells us that we can reduce the set of vectors used in a span. If we apply Theorem BS 154 to $\mathcal{C}(A)$, we would collect the columns of A into a matrix (which would just be A again) and bring the matrix to reduced row-echelon form, which is the matrix B in the statement of the theorem. In this case, the conclusions of Theorem BS 154 applied to A, B and $\mathcal{C}(A)$ are exactly the conclusions we desire.

This is a nice result since it gives us a handful of vectors that describe the entire column space (through the span), and we believe this set is as small as possible because we cannot create any more relations of linear dependence to trim it down further. Furthermore, we defined the column space Definition CSM 231) as all linear combinations of the columns of the matrix, and the elements of the set S are still columns of the matrix (we won't be so lucky in the next two constructions of the column space).

Procedurally this theorem is extremely easy to apply. Row-reduce the original matrix, identify r columns with leading 1's in this reduced matrix, and grab the corresponding columns of the original matrix. But it is still important to study the proof of Theorem BS 154 and its motivation in Example COV 151 which lie at the root of this theorem. We'll trot through an example all the same.

Example CSOCD

Column space, original columns, Archetype D

Let's determine a compact expression for the entire column space of the coefficient matrix of the system
of equations that is Archetype D 703. Notice that in Example CSMCS 231 we were only determining if individual vectors were in the column space or not, now we are describing the entire column space.

To start with the application of Theorem BCS 234, call the coefficient matrix A

$$
A=\left[\begin{array}{cccc}
2 & 1 & 7 & -7 \\
-3 & 4 & -5 & -6 \\
1 & 1 & 4 & -5
\end{array}\right]
$$

and row-reduce it to reduced row-echelon form,

$$
B=\left[\begin{array}{cccc}
\boxed{1} & 0 & 3 & -2 \\
0 & \boxed{1} & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

There are leading 1's in columns 1 and 2 , so $D=\{1,2\}$. To construct a set that spans $\mathcal{C}(A)$, just grab the columns of A indicated by the set D, so

$$
\mathcal{C}(A)=\left\langle\left\{\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]\right\}\right\rangle .
$$

That's it.
In Example CSMCS 231 we determined that the vector

$$
\mathbf{c}=\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right]
$$

was not in the column space of A. Try to write \mathbf{c} as a linear combination of the first two columns of A. What happens?

Also in Example CSMCS 231 we determined that the vector

$$
\mathbf{b}=\left[\begin{array}{c}
8 \\
-12 \\
4
\end{array}\right]
$$

was in the column space of A. Try to write \mathbf{b} as a linear combination of the first two columns of A. What happens? Did you find a unique solution to this question? Hmmmm.

Subsection CSNM
 Column Space of a Nonsingular Matrix

Let's specialize to square matrices and contrast the column spaces of the coefficient matrices in Archetype A 689 and Archetype B 694.

Example CSAA

Column space of Archetype A

The coefficient matrix in Archetype A 689 is

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

which row-reduces to

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & \boxed{1} & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Columns 1 and 2 have leading 1's, so by Theorem BCS 234 we can write

$$
\mathcal{C}(A)=\left\langle\left\{\mathbf{A}_{1}, \mathbf{A}_{2}\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\}\right\rangle .
$$

We want to show in this example that $\mathcal{C}(A) \neq \mathbb{C}^{3}$. So take, for example, the vector $\mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$. Then there is no solution to the system $\mathcal{L S}(A, \mathbf{b})$, or equivalently, it is not possible to write \mathbf{b} as a linear combination of \mathbf{A}_{1} and \mathbf{A}_{2}. Try one of these two computations yourself. (Or try both!). Since $\mathbf{b} \notin \mathcal{C}(A)$, the column space of A cannot be all of \mathbb{C}^{3}. So by varying the vector of constants, it is possible to create inconsistent systems of equations with this coefficient matrix (the vector \mathbf{b} being one such example).

In Example MWIAA 208 we wished to show that the coefficient matrix from Archetype A 689 was not invertible as a first example of a matrix without an inverse. Our device there was to find an inconsistent linear system with A as the coefficient matrix. The vector of constants in that example was \mathbf{b}, deliberately chosen outside the column space of A.

Example CSAB

Column space of Archetype B

The coefficient matrix in Archetype B 694, call it B here, is known to be nonsingular (see Example NM [68]). By Theorem NMUS 70, the linear system $\mathcal{L S}(B, \mathbf{b})$ has a (unique) solution for every choice of \mathbf{b}. Theorem CSCS 232 then says that $\mathbf{b} \in \mathcal{C}(B)$ for all $\mathbf{b} \in \mathbb{C}^{3}$. Stated differently, there is no way to build an inconsistent system with the coefficient matrix B, but then we knew that already from Theorem NMUS 70.

Example CSAA 235 and Example CSAB 236 together motivate the following equivalence, which says that nonsingular matrices have column spaces that are as big as possible.

Theorem CSNM

Column Space of a Nonsingular Matrix

Suppose A is a square matrix of size n. Then A is nonsingular if and only if $\mathcal{C}(A)=\mathbb{C}^{n}$.
Proof (\Rightarrow) Suppose A is nonsingular. We wish to establish the set equality $\mathcal{C}(A)=\mathbb{C}^{n}$. By Definition CSM 231, $\mathcal{C}(A) \subseteq \mathbb{C}^{n}$.

To show that $\mathbb{C}^{n} \subseteq \mathcal{C}(A)$ choose $\mathbf{b} \in \mathbb{C}^{n}$. By Theorem NMUS 70, we know the linear system $\mathcal{L S}(A, \mathbf{b})$ has a (unique) solution and therefore is consistent. Theorem CSCS 232 then says that $\mathbf{b} \in \mathcal{C}(A)$. So by Definition SE 670, $\mathcal{C}(A)=\mathbb{C}^{n}$.
(\Leftarrow) If \mathbf{e}_{i} is column i of the $n \times n$ identity matrix (Definition SUV 210) and by hypothesis $\mathcal{C}(A)=\mathbb{C}^{n}$, then $\mathbf{e}_{i} \in \mathcal{C}(A)$ for $1 \leq i \leq n$. By Theorem CSCS 232, the system $\mathcal{L S}\left(A, \mathbf{e}_{i}\right)$ is consistent for $1 \leq i \leq n$. Let \mathbf{b}_{i} denote any one particular solution to $\mathcal{L S}\left(A, \mathbf{e}_{i}\right), 1 \leq i \leq n$.

Define the $n \times n$ matrix $B=\left[\mathbf{b}_{1}\left|\mathbf{b}_{2}\right| \mathbf{b}_{3}|\ldots| \mathbf{b}_{n}\right]$. Then

$$
\begin{aligned}
A B & =A\left[\mathbf{b}_{1}\left|\mathbf{b}_{2}\right| \mathbf{b}_{3}|\ldots| \mathbf{b}_{n}\right] & & \\
& =\left[A \mathbf{b}_{1}\left|A \mathbf{b}_{2}\right| A \mathbf{b}_{3}|\ldots| A \mathbf{b}_{n}\right] & & \text { Definition MM } 192 \\
& =\left[\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \mathbf{e}_{3}|\ldots| \mathbf{e}_{n}\right] & & \\
& =I_{n} & & \text { Definition SUV } 210
\end{aligned}
$$

So the matrix B is a "right-inverse" for A. By Theorem NMRRI 68], I_{n} is a nonsingular matrix, so by Theorem NPNT 221 both A and B are nonsingular. Thus, in particular, A is nonsingular. Travis Osborne contributed to this proof.)

With this equivalence for nonsingular matrices we can update our list, Theorem NME3 223.
Theorem NME4
Nonsingular Matrix Equivalences, Round 4
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{0\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.

Proof Since Theorem CSNM 236 is an equivalence, we can add it to the list in Theorem NME3 223.

Subsection RSM
 Row Space of a Matrix

The rows of a matrix can be viewed as vectors, since they are just lists of numbers, arranged horizontally. So we will transpose a matrix, turning rows into columns, so we can then manipulate rows as column vectors. As a result we will be able to make some new connections between row operations and solutions to systems of equations. OK, here is the second primary definition of this section.

Definition RSM

Row Space of a Matrix

Suppose A is an $m \times n$ matrix. Then the row space of $A, \mathcal{R}(A)$, is the column space of A^{t}, i.e. $\mathcal{R}(A)=$ $\mathcal{C}\left(A^{t}\right)$.
(This definition contains Notation RSM.)
Informally, the row space is the set of all linear combinations of the rows of A. However, we write the rows as column vectors, thus the necessity of using the transpose to make the rows into columns. Additionally, with the row space defined in terms of the column space, all of the previous results of this section can be applied to row spaces.

Notice that if A is a rectangular $m \times n$ matrix, then $\mathcal{C}(A) \subseteq \mathbb{C}^{m}$, while $\mathcal{R}(A) \subseteq \mathbb{C}^{n}$ and the two sets are not comparable since they do not even hold objects of the same type. However, when A is square of size n, both $\mathcal{C}(A)$ and $\mathcal{R}(A)$ are subsets of \mathbb{C}^{n}, though usually the sets will not be equal (but see Exercise CRS.M20 246).

Example RSAI
 Row space of Archetype I

The coefficient matrix in Archetype I 724 is

$$
I=\left[\begin{array}{ccccccc}
1 & 4 & 0 & -1 & 0 & 7 & -9 \\
2 & 8 & -1 & 3 & 9 & -13 & 7 \\
0 & 0 & 2 & -3 & -4 & 12 & -8 \\
-1 & -4 & 2 & 4 & 8 & -31 & 37
\end{array}\right] .
$$

To build the row space, we transpose the matrix,

$$
I^{t}=\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
4 & 8 & 0 & -4 \\
0 & -1 & 2 & 2 \\
-1 & 3 & -3 & 4 \\
0 & 9 & -4 & 8 \\
7 & -13 & 12 & -31 \\
-9 & 7 & -8 & 37
\end{array}\right]
$$

Then the columns of this matrix are used in a span to build the row space,

$$
\mathcal{R}(I)=\mathcal{C}\left(I^{t}\right)=\left\langle\left\{\left[\begin{array}{c}
1 \\
4 \\
0 \\
-1 \\
0 \\
7 \\
-9
\end{array}\right],\left[\begin{array}{c}
2 \\
8 \\
-1 \\
3 \\
9 \\
-13 \\
7
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
2 \\
-3 \\
-4 \\
12 \\
-8
\end{array}\right],\left[\begin{array}{c}
-1 \\
-4 \\
2 \\
4 \\
8 \\
-31 \\
37
\end{array}\right]\right\}\right\rangle .
$$

However, we can use Theorem BCS 234 to get a slightly better description. First, row-reduce I^{t},

$$
\left[\begin{array}{cccc}
\hline 1 & 0 & 0 & -\frac{31}{7} \\
0 & 1 & 0 & \frac{12}{7} \\
0 & 0 & 1 & \frac{13}{7} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Since there are leading 1's in columns with indices $D=\{1,2,3\}$, the column space of I^{t} can be spanned by just the first three columns of I^{t},

$$
\mathcal{R}(I)=\mathcal{C}\left(I^{t}\right)=\left\langle\left\{\left[\begin{array}{c}
1 \\
4 \\
0 \\
-1 \\
0 \\
7 \\
-9
\end{array}\right],\left[\begin{array}{c}
2 \\
8 \\
-1 \\
3 \\
9 \\
-13 \\
7
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
2 \\
-3 \\
-4 \\
12 \\
-8
\end{array}\right]\right\}\right\rangle
$$

The row space would not be too interesting if it was simply the column space of the transpose. However, when we do row operations on a matrix we have no effect on the many linear combinations that can be formed with the rows of the matrix. This is stated more carefully in the following theorem.

Theorem REMRS

Row-Equivalent Matrices have equal Row Spaces

Suppose A and B are row-equivalent matrices. Then $\mathcal{R}(A)=\mathcal{R}(B)$.
Proof Two matrices are row-equivalent (Definition REM 29) if one can be obtained from another by a sequence of (possibly many) row operations. We will prove the theorem for two matrices that differ by a single row operation, and then this result can be applied repeatedly to get the full statement of the theorem. The row spaces of A and B are spans of the columns of their transposes. For each row operation we perform on a matrix, we can define an analogous operation on the columns. Perhaps we should call these column operations. Instead, we will still call them row operations, but we will apply them to the columns of the transposes.

Refer to the columns of A^{t} and B^{t} as \mathbf{A}_{i} and $\mathbf{B}_{i}, 1 \leq i \leq m$. The row operation that switches rows will just switch columns of the transposed matrices. This will have no effect on the possible linear combinations formed by the columns.

Suppose that B^{t} is formed from A^{t} by multiplying column \mathbf{A}_{t} by $\alpha \neq 0$. In other words, $\mathbf{B}_{t}=\alpha \mathbf{A}_{t}$, and $\mathbf{B}_{i}=\mathbf{A}_{i}$ for all $i \neq t$. We need to establish that two sets are equal, $\mathcal{C}\left(A^{t}\right)=\mathcal{C}\left(B^{t}\right)$. We will take a generic element of one and show that it is contained in the other.

$$
\begin{aligned}
\beta_{1} \mathbf{B}_{1}+ & \beta_{2} \mathbf{B}_{2}+\beta_{3} \mathbf{B}_{3}+\cdots+\beta_{t} \mathbf{B}_{t}+\cdots+\beta_{m} \mathbf{B}_{m} \\
& =\beta_{1} \mathbf{A}_{1}+\beta_{2} \mathbf{A}_{2}+\beta_{3} \mathbf{A}_{3}+\cdots+\beta_{t}\left(\alpha \mathbf{A}_{t}\right)+\cdots+\beta_{m} \mathbf{A}_{m} \\
& =\beta_{1} \mathbf{A}_{1}+\beta_{2} \mathbf{A}_{2}+\beta_{3} \mathbf{A}_{3}+\cdots+\left(\alpha \beta_{t}\right) \mathbf{A}_{t}+\cdots+\beta_{m} \mathbf{A}_{m}
\end{aligned}
$$

says that $\mathcal{C}\left(B^{t}\right) \subseteq \mathcal{C}\left(A^{t}\right)$. Similarly,

$$
\begin{aligned}
\gamma_{1} \mathbf{A}_{1}+ & \gamma_{2} \mathbf{A}_{2}+\gamma_{3} \mathbf{A}_{3}+\cdots+\gamma_{t} \mathbf{A}_{t}+\cdots+\gamma_{m} \mathbf{A}_{m} \\
& =\gamma_{1} \mathbf{A}_{1}+\gamma_{2} \mathbf{A}_{2}+\gamma_{3} \mathbf{A}_{3}+\cdots+\left(\frac{\gamma_{t}}{\alpha} \alpha\right) \mathbf{A}_{t}+\cdots+\gamma_{m} \mathbf{A}_{m} \\
& =\gamma_{1} \mathbf{A}_{1}+\gamma_{2} \mathbf{A}_{2}+\gamma_{3} \mathbf{A}_{3}+\cdots+\frac{\gamma_{t}}{\alpha}\left(\alpha \mathbf{A}_{t}\right)+\cdots+\gamma_{m} \mathbf{A}_{m} \\
& =\gamma_{1} \mathbf{B}_{1}+\gamma_{2} \mathbf{B}_{2}+\gamma_{3} \mathbf{B}_{3}+\cdots+\frac{\gamma_{t}}{\alpha} \mathbf{B}_{t}+\cdots+\gamma_{m} \mathbf{B}_{m}
\end{aligned}
$$

says that $\mathcal{C}\left(A^{t}\right) \subseteq \mathcal{C}\left(B^{t}\right)$. So $\mathcal{R}(A)=\mathcal{C}\left(A^{t}\right)=\mathcal{C}\left(B^{t}\right)=\mathcal{R}(B)$ when a single row operation of the second type is performed.

Suppose now that B^{t} is formed from A^{t} by replacing \mathbf{A}_{t} with $\alpha \mathbf{A}_{s}+\mathbf{A}_{t}$ for some $\alpha \in \mathbb{C}$ and $s \neq t$. In other words, $\mathbf{B}_{t}=\alpha \mathbf{A}_{s}+\mathbf{A}_{t}$, and $\mathbf{B}_{i}=\mathbf{A}_{i}$ for $i \neq t$.

$$
\begin{aligned}
\beta_{1} \mathbf{B}_{1}+ & \beta_{2} \mathbf{B}_{2}+\beta_{3} \mathbf{B}_{3}+\cdots+\beta_{s} \mathbf{B}_{s}+\cdots+\beta_{t} \mathbf{B}_{t}+\cdots+\beta_{m} \mathbf{B}_{m} \\
& =\beta_{1} \mathbf{A}_{1}+\beta_{2} \mathbf{A}_{2}+\beta_{3} \mathbf{A}_{3}+\cdots+\beta_{s} \mathbf{A}_{s}+\cdots+\beta_{t}\left(\alpha \mathbf{A}_{s}+\mathbf{A}_{t}\right)+\cdots+\beta_{m} \mathbf{A}_{m} \\
& =\beta_{1} \mathbf{A}_{1}+\beta_{2} \mathbf{A}_{2}+\beta_{3} \mathbf{A}_{3}+\cdots+\beta_{s} \mathbf{A}_{s}+\cdots+\left(\beta_{t} \alpha\right) \mathbf{A}_{s}+\beta_{t} \mathbf{A}_{t}+\cdots+\beta_{m} \mathbf{A}_{m} \\
& =\beta_{1} \mathbf{A}_{1}+\beta_{2} \mathbf{A}_{2}+\beta_{3} \mathbf{A}_{3}+\cdots+\beta_{s} \mathbf{A}_{s}+\left(\beta_{t} \alpha\right) \mathbf{A}_{s}+\cdots+\beta_{t} \mathbf{A}_{t}+\cdots+\beta_{m} \mathbf{A}_{m} \\
& =\beta_{1} \mathbf{A}_{1}+\beta_{2} \mathbf{A}_{2}+\beta_{3} \mathbf{A}_{3}+\cdots+\left(\beta_{s}+\beta_{t} \alpha\right) \mathbf{A}_{s}+\cdots+\beta_{t} \mathbf{A}_{t}+\cdots+\beta_{m} \mathbf{A}_{m}
\end{aligned}
$$

says that $\mathcal{C}\left(B^{t}\right) \subseteq \mathcal{C}\left(A^{t}\right)$. Similarly,

$$
\begin{aligned}
& \gamma_{1} \mathbf{A}_{1}+\gamma_{2} \mathbf{A}_{2}+\gamma_{3} \mathbf{A}_{3}+\cdots+\gamma_{s} \mathbf{A}_{s}+\cdots+\gamma_{t} \mathbf{A}_{t}+\cdots+\gamma_{m} \mathbf{A}_{m} \\
& \quad=\gamma_{1} \mathbf{A}_{1}+\gamma_{2} \mathbf{A}_{2}+\gamma_{3} \mathbf{A}_{3}+\cdots+\gamma_{s} \mathbf{A}_{s}+\cdots+\left(-\alpha \gamma_{t} \mathbf{A}_{s}+\alpha \gamma_{t} \mathbf{A}_{s}\right)+\gamma_{t} \mathbf{A}_{t}+\cdots+\gamma_{m} \mathbf{A}_{m} \\
& \quad=\gamma_{1} \mathbf{A}_{1}+\gamma_{2} \mathbf{A}_{2}+\gamma_{3} \mathbf{A}_{3}+\cdots+\left(-\alpha \gamma_{t} \mathbf{A}_{s}\right)+\gamma_{s} \mathbf{A}_{s}+\cdots+\left(\alpha \gamma_{t} \mathbf{A}_{s}+\gamma_{t} \mathbf{A}_{t}\right)+\cdots+\gamma_{m} \mathbf{A}_{m} \\
& \quad=\gamma_{1} \mathbf{A}_{1}+\gamma_{2} \mathbf{A}_{2}+\gamma_{3} \mathbf{A}_{3}+\cdots+\left(-\alpha \gamma_{t}+\gamma_{s}\right) \mathbf{A}_{s}+\cdots+\gamma_{t}\left(\alpha \mathbf{A}_{s}+\mathbf{A}_{t}\right)+\cdots+\gamma_{m} \mathbf{A}_{m} \\
& \quad=\gamma_{1} \mathbf{B}_{1}+\gamma_{2} \mathbf{B}_{2}+\gamma_{3} \mathbf{B}_{3}+\cdots+\left(-\alpha \gamma_{t}+\gamma_{s}\right) \mathbf{B}_{s}+\cdots+\gamma_{t} \mathbf{B}_{t}+\cdots+\gamma_{m} \mathbf{B}_{m}
\end{aligned}
$$

says that $\mathcal{C}\left(A^{t}\right) \subseteq \mathcal{C}\left(B^{t}\right)$. So $\mathcal{R}(A)=\mathcal{C}\left(A^{t}\right)=\mathcal{C}\left(B^{t}\right)=\mathcal{R}(B)$ when a single row operation of the third type is performed.

So the row space of a matrix is preserved by each row operation, and hence row spaces of row-equivalent matrices are equal sets.

Example RSREM

Row spaces of two row-equivalent matrices

In Example TREM 29 we saw that the matrices

$$
A=\left[\begin{array}{cccc}
2 & -1 & 3 & 4 \\
5 & 2 & -2 & 3 \\
1 & 1 & 0 & 6
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 1 & 0 & 6 \\
3 & 0 & -2 & -9 \\
2 & -1 & 3 & 4
\end{array}\right]
$$

are row-equivalent by demonstrating a sequence of two row operations that converted A into B. Applying Theorem REMRS 239 we can say

$$
\mathcal{R}(A)=\left\langle\left\{\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
5 \\
2 \\
-2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
6
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
6
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
-2 \\
-9
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
3 \\
4
\end{array}\right]\right\}\right\rangle=\mathcal{R}(B)
$$

Theorem REMRS 239 is at its best when one of the row-equivalent matrices is in reduced row-echelon form. The vectors that correspond to the zero rows can be ignored (who needs the zero vector when building a span?, see Exercise LI.T10 (143). The echelon pattern insures that the nonzero rows yield vectors that are linearly independent. Here's the theorem.

Theorem BRS

Basis for the Row Space

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero columns of B^{t}. Then

1. $\mathcal{R}(A)=\langle S\rangle$.
2. S is a linearly independent set.

Proof From Theorem REMRS 239 we know that $\mathcal{R}(A)=\mathcal{R}(B)$. If B has any zero rows, these correspond to columns of B^{t} that are the zero vector. We can safely toss out the zero vector in the span construction, since it can be recreated from the nonzero vectors by a linear combination where all the scalars are zero. So $\mathcal{R}(A)=\langle S\rangle$.

Suppose B has r nonzero rows and let $D=\left\{d_{1}, d_{2}, d_{3}, \ldots, d_{r}\right\}$ denote the column indices of B that have a leading one in them. Denote the r column vectors of B^{t}, the vectors in S, as $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}, \ldots, \mathbf{B}_{r}$. To show that S is linearly independent, start with a relation of linear dependence

$$
\alpha_{1} \mathbf{B}_{1}+\alpha_{2} \mathbf{B}_{2}+\alpha_{3} \mathbf{B}_{3}+\cdots+\alpha_{r} \mathbf{B}_{r}=\mathbf{0}
$$

Now consider this vector equality in location d_{i}. Since B is in reduced row-echelon form, the entries of column d_{i} of B are all zero, except for a (leading) 1 in row i. Thus, in B^{t}, row d_{i} is all zeros, excepting a 1 in column i. So, for $1 \leq i \leq r$,

$$
\begin{aligned}
0 & =[\mathbf{0}]_{d_{i}} \\
& =\left[\alpha_{1} \mathbf{B}_{1}+\alpha_{2} \mathbf{B}_{2}+\alpha_{3} \mathbf{B}_{3}+\cdots+\alpha_{r} \mathbf{B}_{r}\right]_{d_{i}}
\end{aligned}
$$

$$
\begin{array}{ll}
=\left[\alpha_{1} \mathbf{B}_{1}\right]_{d_{i}}+\left[\alpha_{2} \mathbf{B}_{2}\right]_{d_{i}}+\left[\alpha_{3} \mathbf{B}_{3}\right]_{d_{i}}+\cdots+\left[\alpha_{r} \mathbf{B}_{r}\right]_{d_{i}}+ & \\
=\alpha_{1}\left[\mathbf{B}_{1}\right]_{d_{i}}+\alpha_{2}\left[\mathbf{B}_{2}\right]_{d_{i}}+\alpha_{3}\left[\mathbf{B}_{3}\right]_{d_{i}}+\cdots+\alpha_{r}\left[\mathbf{B}_{r}\right]_{d_{i}}+ & \\
=\alpha_{1}(0)+\alpha_{2}(0)+\alpha_{3}(0)+\cdots+\alpha_{i}(1)+\cdots+\alpha_{r}(0) & \\
=\alpha_{i} & \\
\text { Definition Mefinition MSM 178 } \\
\hline
\end{array}
$$

So we conclude that $\alpha_{i}=0$ for all $1 \leq i \leq r$, establishing the linear independence of S Definition LICV (131).

Example IAS

Improving a span

Suppose in the course of analyzing a matrix (its column space, its null space, its...) we encounter the following set of vectors, described by a span

$$
X=\left\langle\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
6 \\
6
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
2 \\
-1 \\
6
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-3 \\
2 \\
-3 \\
6 \\
-10
\end{array}\right]\right\}\right\rangle
$$

Let A be the matrix whose rows are the vectors in X, so by design $X=\mathcal{R}(A)$,

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 1 & 6 & 6 \\
3 & -1 & 2 & -1 & 6 \\
1 & -1 & 0 & -1 & -2 \\
-3 & 2 & -3 & 6 & -10
\end{array}\right]
$$

Row-reduce A to form a row-equivalent matrix in reduced row-echelon form,

$$
B=\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 2 & -1 \\
0 & \boxed{1} & 0 & 3 & 1 \\
0 & 0 & \boxed{1} & -2 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Then Theorem BRS 240 says we can grab the nonzero columns of B^{t} and write

$$
X=\mathcal{R}(A)=\mathcal{R}(B)=\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-2 \\
5
\end{array}\right]\right\}\right\rangle
$$

These three vectors provide a much-improved description of X. There are fewer vectors, and the pattern of zeros and ones in the first three entries makes it easier to determine membership in X. And all we had to do was row-reduce the right matrix and toss out a zero row. Next to row operations themselves, this is probably the most powerful computational technique at your disposal as it quickly provides a much improved description of a span, any span.

Theorem BRS 240 and the techniques of Example IAS 241 will provide yet another description of the column space of a matrix. First we state a triviality as a theorem, so we can reference it later.

Theorem CSRST

Column Space, Row Space, Transpose
Suppose A is a matrix. Then $\mathcal{C}(A)=\mathcal{R}\left(A^{t}\right)$.

Proof

$$
\mathcal{C}(A)=\mathcal{C}\left(\left(A^{t}\right)^{t}\right)
$$

Theorem TT 182

$$
=\mathcal{R}\left(A^{t}\right) \quad \text { Definition RSM } 237
$$

So to find another expression for the column space of a matrix, build its transpose, row-reduce it, toss out the zero rows, and convert the nonzero rows to column vectors to yield an improved set for the span construction. We'll do Archetype I 724 , then you do Archetype J 728 .

Example CSROI

Column space from row operations, Archetype I

To find the column space of the coefficient matrix of Archetype I 724 , we proceed as follows. The matrix is

$$
I=\left[\begin{array}{ccccccc}
1 & 4 & 0 & -1 & 0 & 7 & -9 \\
2 & 8 & -1 & 3 & 9 & -13 & 7 \\
0 & 0 & 2 & -3 & -4 & 12 & -8 \\
-1 & -4 & 2 & 4 & 8 & -31 & 37
\end{array}\right] .
$$

The transpose is

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
4 & 8 & 0 & -4 \\
0 & -1 & 2 & 2 \\
-1 & 3 & -3 & 4 \\
0 & 9 & -4 & 8 \\
7 & -13 & 12 & -31 \\
-9 & 7 & -8 & 37
\end{array}\right] .
$$

Row-reduced this becomes,

$$
\left[\begin{array}{cccc}
\hline 1 & 0 & 0 & -\frac{31}{7} \\
0 & 1 & 0 & \frac{12}{7} \\
0 & 0 & 1 & \frac{13}{7} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Now, using Theorem CSRST 241 and Theorem BRS 240

$$
\mathcal{C}(I)=\mathcal{R}\left(I^{t}\right)=\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
-\frac{31}{7}
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
\frac{12}{7}
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
\frac{13}{7}
\end{array}\right]\right\}\right\rangle .
$$

This is a very nice description of the column space. Fewer vectors than the 7 involved in the definition, and the pattern of the zeros and ones in the first 3 slots can be used to advantage. For example, Archetype I 724 is presented as a consistent system of equations with a vector of constants

$$
\mathbf{b}=\left[\begin{array}{l}
3 \\
9 \\
1 \\
4
\end{array}\right]
$$

Since $\mathcal{L S}(I, \mathbf{b})$ is consistent, Theorem CSCS 232 tells us that $\mathbf{b} \in \mathcal{C}(I)$. But we could see this quickly with the following computation, which really only involves any work in the 4th entry of the vectors as the
scalars in the linear combination are dictated by the first three entries of \mathbf{b}.

$$
\mathbf{b}=\left[\begin{array}{l}
3 \\
9 \\
1 \\
4
\end{array}\right]=3\left[\begin{array}{c}
1 \\
0 \\
0 \\
-\frac{31}{7}
\end{array}\right]+9\left[\begin{array}{c}
0 \\
1 \\
0 \\
\frac{12}{7}
\end{array}\right]+1\left[\begin{array}{c}
0 \\
0 \\
1 \\
\frac{13}{7}
\end{array}\right]
$$

Can you now rapidly construct several vectors, \mathbf{b}, so that $\mathcal{L S}(I, \mathbf{b})$ is consistent, and several more so that the system is inconsistent?

Subsection READ Reading Questions

1. Write the column space of the matrix below as the span of a set of three vectors and explain your choice of method.

$$
\left[\begin{array}{cccc}
1 & 3 & 1 & 3 \\
2 & 0 & 1 & 1 \\
-1 & 2 & 1 & 0
\end{array}\right]
$$

2. Suppose that A is an $n \times n$ nonsingular matrix. What can you say about its column space?
3. Is the vector $\left[\begin{array}{l}0 \\ 5 \\ 2 \\ 3\end{array}\right]$ in the row space of the following matrix? Why or why not?

$$
\left[\begin{array}{cccc}
1 & 3 & 1 & 3 \\
2 & 0 & 1 & 1 \\
-1 & 2 & 1 & 0
\end{array}\right]
$$

Subsection EXC
 Exercises

C30 Example CSOCD 234 expresses the column space of the coefficient matrix from Archetype D 703 (call the matrix A here) as the span of the first two columns of A. In Example CSMCS 231 we determined that the vector

$$
\mathbf{c}=\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right]
$$

was not in the column space of A and that the vector

$$
\mathbf{b}=\left[\begin{array}{c}
8 \\
-12 \\
4
\end{array}\right]
$$

was in the column space of A. Attempt to write \mathbf{c} and \mathbf{b} as linear combinations of the two vectors in the span construction for the column space in Example CSOCD 234 and record your observations.
Contributed by Robert Beezer Solution 248
C31 For the matrix A below find a set of vectors T meeting the following requirements: (1) the span of T is the column space of A, that is, $\langle T\rangle=\mathcal{C}(A)$, (2) T is linearly independent, and (3) the elements of T are columns of A.

$$
A=\left[\begin{array}{ccccc}
2 & 1 & 4 & -1 & 2 \\
1 & -1 & 5 & 1 & 1 \\
-1 & 2 & -7 & 0 & 1 \\
2 & -1 & 8 & -1 & 2
\end{array}\right]
$$

Contributed by Robert Beezer

Solution 248

C32 In Example CSAA 235, verify that the vector \mathbf{b} is not in the column space of the coefficient matrix. Contributed by Robert Beezer

C33 Find a linearly independent set S so that the span of $S,\langle S\rangle$, is row space of the matrix B, and S is linearly independent.

$$
B=\left[\begin{array}{cccc}
2 & 3 & 1 & 1 \\
1 & 1 & 0 & 1 \\
-1 & 2 & 3 & -4
\end{array}\right]
$$

Contributed by Robert Beezer Solution 248
C34 For the 3×4 matrix A and the column vector $\mathbf{y} \in \mathbb{C}^{4}$ given below, determine if \mathbf{y} is in the row space of A. In other words, answer the question: $\mathbf{y} \in \mathcal{R}(A)$? (15 points)

$$
A=\left[\begin{array}{cccc}
-2 & 6 & 7 & -1 \\
7 & -3 & 0 & -3 \\
8 & 0 & 7 & 6
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
2 \\
1 \\
3 \\
-2
\end{array}\right]
$$

Contributed by Robert Beezer
Solution 248
C35 For the matrix A below, find two different linearly independent sets whose spans equal the column space of $A, \mathcal{C}(A)$, such that
(a) the elements are each columns of A.
(b) the set is obtained by a procedure that is substantially different from the procedure you use in part (a).

$$
A=\left[\begin{array}{cccc}
3 & 5 & 1 & -2 \\
1 & 2 & 3 & 3 \\
-3 & -4 & 7 & 13
\end{array}\right]
$$

Contributed by Robert Beezer Solution 249
C40 The following archetypes are systems of equations. For each system, write the vector of constants as a linear combination of the vectors in the span construction for the column space provided by Theorem BCS 234 (these vectors are listed for each of these archetypes).
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703
Archetype E 707
Archetype F 711
Archetype G 716

| Archetype H 720 |
| :--- | :--- |

Archetype I 724
Archetype J 728
Contributed by Robert Beezer
C42 The following archetypes are either matrices or systems of equations with coefficient matrices. For each matrix, compute a set of column vectors such that (1) the vectors are columns of the matrix, (2) the set is linearly independent, and (3) the span of the set is the column space of the matrix. See Theorem BCS 234.
Archetype A 689
Archetype B 694
Archetype C 699

Archetype D 703	Archetype E 707

Archetype F 711

Archetype G 716	Archetype H 720

Archetype I 724
Archetype J 728
Archetype K 733
Archetype L 737

Contributed by Robert Beezer

C50 The following archetypes are either matrices or systems of equations with coefficient matrices. For each matrix, compute a set of column vectors such that (1) the set is linearly independent, and (2) the span of the set is the row space of the matrix. See Theorem BRS 240.
Archetype A 689
Archetype B 694
Archetype C

| Archetype D 703 Archetype E 707 |
| :--- | :--- |

Archetype F 711
Archetype G 716 Archetype H 720

Archetype I	724
Archetype J	728
Archetype K	733
Archetype L	737

Contributed by Robert Beezer

C51 The following archetypes are either matrices or systems of equations with coefficient matrices. For each matrix, compute the column space as the span of a linearly independent set as follows: transpose the matrix, row-reduce, toss out zero rows, convert rows into column vectors. See Example CSROI 242 .
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703 Archetype E 707
Archetype F 711]

| Archetype G 716$]$ Archetype H 720 |
| :--- | :--- |

Archetype I	724

Archetype J 728
Archetype K 733
Archetype L 737

Contributed by Robert Beezer
C52 The following archetypes are systems of equations. For each different coefficient matrix build two new vectors of constants. The first should lead to a consistent system and the second should lead to an inconsistent system. Descriptions of the column space as spans of linearly independent sets of vectors with "nice patterns" of zeros and ones might be most useful and instructive in connection with this exercise. (See the end of Example CSROI 242.)
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703 Archetype E 707
Archetype F 711

Archetype G 716	Archetype H 720

Archetype I	724

Archetype J 728
Contributed by Robert Beezer
M10 For the matrix E below, find vectors \mathbf{b} and \mathbf{c} so that the system $\mathcal{L S}(E, \mathbf{b})$ is consistent and $\mathcal{L S}(E, \mathbf{c})$ is inconsistent.

$$
E=\left[\begin{array}{cccc}
-2 & 1 & 1 & 0 \\
3 & -1 & 0 & 2 \\
4 & 1 & 1 & 6
\end{array}\right]
$$

Contributed by Robert Beezer Solution 249
M20 Usually the column space and null space of a matrix contain vectors of different sizes. For a square matrix, though, the vectors in these two sets are the same size. Usually the two sets will be different. Construct an example of a square matrix where the column space and null space are equal.

Contributed by Robert Beezer Solution 250
M21 We have a variety of theorems about how to create column spaces and row spaces and they frequently involve row-reducing a matrix. Here is a procedure that some try to use to get a column space. Begin with an $m \times n$ matrix A and row-reduce to a matrix B with columns $\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}, \ldots, \mathbf{B}_{n}$. Then form the column space of A as

$$
\mathcal{C}(A)=\left\langle\left\{\mathbf{B}_{1}, \mathbf{B}_{2}, \mathbf{B}_{3}, \ldots, \mathbf{B}_{n}\right\}\right\rangle=\mathcal{C}(B)
$$

This is not not a legitimate procedure, and therefore is not a theorem. Construct an example to show that the procedure will not in general create the column space of A.
Contributed by Robert Beezer Solution 250
T40 Suppose that A is an $m \times n$ matrix and B is an $n \times p$ matrix. Prove that the column space of $A B$ is a subset of the column space of A, that is $\mathcal{C}(A B) \subseteq \mathcal{C}(A)$. Provide an example where the opposite is false, in other words give an example where $\mathcal{C}(A) \nsubseteq \mathcal{C}(A B)$. (Compare with Exercise MM.T40 202.)
Contributed by Robert Beezer Solution 250
T41 Suppose that A is an $m \times n$ matrix and B is an $n \times n$ nonsingular matrix. Prove that the column space of A is equal to the column space of $A B$, that is $\mathcal{C}(A)=\mathcal{C}(A B)$. (Compare with Exercise MM.T41 202 and Exercise CRS.T40 247.)
Contributed by Robert Beezer Solution 250
T45 Suppose that A is an $m \times n$ matrix and B is an $n \times m$ matrix where $A B$ is a nonsingular matrix. Prove that
(1) $\mathcal{N}(B)=\{\mathbf{0}\}$
(2) $\mathcal{C}(B) \cap \mathcal{N}(A)=\{\mathbf{0}\}$

Discuss the case when $m=n$ in connection with Theorem NPNT 221.
Contributed by Robert Beezer Solution 250

Subsection SOL Solutions

C30 Contributed by Robert Beezer Statement 244
In each case, begin with a vector equation where one side contains a linear combination of the two vectors from the span construction that gives the column space of A with unknowns for scalars, and then use Theorem SLSLC 90 to set up a system of equations. For c, the corresponding system has no solution, as we would expect.

For \mathbf{b} there is a solution, as we would expect. What is interesting is that the solution is unique. This is a consequence of the linear independence of the set of two vectors in the span construction. If we wrote \mathbf{b} as a linear combination of all four columns of A, then there would be infinitely many ways to do this.

C31 Contributed by Robert Beezer Statement 244 Theorem BCS 234 is the right tool for this problem. Row-reduce this matrix, identify the pivot columns and then grab the corresponding columns of A for the set T. The matrix A row-reduces to

$$
\left[\begin{array}{ccccc}
\left.\begin{array}{|c|ccc}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 0 \\
0 \\
0 & 0 & 0 & \boxed{1} \\
0 & 0 & 0 & 0 \\
\hline 1
\end{array}\right] \\
\hline
\end{array}\right]
$$

So $D=\{1,2,4,5\}$ and then

$$
T=\left\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{4}, \mathbf{A}_{5}\right\}=\left\{\left[\begin{array}{c}
2 \\
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1 \\
2
\end{array}\right]\right\}
$$

has the requested properties.
C33 Contributed by Robert Beezer Statement 244
Theorem BRS 240 is the most direct route to a set with these properties. Row-reduce, toss zero rows, keep the others. You could also transpose the matrix, then look for the column space by row-reducing the transpose and applying Theorem BCS 234. We'll do the former,

$$
B \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & \boxed{1} & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So the set S is

$$
S=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
1 \\
-1
\end{array}\right]\right\}
$$

C34 Contributed by Robert Beezer Statement 244

$$
\begin{aligned}
\mathbf{y} \in \mathcal{R}(A) & \Longleftrightarrow \mathbf{y} \in \mathcal{C}\left(A^{t}\right) \\
& \Longleftrightarrow \mathcal{L S}\left(A^{t}, \mathbf{y}\right) \text { is consistent }
\end{aligned}
$$

The augmented matrix $\left[A^{t} \mid \mathbf{y}\right]$ row reduces to

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 1 \\
\hline
\end{array}\right]
$$

and with a leading 1 in the final column Theorem RCLS 50 tells us the linear system is inconsistent and so $\mathbf{y} \notin \mathcal{R}(A)$.
C35 Contributed by Robert Beezer Statement 244
(a) By Theorem BCS 234 we can row-reduce A, identify pivot columns with the set D, and "keep" those columns of A and we will have a set with the desired properties.

$$
A \xrightarrow{\mathrm{RREF}}\left[\begin{array}{cccc}
\boxed{1} & 0 & -13 & -19 \\
0 & \boxed{1} & 8 & 11 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So we have the set of pivot columns $D=\{1,2\}$ and we "keep" the first two columns of A,

$$
\left\{\left[\begin{array}{c}
3 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
5 \\
2 \\
-4
\end{array}\right]\right\}
$$

(b) We can view the column space as the row space of the transpose Theorem CSRST 241). We can get a basis of the row space of a matrix quickly by bringing the matrix to reduced row-echelon form and keeping the nonzero rows as column vectors (Theorem BRS 240). Here goes.

$$
A^{t} \xrightarrow{\mathrm{RREF}}\left[\begin{array}{ccc}
\boxed{1} & 0 & -2 \\
0 & \boxed{1} & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Taking the nonzero rows and tilting them up as columns gives us

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]\right\}
$$

An approach based on the matrix L from extended echelon form (Definition EEF 257) and Theorem FS 259 will work as well as an alternative approach.
M10 Contributed by Robert Beezer Statement 246
Any vector from \mathbb{C}^{3} will lead to a consistent system, and therefore there is no vector that will lead to an inconsistent system.

How do we convince ourselves of this? First, row-reduce E,

$$
E \xrightarrow{\operatorname{RREF}}\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 1 \\
0 & \boxed{1} & 0 & 1 \\
0 & 0 & \boxed{1} & 1
\end{array}\right]
$$

If we augment E with any vector of constants, and row-reduce the augmented matrix, we will never find a leading 1 in the final column, so by Theorem RCLS 50 the system will always be consistent.

Said another way, the column space of E is all of $\mathbb{C}^{3}, \mathcal{C}(E)=\mathbb{C}^{3}$. So by Theorem CSCS 232 any vector of conststants will create a consistent system (and none will create an inconsistent system).

M20 Contributed by Robert Beezer Statement 246
The 2×2 matrix

$$
\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

has $\mathcal{C}(A)=\mathcal{N}(A)=\left\langle\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}\right\rangle$.
M21 Contributed by Robert Beezer Statement 247
Begin with a matrix A (of any size) that does not have any zero rows, but which when row-reduced to B yields at least one row of zeros. Such a matrix should be easy to construct (or find, like say from Archetype A 689).
$\mathcal{C}(A)$ will contain some vectors whose final slot (entry m) is non-zero, however, every column vector from the matrix B will have a zero in slot m and so every vector in $\mathcal{C}(B)$ will also contain a zero in the final slot. This means that $\mathcal{C}(A) \neq \mathcal{C}(B)$, since we have vectors in $\mathcal{C}(A)$ that cannot be elements of $\mathcal{C}(B)$.
T40 Contributed by Robert Beezer Statement 247
Choose $\mathbf{x} \in \mathcal{C}(A B)$. Then by Theorem CSCS 232 there is a vector \mathbf{w} that is a solution to $\mathcal{L S}(A B, \mathbf{x})$. Define the vector \mathbf{y} by $\mathbf{y}=B \mathbf{w}$. We're set,

$$
\begin{aligned}
A \mathbf{y} & =A(B \mathbf{w}) & & \text { Definition of } \mathbf{y} \\
& =(A B) \mathbf{w} & & \text { Theorem MMA } 196 \\
& =\mathbf{x} & & \mathbf{w} \text { solution to } \mathcal{L S}(A B, \mathbf{x})
\end{aligned}
$$

This says that $\mathcal{L S}(A, \mathbf{x})$ is a consistent system, and by Theorem CSCS 232, we see that $\mathbf{x} \in \mathcal{C}(A)$ and therefore $\mathcal{C}(A B) \subseteq \mathcal{C}(A)$.

For an example where $\mathcal{C}(A) \nsubseteq \mathcal{C}(A B)$ choose A to be any nonzero matrix and choose B to be a zero matrix. Then $\mathcal{C}(A) \neq\{\mathbf{0}\}$ and $\mathcal{C}(A B)=\mathcal{C}(\mathcal{O})=\{\mathbf{0}\}$.

T41 Contributed by Robert Beezer Statement 247
From the solution to Exercise CRS.T40 247 we know that $\mathcal{C}(A B) \subseteq \mathcal{C}(A)$. So to establish the set equality (Definition SE 670) we need to show that $\mathcal{C}(A) \subseteq \mathcal{C}(A B)$.

Choose $\mathbf{x} \in \mathcal{C}(A)$. By Theorem CSCS 232 the linear system $\mathcal{L S}(A, \mathbf{x})$ is consistent, so let \mathbf{y} be one such solution. Because B is nonsingular, and linear system using B as a coefficient matrix will have a solution (Theorem NMUS 70). Let \mathbf{w} be the unique solution to the linear system $\mathcal{L} \mathcal{S}(B, \mathbf{y})$. All set, here we go,

$$
\begin{aligned}
(A B) \mathbf{w} & =A(B \mathbf{w}) & & \text { Theorem MMA } 196 \\
& =A \mathbf{y} & & \mathbf{w} \text { solution to } \mathcal{L S}(B, \mathbf{y}) \\
& =\mathbf{x} & & \mathbf{y} \text { solution to } \mathcal{L S}(A, \mathbf{x})
\end{aligned}
$$

This says that the linear system $\mathcal{L S}(A B, \mathbf{x})$ is consistent, so by Theorem CSCS 232, $\mathbf{x} \in \mathcal{C}(A B)$. So $\mathcal{C}(A) \subseteq \mathcal{C}(A B)$.
T45 Contributed by Robert Beezer Statement 247
First, $\mathbf{0} \in \mathcal{N}(B)$ trivially. Now suppose that $\mathbf{x} \in \mathcal{N}(B)$. Then

$$
\begin{aligned}
A B \mathbf{x} & =A(B \mathbf{x}) & & \text { Theorem MMA } 196 \\
& =A \mathbf{0} & & \mathbf{x} \in \mathcal{N}(B) \\
& =\mathbf{0} & & \text { Theorem MMZM } 195
\end{aligned}
$$

Since we have assumed $A B$ is nonsingular, Definition NM 67 implies that $\mathbf{x}=\mathbf{0}$.
Second, $\mathbf{0} \in \mathcal{C}(B)$ and $\mathbf{0} \in \mathcal{N}(A)$ trivially, and so the zero vector is in the intersection as well Definition ST 671). Now suppose that $\mathbf{y} \in \mathcal{C}(B) \cap \mathcal{N}(A)$. Because $\mathbf{y} \in \mathcal{C}(B)$, Theorem CSCS 232 says the system $\mathcal{L S}(B, \mathbf{y})$ is consistent. Let $\mathbf{x} \in \mathbb{C}^{n}$ be one solution to this system. Then

$$
\begin{aligned}
A B \mathbf{x} & =A(B \mathbf{x}) & & \text { Theorem MMA } 196 \\
& =A \mathbf{y} & & \mathbf{x} \text { solution to } \mathcal{L S}(B, \mathbf{y}) \\
& =\mathbf{0} & & \mathbf{y} \in \mathcal{N}(A)
\end{aligned}
$$

Since we have assumed $A B$ is nonsingular, Definition NM 67 implies that $\mathbf{x}=\mathbf{0}$. Then $\mathbf{y}=B \mathbf{x}=B \mathbf{0}=\mathbf{0}$.
When $A B$ is nonsingular and $m=n$ we know that the first condition, $\mathcal{N}(B)=\{0\}$, means that B is nonsingular Theorem NMTNS 70). Because B is nonsingular Theorem CSNM 236 implies that $\mathcal{C}(B)=\mathbb{C}^{m}$. In order to have the second condition fulfilled, $\mathcal{C}(B) \cap \mathcal{N}(A)=\{\mathbf{0}\}$, we must realize that $\mathcal{N}(A)=\{\mathbf{0}\}$. However, a second application of Theorem NMTNS 70 shows that A must be nonsingular. This reproduces Theorem NPNT 221.

Section FS

Four Subsets

There are four natural subsets associated with a matrix. We have met three already: the null space, the column space and the row space. In this section we will introduce a fourth, the left null space. The objective of this section is to describe one procedure that will allow us to find linearly independent sets that span each of these four sets of column vectors. Along the way, we will make a connection with the inverse of a matrix, so Theorem FS 259 will tie together most all of this chapter (and the entire course so far).

Subsection LNS
 Left Null Space

Definition LNS

Left Null Space

Suppose A is an $m \times n$ matrix. Then the left null space is defined as $\mathcal{L}(A)=\mathcal{N}\left(A^{t}\right) \subseteq \mathbb{C}^{m}$. (This definition contains Notation LNS.)

The left null space will not feature prominently in the sequel, but we can explain its name and connect it to row operations. Suppose $\mathbf{y} \in \mathcal{L}(A)$. Then by Definition LNS 253, $A^{t} \mathbf{y}=\mathbf{0}$. We can then write

$$
\begin{aligned}
\mathbf{0}^{t} & =\left(A^{t} \mathbf{y}\right)^{t} & & \\
& =\mathbf{y}^{t}\left(A^{t}\right)^{t} & & \text { Theorem MMT 198 } \\
& =\mathbf{y}^{t} A & & \text { Theorem TT 182 }
\end{aligned}
$$

The product $\mathbf{y}^{t} A$ can be viewed as the components of \mathbf{y} acting as the scalars in a linear combination of the rows of A. And the result is a "row vector", $\boldsymbol{0}^{t}$ that is totally zeros. When we apply a sequence of row operations to a matrix, each row of the resulting matrix is some linear combination of the rows. These observations tell us that the vectors in the left null space are scalars that record a sequence of row operations that result in a row of zeros in the row-reduced version of the matrix. We will see this idea more explicitly in the course of proving Theorem FS 259.

Example LNS

Left null space

We will find the left null space of

$$
A=\left[\begin{array}{ccc}
1 & -3 & 1 \\
-2 & 1 & 1 \\
1 & 5 & 1 \\
9 & -4 & 0
\end{array}\right]
$$

We transpose A and row-reduce,

$$
A^{t}=\left[\begin{array}{cccc}
1 & -2 & 1 & 9 \\
-3 & 1 & 5 & -4 \\
1 & 1 & 1 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & -3 \\
0 & 0 & \boxed{1} & 1
\end{array}\right]
$$

Applying Definition LNS 253 and Theorem BNS 138 we have

$$
\mathcal{L}(A)=\mathcal{N}\left(A^{t}\right)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
3 \\
-1 \\
1
\end{array}\right]\right\}\right\rangle
$$

If you row-reduce A you will discover one zero row in the reduced row-echelon form. This zero row is created by a sequence of row operations, which in total amounts to a linear combination, with scalars $a_{1}=-2, a_{2}=3, a_{3}=-1$ and $a_{4}=1$, on the rows of A and which results in the zero vector (check this!). So the components of the vector describing the left null space of A provide a relation of linear dependence on the rows of A.

Subsection CRS

Computing Column Spaces

We have three ways to build the column space of a matrix. First, we can use just the definition, Definition CSM 231, and express the column space as a span of the columns of the matrix. A second approach gives us the column space as the span of some of the columns of the matrix, but this set is linearly independent (Theorem BCS 234). Finally, we can transpose the matrix, row-reduce the transpose, kick out zero rows, and transpose the remaining rows back into column vectors. Theorem CSRST [241] and Theorem BRS 240 tell us that the resulting vectors are linearly independent and their span is the column space of the original matrix.

We will now demonstrate a fourth method by way of a rather complicated example. Study this example carefully, but realize that its main purpose is to motivate a theorem that simpifies much of the apparent complexity. So other than an instructive exercise or two, the procedure we are about to describe will not be a usual approach to computing a column space.

Example CSANS

Column space as null space

Lets find the column space of the matrix A below with a new approach.

$$
A=\left[\begin{array}{ccccc}
10 & 0 & 3 & 8 & 7 \\
-16 & -1 & -4 & -10 & -13 \\
-6 & 1 & -3 & -6 & -6 \\
0 & 2 & -2 & -3 & -2 \\
3 & 0 & 1 & 2 & 3 \\
-1 & -1 & 1 & 1 & 0
\end{array}\right]
$$

By Theorem CSCS 232 we know that the column vector \mathbf{b} is in the column space of A if and only if the linear system $\mathcal{L S}(A, \mathbf{b})$ is consistent. So let's try to solve this system in full generality, using a vector of variables for the vector of constants. In other words, which vectors \mathbf{b} lead to consistent systems? Begin by forming the augmented matrix $[A \mid \mathbf{b}]$ with a general version of \mathbf{b},

$$
[A \mid \mathbf{b}]=\left[\begin{array}{cccccc}
10 & 0 & 3 & 8 & 7 & b_{1} \\
-16 & -1 & -4 & -10 & -13 & b_{2} \\
-6 & 1 & -3 & -6 & -6 & b_{3} \\
0 & 2 & -2 & -3 & -2 & b_{4} \\
3 & 0 & 1 & 2 & 3 & b_{5} \\
-1 & -1 & 1 & 1 & 0 & b_{6}
\end{array}\right]
$$

To identify solutions we will row-reduce this matrix and bring it to reduced row-echelon form. Despite the presence of variables in the last column, there is nothing to stop us from doing this. Except our numerical routines on calculators can't be used, and even some of the symbolic algebra routines do some unexpected maneuvers with this computation. So do it by hand. Yes, it is a bit of work. But worth it. We'll still be here when you get back. Notice along the way that the row operations are exactly the same ones you would do if you were just row-reducing the coefficient matrix alone, say in connection with a homogeneous system of equations. The column with the b_{i} acts as a sort of bookkeeping device. There are many different possibilities for the result, depending on what order you choose to perform the row operations, but shortly we'll all be on the same page. Here's one possibility (you can find this same result by doing additional row operations with the fifth and sixth rows to remove any occurences of b_{1} and b_{2} from the first four rows of your result):

$$
\left[\begin{array}{cccccc}
\boxed{1} & 0 & 0 & 0 & 2 & b_{3}-b_{4}+2 b_{5}-b_{6} \\
0 & \boxed{1} & 0 & 0 & -3 & -2 b_{3}+3 b_{4}-3 b_{5}+3 b_{6} \\
0 & 0 & \boxed{1} & 0 & 1 & b_{3}+b_{4}+3 b_{5}+3 b_{6} \\
0 & 0 & 0 & \boxed{1} & -2 & -2 b_{3}+b_{4}-4 b_{5} \\
0 & 0 & 0 & 0 & 0 & b_{1}+3 b_{3}-b_{4}+3 b_{5}+b_{6} \\
0 & 0 & 0 & 0 & 0 & b_{2}-2 b_{3}+b_{4}+b_{5}-b_{6}
\end{array}\right]
$$

Our goal is to identify those vectors b which make $\mathcal{L S}(A, \mathbf{b})$ consistent. By Theorem RCLS 50 we know that the consistent systems are precisely those without a leading 1 in the last column. Are the expressions in the last column of rows 5 and 6 equal to zero, or are they leading 1's? The answer is: maybe. It depends on \mathbf{b}. With a nonzero value for either of these expressions, we would scale the row and produce a leading 1. So we get a consistent system, and \mathbf{b} is in the column space, if and only if these two expressions are both simultaneously zero. In other words, members of the column space of A are exactly those vectors \mathbf{b} that satisfy

$$
\begin{array}{r}
b_{1}+3 b_{3}-b_{4}+3 b_{5}+b_{6}=0 \\
b_{2}-2 b_{3}+b_{4}+b_{5}-b_{6}=0
\end{array}
$$

Hmmm. Looks suspiciously like a homogeneous system of two equations with six variables. If you've been playing along (and we hope you have) then you may have a slightly different system, but you should have just two equations. Form the coefficient matrix and row-reduce (notice that the system above has a coefficient matrix that is already in reduced row-echelon form). We should all be together now with the same matrix,

$$
L=\left[\begin{array}{cccccc}
\boxed{1} & 0 & 3 & -1 & 3 & 1 \\
0 & \boxed{1} & -2 & 1 & 1 & -1
\end{array}\right]
$$

So, $\mathcal{C}(A)=\mathcal{N}(L)$ and we can apply Theorem BNS 138 to obtain a linearly independent set to use in a span construction,

$$
\mathcal{C}(A)=\mathcal{N}(L)=\left\langle\left\{\left[\begin{array}{c}
-3 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
-1 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right.
$$

Whew! As a postscript to this central example, you may wish to convince yourself that the four vectors above really are elements of the column space? Do they create consistent systems with A as coefficient matrix? Can you recognize the constant vector in your description of these solution sets?

OK, that was so much fun, let's do it again. But simpler this time. And we'll all get the same results all the way through. Doing row operations by hand with variables can be a bit error prone, so let's see if
we can improve the process some. Rather than row-reduce a column vector \mathbf{b} full of variables, let's write $\mathbf{b}=I_{6} \mathbf{b}$ and we will row-reduce the matrix I_{6} and when we finish row-reducing, then we will compute the matrix-vector product. You should first convince yourself that we can operate like this (this is the subject of a future homework exercise). Rather than augmenting A with \mathbf{b}, we will instead augment it with I_{6} (does this feel familiar?),

$$
M=\left[\begin{array}{ccccccccccc}
10 & 0 & 3 & 8 & 7 & 1 & 0 & 0 & 0 & 0 & 0 \\
-16 & -1 & -4 & -10 & -13 & 0 & 1 & 0 & 0 & 0 & 0 \\
-6 & 1 & -3 & -6 & -6 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 2 & -2 & -3 & -2 & 0 & 0 & 0 & 1 & 0 & 0 \\
3 & 0 & 1 & 2 & 3 & 0 & 0 & 0 & 0 & 1 & 0 \\
-1 & -1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

We want to row-reduce the left-hand side of this matrix, but we will apply the same row operations to the right-hand side as well. And once we get the left-hand side in reduced row-echelon form, we will continue on to put leading 1's in the final two rows, as well as clearing out the columns containing those two additional leading 1's. It is these additional row operations that will ensure that we all get to the same place, since the reduced row-echelon form is unique (Theorem RREFU (104),

$$
N=\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & -1 & 2 & -1 \\
0 & 1 & 0 & 0 & -3 & 0 & 0 & -2 & 3 & -3 & 3 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 3 & 3 \\
0 & 0 & 0 & 1 & -2 & 0 & 0 & -2 & 1 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 3 & -1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 1 & -1
\end{array}\right]
$$

We are after the final six columns of this matrix, which we will multiply by \mathbf{b}

$$
J=\left[\begin{array}{cccccc}
0 & 0 & 1 & -1 & 2 & -1 \\
0 & 0 & -2 & 3 & -3 & 3 \\
0 & 0 & 1 & 1 & 3 & 3 \\
0 & 0 & -2 & 1 & -4 & 0 \\
1 & 0 & 3 & -1 & 3 & 1 \\
0 & 1 & -2 & 1 & 1 & -1
\end{array}\right]
$$

so

$$
J \mathbf{b}=\left[\begin{array}{cccccc}
0 & 0 & 1 & -1 & 2 & -1 \\
0 & 0 & -2 & 3 & -3 & 3 \\
0 & 0 & 1 & 1 & 3 & 3 \\
0 & 0 & -2 & 1 & -4 & 0 \\
1 & 0 & 3 & -1 & 3 & 1 \\
0 & 1 & -2 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6}
\end{array}\right]=\left[\begin{array}{c}
b_{3}-b_{4}+2 b_{5}-b_{6} \\
-2 b_{3}+3 b_{4}-3 b_{5}+3 b_{6} \\
b_{3}+b_{4}+3 b_{5}+3 b_{6} \\
-2 b_{3}+b_{4}-4 b_{5} \\
b_{1}+3 b_{3}-b_{4}+3 b_{5}+b_{6} \\
b_{2}-2 b_{3}+b_{4}+b_{5}-b_{6}
\end{array}\right]
$$

So by applying to the identity matrix the same row operations that row-reduce A (which we could do with a calculator once I_{6} is placed alongside of A), we can then arrive at the result of row-reducing a column of symbols where the vector of constants usually resides. Since the row-reduced version of A has two zero rows, for a consistent system we require that

$$
\begin{array}{r}
b_{1}+3 b_{3}-b_{4}+3 b_{5}+b_{6}=0 \\
b_{2}-2 b_{3}+b_{4}+b_{5}-b_{6}=0
\end{array}
$$

Now we are exactly back where we were on the first go-round. Notice that we obtain the matrix L as simply the last two rows and last six columns of N.

This example motivates the remainder of this section, so it is worth careful study. You might attempt to mimic the second approach with the coefficient matrices of Archetype I 724 and Archetype J 728. We will see shortly that the matrix L contains more information about A than just the column space.

Subsection EEF
 Extended echelon form

The final matrix that we row-reduced in Example CSANS 254 should look familiar in most respects to the procedure we used to compute the inverse of a nonsingular matrix, Theorem CINM 213. We will now generalize that procedure to matrices that are not necessarily nonsingular, or even square. First a definition.

Definition EEF

Extended Echelon Form

Suppose A is an $m \times n$ matrix. Add m new columns to A that together equal an $m \times m$ identity matrix to form an $m \times(n+m)$ matrix M. Use row operations to bring M to reduced row-echelon form and call the result $N . N$ is the extended reduced row-echelon form of A, and we will standardize on names for five submatrices (B, C, J, K, L) of N.

Let B denote the $m \times n$ matrix formed from the first n columns of N and let J denote the $m \times m$ matrix formed from the last m columns of N. Suppose that B has r nonzero rows. Further partition N by letting C denote the $r \times n$ matrix formed from all of the non-zero rows of B. Let K be the $r \times m$ matrix formed from the first r rows of J, while L will be the $(m-r) \times m$ matrix formed from the bottom $m-r$ rows of J. Pictorially,

$$
M=\left[A \mid I_{m}\right] \xrightarrow{\text { RREF }} N=[B \mid J]=\left[\begin{array}{c|c}
C & K \\
\hline 0 & L
\end{array}\right]
$$

Example SEEF

Submatrices of extended echelon form

We illustrate Definition EEF 257 with the matrix A,

$$
A=\left[\begin{array}{cccccc}
1 & -1 & -2 & 7 & 1 & 6 \\
-6 & 2 & -4 & -18 & -3 & -26 \\
4 & -1 & 4 & 10 & 2 & 17 \\
3 & -1 & 2 & 9 & 1 & 12
\end{array}\right]
$$

Augmenting with the 4×4 identity matrix, $\mathrm{M}=$

$$
\left[\begin{array}{cccccccccc}
1 & -1 & -2 & 7 & 1 & 6 & 1 & 0 & 0 & 0 \\
-6 & 2 & -4 & -18 & -3 & -26 & 0 & 1 & 0 & 0 \\
4 & -1 & 4 & 10 & 2 & 17 & 0 & 0 & 1 & 0 \\
3 & -1 & 2 & 9 & 1 & 12 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and row-reducing, we obtain

$$
N=\left[\begin{array}{cccccccccc}
\boxed{1} & 0 & 2 & 1 & 0 & 3 & 0 & 1 & 1 & 1 \\
0 & \boxed{1} & 4 & -6 & 0 & -1 & 0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 & \boxed{1} & 2 & 0 & -1 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1
\end{array}\right]
$$

So we then obtain

$$
B=\left[\begin{array}{cccccc}
{[1} & 0 & 2 & 1 & 0 & 3 \\
0 & \boxed{1} & 4 & -6 & 0 & -1 \\
0 & 0 & 0 & 0 & \boxed{1} & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
C & =\left[\begin{array}{cccccc}
\hline 1 & 0 & 2 & 1 & 0 & 3 \\
0 & 1 & 4 & -6 & 0 & -1 \\
0 & 0 & 0 & 0 & \boxed{1} & 2
\end{array}\right] \\
J & =\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 2 & 3 & 0 \\
0 & -1 & 0 & -2 \\
1 & 2 & 2 & 1
\end{array}\right] \\
K & =\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 2 & 3 & 0 \\
0 & -1 & 0 & -2
\end{array}\right] \\
L & =\left[\begin{array}{llll}
11 & 2 & 2 & 1
\end{array}\right]
\end{aligned}
$$

You can observe (or verify) the properties of the following theorem with this example.

Theorem PEEF

Properties of Extended Echelon Form

Suppose that A is an $m \times n$ matrix and that N is its extended echelon form. Then

1. J is nonsingular.
2. $B=J A$.
3. If $\mathbf{x} \in \mathbb{C}^{n}$ and $\mathbf{y} \in \mathbb{C}^{m}$, then $A \mathbf{x}=\mathbf{y}$ if and only if $B \mathbf{x}=J \mathbf{y}$.
4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.
5. L is in reduced row-echelon form, has no zero rows and has $m-r$ pivot columns.

Proof J is the result of applying a sequence of row operations to I_{m}, as such J and I_{m} are row-equivalent. $\mathcal{L S}\left(I_{m}, \mathbf{0}\right)$ has only the zero solution, since I_{m} is nonsingular (Theorem NMRRI 68). Thus, $\mathcal{L S}(J, \mathbf{0})$ also has only the zero solution (Theorem REMES 29, Definition ESYS [13) and J is therefore nonsingular (Definition NSM 59).

To prove the second part of this conclusion, first convince yourself that row operations and the matrixvector are commutative operations. By this we mean the following. Suppose that F is an $m \times n$ matrix that is row-equivalent to the matrix G. Apply to the column vector $F \mathbf{w}$ the same sequence of row operations that converts F to G. Then the result is $G \mathbf{w}$. So we can do row operations on the matrix, then do a matrix-vector product, or do a matrix-vector product and then do row operations on a column vector, and the result will be the same either way. Since matrix multiplication is defined by a collection of matrix-vector products (), if we apply to the matrix product $F H$ the same sequence of row operations that converts F to G then the result will equal $G H$. Now apply these observations to A.

Write $A I_{n}=I_{m} A$ and apply the row operations that convert M to $N . A$ is converted to B, while I_{m} is converted to J, so we have $B I_{n}=J A$. Simplifying the left side gives the desired conclusion.

For the third conclusion, we now establish the two equivalences

$$
A \mathbf{x}=\mathbf{y} \quad \Longleftrightarrow \quad J A \mathbf{x}=J \mathbf{y} \quad \Longleftrightarrow \quad B \mathbf{x}=J \mathbf{y}
$$

The forward direction of the first equivalence is accomplished by multiplying both sides of the matrix equality by J, while the backward direction is accomplished by multiplying by the inverse of J (which we know exists by Theorem NI 223 since J is nonsingular). The second equivalence is obtained simply by the substitutions given by $J A=B$.

The first r rows of N are in reduced row-echelon form, since any contiguous collection of rows taken from a matrix in reduced row-echelon form will form a matrix that is again in reduced row-echelon form. Since the matrix C is formed by removing the last n entries of each these rows, the remainder is still in reduced row-echelon form. By its construction, C has no zero rows. C has r rows and each contains a leading 1 , so there are r pivot columns in C.

The final $m-r$ rows of N are in reduced row-echelon form, since any contiguous collection of rows taken from a matrix in reduced row-echelon form will form a matrix that is again in reduced row-echelon form. Since the matrix L is formed by removing the first n entries of each these rows, and these entries are all zero (they form the zero rows of B), the remainder is still in reduced row-echelon form. L is the final $m-r$ rows of the nonsingular matrix J, so none of these rows can be totally zero, or J would not row-reduce to the identity matrix. L has $m-r$ rows and each contains a leading 1 , so there are $m-r$ pivot columns in L.

Notice that in the case where A is a nonsingular matrix we know that the reduced row-echelon form of A is the identity matrix (Theorem NMRRI 68), so $B=I_{n}$. Then the second conclusion above says $J A=B=I_{n}$, so J is the inverse of A. Thus this theorem generalizes Theorem CINM 213, though the result is a "left-inverse" of A rather than a "right-inverse."

The third conclusion of Theorem PEEF 258 is the most telling. It says that \mathbf{x} is a solution to the linear system $\mathcal{L S}(A, \mathbf{y})$ if and only if \mathbf{x} is a solution to the linear system $\mathcal{L S}(B, J \mathbf{y})$. Or said differently, if we row-reduce the augmented matrix $[A \mid \mathbf{x}]$ we will get the augmented matrix $[B \mid J \mathbf{y}]$. The matrix J tracks the cumulative effect of the row operations that converts A to reduced row-echelon form, here effectively applying them to the vector of constants in a system of equations having A as a coefficient matrix. When A row-reduces to a matrix with zero rows, then $J y$ should also have zero entries in the same rows if the system is to be consistent.

Subsection FS
 Four Subsets

With all the preliminaries in place we can state our main result for this section. In essence this result will allow us to say that we can find linearly independent sets to use in span constructions for all four subsets (null space, column space, row space, left null space) by analyzing only the extended echelon form of the matrix, and specifically, just the two submatrices C and L, which will be ripe for analysis since they are already in reduced row-echelon form (Theorem PEEF (258).

Theorem FS

Four Subsets

Suppose A is an $m \times n$ matrix with extended echelon form N. Suppose the reduced row-echelon form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and the first n columns and L is the submatrix of N formed from the last m columns and the last $m-r$ rows. Then

1. The null space of A is the null space of $C, \mathcal{N}(A)=\mathcal{N}(C)$.
2. The row space of A is the row space of $C, \mathcal{R}(A)=\mathcal{R}(C)$.
3. The column space of A is the null space of $L, \mathcal{C}(A)=\mathcal{N}(L)$.
4. The left null space of A is the row space of $L, \mathcal{L}(A)=\mathcal{R}(L)$.

Proof First, $\mathcal{N}(A)=\mathcal{N}(B)$ since B is row-equivalent to A Theorem REMES 29). The zero rows of B represent equations that are always true in the homogeneous system $\mathcal{L S}(B, \mathbf{0})$, so the removal of these equations will not change the solution set. Thus, in turn, $\mathcal{N}(B)=\mathcal{N}(C)$.

Second, $\mathcal{R}(A)=\mathcal{R}(B)$ since B is row-equivalent to A (Theorem REMRS 239). The zero rows of B contribute nothing to the span that is the row space of B, so the removal of these rows will not change the row space. Thus, in turn, $\mathcal{R}(B)=\mathcal{R}(C)$.

Third, we prove the set equality $\mathcal{C}(A)=\mathcal{N}(L)$ with Definition SE 670. Begin by showing that $\mathcal{C}(A) \subseteq \mathcal{N}(L)$. Choose $\mathbf{y} \in \mathcal{C}(A) \subseteq \mathbb{C}^{m}$. Then there exists a vector $\mathbf{x} \in \mathbb{C}^{n}$ such that $A \mathbf{x}=\mathbf{y}$ Theorem CSCS 232). Then for $1 \leq k \leq m-r$,

$$
\begin{aligned}
{[L \mathbf{y}]_{k} } & =[J \mathbf{y}]_{r+k} & & L \text { a submatrix of } J \\
& =[B \mathbf{x}]_{r+k} & & \text { Theorem PEEF } 258 \\
& =[\mathcal{O} \mathbf{x}]_{k} & & \text { Zero matrix a submatrix of } B \\
& =[\mathbf{0}]_{k} & & \text { Theorem MMZM 195 }
\end{aligned}
$$

So, for all $1 \leq k \leq m-r,[L \mathbf{y}]_{k}=[\mathbf{0}]_{k}$. So by Definition CVE 80 we have $L \mathbf{y}=\mathbf{0}$ and thus $\mathbf{y} \in \mathcal{N}(L)$.
Now, show that $\mathcal{N}(L) \subseteq \mathcal{C}(A)$. Choose $\mathbf{y} \in \mathcal{N}(L) \subseteq \mathbb{C}^{m}$. Form the vector $K \mathbf{y} \in \mathbb{C}^{r}$. The linear system $\mathcal{L S}(C, K \mathbf{y})$ is consistent since C is in reduced row-echelon form and has no zero rows Theorem PEEF [258). Let $\mathbf{x} \in \mathbb{C}^{n}$ denote a solution to $\mathcal{L S}(C, K \mathbf{y})$.

Then for $1 \leq j \leq r$,

$$
\begin{aligned}
{[B \mathbf{x}]_{j} } & =[C \mathbf{x}]_{j} & & C \text { a submatrix of } B \\
& =[K \mathbf{y}]_{j} & & \mathbf{x} \text { a solution to } \mathcal{L S}(C, K \mathbf{y}) \\
& =[J \mathbf{y}]_{j} & & K \text { a submatrix of } J
\end{aligned}
$$

And for $r+1 \leq k \leq m$,

$$
\begin{aligned}
{[B \mathbf{x}]_{k} } & =[\mathcal{O} \mathbf{x}]_{k-r} & & \text { Zero matrix a submatrix of } B \\
& =[\mathbf{0}]_{k-r} & & \text { Theorem MMZM } 195 \\
& =[L \mathbf{y}]_{k-r} & & \mathbf{y} \text { in } \mathcal{N}(L) \\
& =[J \mathbf{y}]_{k} & & L \text { a submatrix of } J
\end{aligned}
$$

So for all $1 \leq i \leq m,[B \mathbf{x}]_{i}=[J \mathbf{y}]_{i}$ and by Definition CVE 80 we have $B \mathbf{x}=J \mathbf{y}$. From Theorem PEEF 258 we know then that $A \mathbf{x}=\mathbf{y}$, and therefore $\mathbf{y} \in \mathcal{C}(A)$ (Theorem CSCS 232). By Definition SE 670] we have $\mathcal{C}(A)=\mathcal{N}(L)$.

Fourth, we prove the set equality $\mathcal{L}(A)=\mathcal{R}(L)$ with Definition SE 670. Begin by showing that $\mathcal{R}(L) \subseteq \mathcal{L}(A)$. Choose $\mathbf{y} \in \mathcal{R}(L) \subseteq \mathbb{C}^{m}$. Then there exists a vector $\mathbf{w} \in \mathbb{C}^{m-r}$ such that $\mathbf{y}=L^{t} \mathbf{w}$ (Definition RSM 237, Theorem CSCS 232). Then for $1 \leq i \leq n$,

$$
\begin{aligned}
{\left[A^{t} \mathbf{y}\right]_{i} } & =\sum_{k=1}^{m}\left[A^{t}\right]_{i k}[\mathbf{y}]_{k} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{m}\left[A^{t}\right]_{i k}\left[L^{t} \mathbf{w}\right]_{k} & & \text { Definition of } \mathbf{~} \\
& =\sum_{k=1}^{m}\left[A^{t}\right]_{i k} \sum_{\ell=1}^{m-r}\left[L^{t}\right]_{k \ell}[\mathbf{w}]_{\ell} & & \text { Theorem EMP 193 } \\
& =\sum_{\ell=1}^{m-r}\left(\sum_{k=1}^{m}\left[A^{t}\right]_{i k}\left[L^{t}\right]_{k \ell}\right)[\mathbf{w}]_{\ell} & & \text { Commutativity, Distributivity in } \mathbb{C}
\end{aligned}
$$

$$
\begin{array}{ll}
=\sum_{\ell=1}^{m-r}\left(\sum_{k=1}^{m}\left[A^{t}\right]_{i k}\left[J^{t}\right]_{k, r+\ell}\right)[\mathbf{w}]_{\ell} & \\
=\sum_{\ell=1}^{m-r}\left[A^{t} J^{t}\right]_{i, r+\ell}[\mathbf{w}]_{\ell} & \\
=\sum_{\ell=1}^{m-r}\left[(J A)^{t}\right]_{i, r+\ell}[\mathbf{w}]_{\ell} & \\
=\sum_{\ell=1}^{m-r}\left[B^{t}\right]_{i, r+\ell}[\mathbf{w}]_{\ell} & \\
=\sum_{\ell=1}^{m-r} 0[\mathbf{w}]_{\ell} & \\
=0 & \\
=[\mathbf{0}]_{i} & \\
\text { Theorem EMP 193 } \\
& \\
\text { Zero MMT 198 } \\
& \\
\text { Zero in } \mathbb{C} \\
\hline
\end{array}
$$

Since $\left[A^{t} \mathbf{y}\right]_{i}=[\mathbf{0}]_{i}$ for $1 \leq i \leq n$, Definition CVE 80 implies that $A^{t} \mathbf{y}=\mathbf{0}$. This means that $\mathbf{y} \in \mathcal{N}\left(A^{t}\right)$.
Now, show that $\mathcal{L}(A) \subseteq \mathcal{R}(L)$. Choose $\mathbf{y} \in \mathcal{L}(A) \subseteq \mathbb{C}^{m}$. The matrix J is nonsingular Theorem PEEF [258), so J^{t} is also nonsingular Theorem MIT 215) and therefore the linear system $\mathcal{L S}\left(J^{t}, \mathbf{y}\right)$ has a unique solution. Denote this solution as $\mathbf{x} \in \mathbb{C}^{m}$. We will need to work with two "halves" of \mathbf{x}, which we will denote as \mathbf{z} and \mathbf{w} with formal definitions given by

$$
[z]_{j}=[x]_{i} \quad 1 \leq j \leq r, \quad[w]_{k}=[x]_{r+k} \quad 1 \leq k \leq m-r
$$

Now, for $1 \leq j \leq r$,

$$
\begin{aligned}
{\left[C^{t} \mathbf{z}\right]_{j} } & =\sum_{k=1}^{r}\left[C^{t}\right]_{j k}[\mathbf{z}]_{k} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{r}\left[C^{t}\right]_{j k}[\mathbf{z}]_{k}+\sum_{\ell=1}^{m-r}[\mathcal{O}]_{j \ell}[\mathbf{w}]_{\ell} & & \text { Definition ZM 180 } \\
& =\sum_{k=1}^{r}\left[B^{t}\right]_{j k}[\mathbf{z}]_{k}+\sum_{\ell=1}^{m-r}\left[B^{t}\right]_{j, r+\ell}[\mathbf{w}]_{\ell} & & C, \mathcal{O} \text { submatrices of } B \\
& =\sum_{k=1}^{r}\left[B^{t}\right]_{j k}[\mathbf{x}]_{k}+\sum_{\ell=1}^{m-r}\left[B^{t}\right]_{j, r+\ell}[\mathbf{x}]_{r+\ell} & & \text { Definitions of } \mathbf{z} \text { and } \mathbf{w} \\
& =\sum_{k=1}^{r}\left[B^{t}\right]_{j k}[\mathbf{x}]_{k}+\sum_{k=r+1}^{m}\left[B^{t}\right]_{j k}[\mathbf{x}]_{k} & & \text { Re-index second sum } \\
& =\sum_{k=1}^{m}\left[B^{t}\right]_{j k}[\mathbf{x}]_{k} & & \text { Combine sums } \\
& =\sum_{k=1}^{m}\left[(J A)^{t}\right]_{j k}[\mathbf{x}]_{k} & & \text { Theorem PEEF 258 } \\
& =\sum_{k=1}^{m}\left[A^{t} J^{t}\right]_{j k}[\mathbf{x}]_{k} & & \text { Theorem MMT 198 } \\
& =\sum_{k=1}^{m} \sum_{\ell=1}^{m}\left[A^{t}\right]_{j \ell}\left[J^{t}\right]_{\ell k}[\mathbf{x}]_{k} & & \text { Theorem EMP 193 }
\end{aligned}
$$

$$
\begin{array}{ll}
=\sum_{\ell=1}^{m}\left[A^{t}\right]_{j \ell}\left(\sum_{k=1}^{m}\left[J^{t}\right]_{\ell k}[\mathbf{x}]_{k}\right) & \\
=\sum_{\ell=1}^{m}\left[A^{t}\right]_{j \ell}\left[J^{t} \mathbf{x}\right]_{\ell} & \\
=\sum_{\ell=1}^{m}\left[A^{t}\right]_{j \ell}[\mathbf{y}]_{\ell} & \\
=\left[A^{t} \mathbf{y}\right]_{j} & \\
=[\mathbf{0}]_{j} & \\
\text { Theorem EMP 193 } \\
& \\
\hline
\end{array}
$$

So, by Definition CVE 80, $C^{t} \mathbf{z}=\mathbf{0}$ and the vector \mathbf{z} gives us a linear combination of the columns of C^{t} that equals the zero vector. In other words, \mathbf{z} gives a relation of linear dependence on the the rows of C. However, the rows of C are a linearly independent set by Theorem BRS 240. According to Definition LICV 131 we must conclude that the entries of \mathbf{z} are all zero, i.e. $\mathbf{z}=\mathbf{0}$.

Now, for $1 \leq i \leq m$, we have

$$
\begin{aligned}
{[\mathbf{y}]_{i} } & =\left[J^{t} \mathbf{x}\right]_{i} & & \text { Definition of } \mathbf{x} \\
& =\sum_{k=1}^{m}\left[J^{t}\right]_{i k}[\mathbf{x}]_{k} & & \text { Theorem EMP } 193 \\
& =\sum_{k=1}^{r}\left[J^{t}\right]_{i k}[\mathbf{x}]_{k}+\sum_{k=r+1}^{m}\left[J^{t}\right]_{i k}[\mathbf{x}]_{k} & & \text { Break apart sum } \\
& =\sum_{k=1}^{r}\left[J^{t}\right]_{i k}[\mathbf{z}]_{k}+\sum_{k=r+1}^{m}\left[J^{t}\right]_{i k}[\mathbf{w}]_{k-r} & & \text { Definition of } \mathbf{z} \text { and } \mathbf{w} \\
& =\sum_{k=1}^{r}\left[J^{t}\right]_{i k} 0+\sum_{\ell=1}^{m-r}\left[J^{t}\right]_{i, r+\ell}[\mathbf{w}]_{\ell} & & \mathbf{z}=\mathbf{0}, \text { re-index } \\
& =0+\sum_{\ell=1}^{m-r}\left[L^{t}\right]_{i, \ell}[\mathbf{w}]_{\ell} & & L \text { a submatrix of } J \\
& =\left[L^{t} \mathbf{w}\right]_{i} & & \text { Theorem EMP } 193
\end{aligned}
$$

So by Definition CVE 80, $\mathbf{y}=L^{t} \mathbf{w}$. The existence of \mathbf{w} implies that $\mathbf{y} \in \mathcal{R}(L)$, and therefore $\mathcal{L}(A) \subseteq$ $\mathcal{R}(L)$. So by Definition SE 670 we have $\mathcal{L}(A)=\mathcal{R}(L)$.

The first two conclusions of this theorem are nearly trivial. But they set up a pattern of results for C that is reflected in the latter two conclusions about L. In total, they tell us that we can compute all four subsets just by finding null spaces and row spaces. This theorem does not tell us exactly how to compute these subsets, but instead simply expresses them as null spaces and row spaces of matrices in reduced row-echelon form without any zero rows (C and L). A linearly independent set that spans the null space of a matrix in reduced row-echelon form can be found easily with Theorem BNS 138. It is an even easier matter to find a linearly independent set that spans the row space of a matrix in reduced row-echelon form with Theorem BRS 240, especially when there are no zero rows present. So an application of Theorem FS 259 is typically followed by two applications each of Theorem BNS 138 and Theorem BRS [240].

The situation when $r=m$ deserves comment, since now the matrix L has no rows. What is $\mathcal{C}(A)$ when we try to apply Theorem FS 259 and encounter $\mathcal{N}(L)$? One interpretation of this situation is that L is the coefficient matrix of a homogeneous system that has no equations. How hard is it to find a solution vector to this system? Some thought will convince you that any proposed vector will qualify as a solution,
since it makes all of the equations true. So every possible vector is in the null space of L and therefore $\mathcal{C}(A)=\mathcal{N}(L)=\mathbb{C}^{m}$. OK, perhaps this sounds like some twisted argument from Alice in Wonderland. Let us try another argument that might solidly convince you of this logic.

If $r=m$, when we row-reduce the augmented matrix of $\mathcal{L} \mathcal{S}(A, \mathbf{b})$ the result will have no zero rows, and all the leading 1's will occur in first n columns, so by Theorem RCLS 50 the system will be consistent. By Theorem CSCS 232, $\mathbf{b} \in \mathcal{C}(A)$. Since \mathbf{b} was arbitrary, every possible vector is in the column space of A, so we again have $\mathcal{C}(A)=\mathbb{C}^{m}$. The situation when a matrix has $r=m$ is known by the term full rank, and in the case of a square matrix coincides with nonsingularity (see Exercise FS.M50 269).

The properties of the matrix L described by this theorem can be explained informally as follows. A column vector $\mathbf{y} \in \mathbb{C}^{m}$ is in the column space of A if the linear system $\mathcal{L S}(A, \mathbf{y})$ is consistent Theorem CSCS 232). By Theorem RCLS [50, the reduced row-echelon form of the augmented matrix [$A \mid \mathbf{y}$] of a consistent system will have zeros in the bottom $m-r$ locations of the last column. By Theorem PEEF 258 this final column is the vector $J y$ and so should then have zeros in the final $m-r$ locations. But since L comprises the final $m-r$ rows of J, this condition is expressed by saying $\mathbf{y} \in \mathcal{N}(L)$.

Additionally, the rows of J are the scalars in linear combinations of the rows of A that create the rows of B. That is, the rows of J record the net effect of the sequence of row operations that takes A to its reduced row-echelon form, B. This can be seen in the equation $J A=B$ (Theorem PEEF [258]). As such, the rows of L are scalars for linear combinations of the rows of A that yield zero rows. But such linear combinations are precisely the elements of the left null space. So any element of the row space of L is also an element of the left null space of A. We will now illustrate Theorem FS 259 with a few examples.

Example FS1

Four subsets, \#1

In Example SEEF 257 we found the five relevant submatrices of the matrix

$$
A=\left[\begin{array}{cccccc}
1 & -1 & -2 & 7 & 1 & 6 \\
-6 & 2 & -4 & -18 & -3 & -26 \\
4 & -1 & 4 & 10 & 2 & 17 \\
3 & -1 & 2 & 9 & 1 & 12
\end{array}\right]
$$

To apply Theorem FS 259 we only need C and L,

$$
C=\left[\begin{array}{cccccc}
\boxed{1} & 0 & 2 & 1 & 0 & 3 \\
0 & 1 & 4 & -6 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

$$
L=\left[\begin{array}{llll}
1 & 2 & 2 & 1
\end{array}\right]
$$

Then we use Theorem FS 259 to obtain

$$
\begin{array}{ll}
\mathcal{N}(A)=\mathcal{N}(C)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
-4 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
6 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]\right\}\right\rangle & \text { Theorem BNS 138 } \\
\mathcal{R}(A)=\mathcal{R}(C)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
2 \\
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
4 \\
-6 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right]\right\}\right\rangle &
\end{array}
$$

$$
\begin{aligned}
& \mathcal{C}(A)=\mathcal{N}(L)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \left.\mathcal{L}(A)=\mathcal{R}(L)=\left\langle\left\{\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

Boom!

Example FS2

Four subsets, \#2

Now lets return to the matrix A that we used to motivate this section in Example CSANS 254,

$$
A=\left[\begin{array}{ccccc}
10 & 0 & 3 & 8 & 7 \\
-16 & -1 & -4 & -10 & -13 \\
-6 & 1 & -3 & -6 & -6 \\
0 & 2 & -2 & -3 & -2 \\
3 & 0 & 1 & 2 & 3 \\
-1 & -1 & 1 & 1 & 0
\end{array}\right]
$$

We form the matrix M by adjoining the 6×6 identity matrix I_{6},

$$
M=\left[\begin{array}{ccccccccccc}
10 & 0 & 3 & 8 & 7 & 1 & 0 & 0 & 0 & 0 & 0 \\
-16 & -1 & -4 & -10 & -13 & 0 & 1 & 0 & 0 & 0 & 0 \\
-6 & 1 & -3 & -6 & -6 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 2 & -2 & -3 & -2 & 0 & 0 & 0 & 1 & 0 & 0 \\
3 & 0 & 1 & 2 & 3 & 0 & 0 & 0 & 0 & 1 & 0 \\
-1 & -1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and row-reduce to obtain N

$$
N=\left[\begin{array}{ccccccccccc}
\begin{array}{|c|c|ccccccc}
1 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 & -3 & 0 & 0 & -2 & 3 \\
-3 & -1 \\
0 & 0 & \boxed{1} & 0 & 1 & 0 & 0 & 1 & 1 \\
3 & 3 \\
0 & 0 & 0 & \boxed{1} & -2 & 0 & 0 & -2 & 1 \\
-4 & 0 \\
0 & 0 & 0 & 0 & 0 & \boxed{1} & 0 & 3 & -1 \\
3 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \boxed{1} & -2 & 1
\end{array} 1 & 1 & -1
\end{array}\right]
$$

To find the four subsets for A, we only need identify the 4×5 matrix C and the 2×6 matrix L,

$$
C=\left[\begin{array}{ccccc}
\begin{array}{|cccc}
1 & 0 & 0 & 0 \\
0 & 2 \\
0 & 1 & 0 & 0
\end{array} \frac{-3}{0} & 0 & \boxed{1} & 0 & 1 \\
0 & 0 & 0 & \boxed{1} & -2
\end{array}\right]
$$

$$
L=\left[\begin{array}{cccccc}
\boxed{1} & 0 & 3 & -1 & 3 & 1 \\
0 & \boxed{1} & -2 & 1 & 1 & -1
\end{array}\right]
$$

Then we apply Theorem FS 259,

$$
\mathcal{N}(A)=\mathcal{N}(C)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
3 \\
-1 \\
2 \\
1
\end{array}\right]\right\}\right\rangle
$$

$$
\begin{aligned}
&\left.\mathcal{R}(A)=\mathcal{R}(C)=\left\langle\left\{\begin{array}{l}
\{ \\
0 \\
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
-3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
-2
\end{array}\right]\right\}\right\rangle \text { Theorem BRS 240 } \\
&\left.\mathcal{C}(A)=\mathcal{N}(L)=\left\langle\left\{\begin{array}{l}
-3 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
-1 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \mathcal{L}(A)=\mathcal{R}(L)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
3 \\
-1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-2 \\
1 \\
1 \\
-1
\end{array}\right]\right\}\right.
\end{aligned}
$$

The next example is just a bit different since the matrix has more rows than columns, and a trivial null space.

Example FSAG

Four subsets, Archetype G
Archetype G 716 and Archetype H 720 are both systems of $m=5$ equations in $n=2$ variables. They have identical coefficient matrices, which we will denote here as the matrix G,

$$
G=\left[\begin{array}{cc}
2 & 3 \\
-1 & 4 \\
3 & 10 \\
3 & -1 \\
6 & 9
\end{array}\right]
$$

Adjoin the 5×5 identity matrix, I_{5}, to form

$$
M=\left[\begin{array}{ccccccc}
2 & 3 & 1 & 0 & 0 & 0 & 0 \\
-1 & 4 & 0 & 1 & 0 & 0 & 0 \\
3 & 10 & 0 & 0 & 1 & 0 & 0 \\
3 & -1 & 0 & 0 & 0 & 1 & 0 \\
6 & 9 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

This row-reduces to

$$
N=\left[\begin{array}{ccccccc}
\left.\begin{array}{|c|cccccc}
1 & 0 & 0 & 0 & 0 & \frac{3}{11} & \frac{1}{33} \\
0 & \boxed{1} & 0 & 0 & 0 & -\frac{2}{11} & \frac{1}{11} \\
0 & 0 & \boxed{1} & 0 & 0 & 0 & -\frac{1}{3} \\
0 & 0 & 0 & \boxed{1} & 0 & 1 & -\frac{1}{3} \\
0 & 0 & 0 & 0 & 1 & 1 & -1
\end{array}\right] .0 .3
\end{array}\right.
$$

The first $n=2$ columns contain $r=2$ leading 1's, so we obtain C as the 2×2 identity matrix and extract L from the final $m-r=3$ rows in the final $m=5$ columns.

$$
C=\left[\begin{array}{cc}
\boxed{1} & 0 \\
0 & \boxed{1}
\end{array}\right]
$$

$$
L=\left[\begin{array}{ccccc}
\begin{array}{|cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{3} \\
0 & \boxed{1} & 0 & 1
\end{array}-\frac{1}{3} \\
0 & 0 & \boxed{1} & 1 & -1
\end{array}\right]
$$

Then we apply Theorem FS 259,

$$
\begin{array}{rlrl}
\mathcal{N}(G)=\mathcal{N}(C) & =\langle \rangle=\{0\} & & \text { Theorem BNS } 138 \\
\mathcal{R}(G)=\mathcal{R}(C) & =\left\langle\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}\right\rangle=\mathbb{C}^{2} & & \text { Theorem BRS 240 } \\
\mathcal{C}(G)=\mathcal{N}(L) & =\left\langle\left(\left[\begin{array}{c}
0 \\
-1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
\frac{1}{3} \\
\frac{1}{3} \\
1 \\
0 \\
1
\end{array}\right]\right\}\right\rangle & & \text { Theorem BNS [138 } \\
& =\left\langle\left\{\left[\begin{array}{c}
0 \\
-1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
3 \\
0 \\
3
\end{array}\right]\right\}\right\rangle \\
\mathcal{L}(G)=\mathcal{R}(L) & =\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
-\frac{1}{3}
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
-\frac{1}{3}
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
1 \\
-1
\end{array}\right]\right\}\right\rangle & & \\
& \left.=\left\langle\left\{\begin{array}{c}
3 \\
0 \\
0 \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
3 \\
0 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
1 \\
-1
\end{array}\right]\right\}\right\rangle & & \text { Theorem BRS 240 }
\end{array}
$$

As mentioned earlier, Archetype G 716 is consistent, while Archetype H 720 is inconsistent. See if you can write the two different vectors of constants from these two archetypes as linear combinations of the two vectors in $\mathcal{C}(G)$. How about the two columns of G, can you write each individually as a linear combination of the two vectors in $\mathcal{C}(G)$? They must be in the column space of G also. Are your answers unique? Do you notice anything about the scalars that appear in the linear combinations you are forming?

Example COV 151 and Example CSROI 242 each describes the column space of the coefficient matrix from Archetype I 724 as the span of a set of $r=3$ linearly independent vectors. It is no accident that these two different sets both have the same size. If we (you?) were to calculate the column space of this matrix using the null space of the matrix L from Theorem FS 259 then we would again find a set of 3 linearly independent vectors that span the range. More on this later.

So we have three different methods to obtain a description of the column space of a matrix as the span of a linearly independent set. Theorem BCS 234 is sometimes useful since the vectors it specifies are equal to actual columns of the matrix. Theorem BRS 240 and Theorem CSRST 241] combine to create vectors with lots of zeros, and strategically placed 1's near the top of the vector. Theorem FS 259 and the matrix L from the extended echelon form gives us a third method, which tends to create vectors with lots of zeros, and strategically placed 1's near the bottom of the vector. If we don't care about linear independence we can also appeal to Definition CSM 231 and simply express the column space as the span of all the columns of the matrix, giving us a fourth description.

Although we have many ways to describe a column space, notice that one tempting strategy will usually fail. It is not possible to simply row-reduce a matrix directly and then use the columns of the row-reduced matrix as a set whose span equals the column space. In other words, row operations do not preserve column spaces (however row operations do preserve row spaces, Theorem REMRS 239]). See Exercise CRS.M21 247.

Subsection READ

Reading Questions

1. Find a nontrivial element of the left null space of A.

$$
A=\left[\begin{array}{cccc}
2 & 1 & -3 & 4 \\
-1 & -1 & 2 & -1 \\
0 & -1 & 1 & 2
\end{array}\right]
$$

2. Find the matrices C and L in the extended echelon form of A.

$$
A=\left[\begin{array}{ccc}
-9 & 5 & -3 \\
2 & -1 & 1 \\
-5 & 3 & -1
\end{array}\right]
$$

3. Why is Theorem FS 259 a great way to conclude Chapter M 177?

Subsection EXC
 Exercises
 π

C20 Example FSAG 265 concludes with several questions. Perform the analysis suggested by these questions.
Contributed by Robert Beezer
C25 Given the matrix A below, use the extended echelon form of A to answer each part of this problem. In each part, find a linearly independent set of vectors, S, so that the span of $S,\langle S\rangle$, equals the specified set of vectors.

$$
A=\left[\begin{array}{ccc}
-5 & 3 & -1 \\
-1 & 1 & 1 \\
-8 & 5 & -1 \\
3 & -2 & 0
\end{array}\right]
$$

(a) The row space of $A, \mathcal{R}(A)$.
(b) The column space of $A, \mathcal{C}(A)$.
(c) The null space of $A, \mathcal{N}(A)$.
(d) The left null space of $A, \mathcal{L}(A)$.

Contributed by Robert Beezer Solution 270
C26 For the matrix D below use the extended echelon form to find
(a) a linearly independent set whose span is the column space of D.
(b) a linearly independent set whose span is the left null space of D.

$$
D=\left[\begin{array}{cccc}
-7 & -11 & -19 & -15 \\
6 & 10 & 18 & 14 \\
3 & 5 & 9 & 7 \\
-1 & -2 & -4 & -3
\end{array}\right]
$$

Contributed by Robert Beezer Solution 270
C41 The following archetypes are systems of equations. For each system, write the vector of constants as a linear combination of the vectors in the span construction for the column space provided by Theorem FS 259 and Theorem BNS 138 (these vectors are listed for each of these archetypes).
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703
Archetype E 707
Archetype F 711
Archetype G 716

Archetype H	720

Archetype I 724
Archetype J 728
Contributed by Robert Beezer
C43 The following archetypes are either matrices or systems of equations with coefficient matrices. For each matrix, compute the extended echelon form N and identify the matrices C and L. Using Theorem

FS 259, Theorem BNS 138 and Theorem BRS 240 express the null space, the row space, the column space and left null space of each coefficient matrix as a span of a linearly independent set.
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703 Archetype E 707
Archetype F 711
Archetype G 716 Archetype H 720
Archetype I 724
Archetype J 728
Archetype K [733]
Archetype L 737
Contributed by Robert Beezer
C60 For the matrix B below, find sets of vectors whose span equals the column space of $B(\mathcal{C}(B))$ and which individually meet the following extra requirements.
(a) The set illustrates the definition of the column space.
(b) The set is linearly independent and the members of the set are columns of B.
(c) The set is linearly independent with a "nice pattern of zeros and ones" at the top of each vector.
(d) The set is linearly independent with a "nice pattern of zeros and ones" at the bottom of each vector.

$$
B=\left[\begin{array}{cccc}
2 & 3 & 1 & 1 \\
1 & 1 & 0 & 1 \\
-1 & 2 & 3 & -4
\end{array}\right]
$$

Contributed by Robert Beezer Solution 271
C61 Let A be the matrix below, and find the indicated sets with the requested properties.

$$
A=\left[\begin{array}{cccc}
2 & -1 & 5 & -3 \\
-5 & 3 & -12 & 7 \\
1 & 1 & 4 & -3
\end{array}\right]
$$

(a) A linearly independent set S so that $\mathcal{C}(A)=\langle S\rangle$ and S is composed of columns of A.
(b) A linearly independent set S so that $\mathcal{C}(A)=\langle S\rangle$ and the vectors in S have a nice pattern of zeros and ones at the top of the vectors.
(c) A linearly independent set S so that $\mathcal{C}(A)=\langle S\rangle$ and the vectors in S have a nice pattern of zeros and ones at the bottom of the vectors.
(d) A linearly independent set S so that $\mathcal{R}(A)=\langle S\rangle$.

Contributed by Robert Beezer Solution 272
M50 Suppose that A is a nonsingular matrix. Extend the four conclusions of Theorem FS 259 in this special case and discuss connections with previous results (such as Theorem NME4 [237).
Contributed by Robert Beezer
M51 Suppose that A is a singular matrix. Extend the four conclusions of Theorem FS 259 in this special case and discuss connections with previous results (such as Theorem NME4 237). Contributed by Robert Beezer

Subsection SOL Solutions

C25 Contributed by Robert Beezer Statement 268
Add a 4×4 identity matrix to the right of A to form the matrix M and then row-reduce to the matrix N,

$$
M=\left[\begin{array}{ccccccc}
-5 & 3 & -1 & 1 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 & 1 & 0 & 0 \\
-8 & 5 & -1 & 0 & 0 & 1 & 0 \\
3 & -2 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccccc}
\boxed{1} & 0 & 2 & 0 & 0 & -2 & -5 \\
0 & \boxed{1} & 3 & 0 & 0 & -3 & -8 \\
0 & 0 & 0 & \boxed{1} & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 & 3
\end{array}\right]=N
$$

To apply Theorem FS 259 in each of these four parts, we need the two matrices,

$$
C=\left[\begin{array}{ccc}
\boxed{1} & 0 & 2 \\
0 & \boxed{1} & 3
\end{array}\right] \quad L=\left[\begin{array}{cccc}
\boxed{1} & 0 & -1 & -1 \\
0 & \boxed{1} & 1 & 3
\end{array}\right]
$$

(a)

$$
\begin{aligned}
\mathcal{R}(A) & =\mathcal{R}(C) \\
& =\left\langle\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]\right\rangle
\end{aligned}
$$

Theorem FS 259

Theorem BRS 240
(b)

$$
\begin{aligned}
\mathcal{C}(A) & =\mathcal{N}(L) \\
& =\left\langle\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-3 \\
0 \\
1
\end{array}\right]\right\rangle
\end{aligned}
$$

Theorem FS 259

Theorem BNS 138
(c)

$$
\begin{aligned}
\mathcal{N}(A) & =\mathcal{N}(C) \\
& =\left\langle\left[\begin{array}{c}
-2 \\
-3 \\
1
\end{array}\right]\right\rangle
\end{aligned}
$$

Theorem FS 259

Theorem BNS 138
(d)

$$
\begin{aligned}
\mathcal{L}(A) & =\mathcal{R}(L) \\
& =\left\langle\left[\begin{array}{c}
1 \\
0 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
3
\end{array}\right]\right\rangle
\end{aligned}
$$

Theorem FS 259

Theorem BRS 240

C26 Contributed by Robert Beezer Statement 268
For both parts, we need the extended echelon form of the matrix.

$$
\left[\begin{array}{cccccccc}
-7 & -11 & -19 & -15 & 1 & 0 & 0 & 0 \\
6 & 10 & 18 & 14 & 0 & 1 & 0 & 0 \\
3 & 5 & 9 & 7 & 0 & 0 & 1 & 0 \\
-1 & -2 & -4 & -3 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccccccc}
\boxed{1} & 0 & -2 & -1 & 0 & 0 & 2 & 5 \\
0 & \boxed{1} & 3 & 2 & 0 & 0 & -1 & -3 \\
0 & 0 & 0 & 0 & \boxed{1} & 0 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 0
\end{array}\right]
$$

From this matrix we extract the last two rows, in the last four columns to form the matrix L,

$$
L=\left[\begin{array}{cccc}
\boxed{1} & 0 & 3 & 2 \\
0 & \boxed{1} & -2 & 0
\end{array}\right]
$$

(a) By Theorem FS 259 and Theorem BNS 138 we have

$$
\mathcal{C}(D)=\mathcal{N}(L)=\left\langle\left\{\left[\begin{array}{c}
-3 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

(b) By Theorem FS 259 and Theorem BRS 240 we have

$$
\mathcal{L}(D)=\mathcal{R}(L)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
3 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-2 \\
0
\end{array}\right]\right\}\right\rangle
$$

C60 Contributed by Robert Beezer Statement 269
(a) The definition of the column space is the span of the set of columns (Definition CSM 231). So the desired set is just the four columns of B,

$$
S=\left\{\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-4
\end{array}\right]\right\}
$$

(b) Theorem BCS 234 suggests row-reducing the matrix and using the columns of B that correspond to the pivot columns.

$$
B \xrightarrow{\mathrm{RREF}}\left[\begin{array}{cccc}
\underline{1} & 0 & -1 & 2 \\
0 & \boxed{1} & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So the pivot columns are numbered by elements of $D=\{1,2\}$, so the requested set is

$$
S=\left\{\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]\right\}
$$

(c) We can find this set by row-reducing the transpose of B, deleting the zero rows, and using the nonzero rows as column vectors in the set. This is an application of Theorem CSRST 241 followed by Theorem BRS 240.

$$
B^{t} \xrightarrow{\mathrm{RREF}}\left[\begin{array}{ccc}
\boxed{1} & 0 & 3 \\
0 & \boxed{1} & -7 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So the requested set is

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-7
\end{array}\right]\right\}
$$

(d) With the column space expressed as a null space, the vectors obtained via Theorem BNS 138 will be of the desired shape. So we first proceed with Theorem FS 259 and create the extended echelon form,

$$
\left[B \mid I_{3}\right]=\left[\begin{array}{ccccccc}
2 & 3 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
-1 & 2 & 3 & -4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccccc}
\hline 1 & 0 & -1 & 2 & 0 & \frac{2}{3} & \frac{-1}{3} \\
0 & \boxed{1} & 1 & -1 & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & 1 & \frac{-7}{3} & \frac{-1}{3}
\end{array}\right]
$$

So, employing Theorem FS 259, we have $\mathcal{C}(B)=\mathcal{N}(L)$, where

$$
L=\left[\begin{array}{lll}
\boxed{1} & \frac{-7}{3} & \frac{-1}{3}
\end{array}\right]
$$

We can find the desired set of vectors from Theorem BNS 138 as

$$
S=\left\{\left[\begin{array}{c}
\frac{7}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
1
\end{array}\right]\right\}
$$

C61 Contributed by Robert Beezer Statement 269
(a) First find a matrix B that is row-equivalent to A and in reduced row-echelon form

$$
B=\left[\begin{array}{cccc}
\boxed{1} & 0 & 3 & -2 \\
0 & \boxed{1} & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By Theorem BCS 234 we can choose the columns of A that correspond to dependent variables ($D=\{1,2\}$) as the elements of S and obtain the desired properties. So

$$
S=\left\{\left[\begin{array}{c}
2 \\
-5 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right]\right\}
$$

(b) We can write the column space of A as the row space of the transpose Theorem CSRST 241). So we row-reduce the transpose of A to obtain the row-equivalent matrix C in reduced row-echelon form

$$
C=\left[\begin{array}{lll}
1 & 0 & 8 \\
0 & 1 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The nonzero rows (written as columns) will be a linearly independent set that spans the row space of A^{t}, by Theorem BRS 240, and the zeros and ones will be at the top of the vectors,

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
8
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]\right\}
$$

(c) In preparation for Theorem FS 259, augment A with the 3×3 identity matrix I_{3} and row-reduce to obtain the extended echelon form,

$$
\left[\begin{array}{ccccccc}
1 & 0 & 3 & -2 & 0 & -\frac{1}{8} & \frac{3}{8} \\
0 & 1 & 1 & -1 & 0 & \frac{1}{8} & \frac{5}{8} \\
0 & 0 & 0 & 0 & 1 & \frac{3}{8} & -\frac{1}{8}
\end{array}\right]
$$

Then since the first four columns of row 3 are all zeros, we extract

$$
L=\left[\begin{array}{lll}
\boxed{1} & \frac{3}{8} & -\frac{1}{8}
\end{array}\right]
$$

Theorem FS 259 says that $\mathcal{C}(A)=\mathcal{N}(L)$. We can then use Theorem BNS 138 to construct the desired set S, based on the free variables with indices in $F=\{2,3\}$ for the homogeneous system $\mathcal{L S}(L, \mathbf{0})$, so

$$
S=\left\{\left[\begin{array}{c}
-\frac{3}{8} \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
\frac{1}{8} \\
0 \\
1
\end{array}\right]\right\}
$$

Notice that the zeros and ones are at the bottom of the vectors.
(d) This is a straightforward application of Theorem BRS 240. Use the row-reduced matrix B from part (a), grab the nonzero rows, and write them as column vectors,

$$
S=\left\{\left[\begin{array}{c}
1 \\
0 \\
3 \\
-2
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
1 \\
-1
\end{array}\right]\right\}
$$

Chapter VS Vector Spaces

We now have a computational toolkit in place and so we can begin our study of linear algebra in a more theoretical style.

Linear algebra is the study of two fundamental objects, vector spaces and linear transformations (see Chapter LT 441). This chapter will focus on the former. The power of mathematics is often derived from generalizing many different situations into one abstract formulation, and that is exactly what we will be doing throughout this chapter.

Section VS Vector Spaces

In this section we present a formal definition of a vector space, which will lead to an extra increment of abstraction. Once defined, we study its most basic properties.

Subsection VS

Vector Spaces

Here is one of our two most important definitions in the entire course.

Definition VS

Vector Space
Suppose that V is a set upon which we have defined two operations: (1) vector addition, which combines two elements of V and is denoted by " + ", and (2) scalar multiplication, which combines a complex number with an element of V and is denoted by juxtaposition. Then V, along with the two operations, is a vector space if the following ten properties hold.

- AC Additive Closure

If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v} \in V$.

- SC Scalar Closure

If $\alpha \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha \mathbf{u} \in V$.

- C Commutativity

If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.

- AA Additive Associativity

If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, then $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.

- Z Zero Vector

There is a vector, $\mathbf{0}$, called the zero vector, such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $\mathbf{u} \in V$.

- AI Additive Inverses

If $\mathbf{u} \in V$, then there exists a vector $-\mathbf{u} \in V$ so that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.

- SMA Scalar Multiplication Associativity

If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $\alpha(\beta \mathbf{u})=(\alpha \beta) \mathbf{u}$.

- DVA Distributivity across Vector Addition

If $\alpha \in \mathbb{C}$ and $\mathbf{u}, \mathbf{v} \in V$, then $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$.

- DSA Distributivity across Scalar Addition

If $\alpha, \beta \in \mathbb{C}$ and $\mathbf{u} \in V$, then $(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u}$.

- O One

If $\mathbf{u} \in V$, then $1 \mathbf{u}=\mathbf{u}$.
The objects in V are called vectors, no matter what else they might really be, simply by virtue of being elements of a vector space.

Now, there are several important observations to make. Many of these will be easier to understand on a second or third reading, and especially after carefully studying the examples in Subsection VS.EVS 276.

An axiom is often a "self-evident" truth. Something so fundamental that we all agree it is true and accept it without proof. Typically, it would be the logical underpinning that we would begin to build theorems upon. Some might refer to the ten properties of Definition VS 275 as axioms, implying that a vector space is a very natural object and the ten properties are the essence of a vector space. We will instead emphasize that we will begin with a definition of a vector space. After studying the remainder of this chapter, you might return here and remind yourself how all our forthcoming theorems and definitions rest on this foundation.

As we will see shortly, the objects in V can be anything, even though we will call them vectors. We have been working with vectors frequently, but we should stress here that these have so far just been column vectors - scalars arranged in a columnar list of fixed length. In a similar vein, you have used the symbol " + " for many years to represent the addition of numbers (scalars). We have extended its use to the addition of column vectors and to the addition of matrices, and now we are going to recycle it even further and let it denote vector addition in any possible vector space. So when describing a new vector space, we will have to define exactly what "+" is. Similar comments apply to scalar multiplication. Conversely, we can define our operations any way we like, so long as the ten properties are fulfilled (see Example CVS 279).

A vector space is composed of three objects, a set and two operations. However, we usually use the same symbol for both the set and the vector space itself. Do not let this convenience fool you into thinking the operations are secondary!

This discussion has either convinced you that we are really embarking on a new level of abstraction, or they have seemed cryptic, mysterious or nonsensical. You might want to return to this section in a few days and give it another read then. In any case, let's look at some concrete examples now.

Subsection EVS
 Examples of Vector Spaces

Our aim in this subsection is to give you a storehouse of examples to work with, to become comfortable with the ten vector space properties and to convince you that the multitude of examples justifies (at least
initially) making such a broad definition as Definition VS [275]. Some of our claims will be justified by reference to previous theorems, we will prove some facts from scratch, and we will do one non-trivial example completely. In other places, our usual thoroughness will be neglected, so grab paper and pencil and play along.

Example VSCV

The vector space \mathbb{C}^{m}

Set: \mathbb{C}^{m}, all column vectors of size m, Definition VSCV 79 .
Equality: Entry-wise, Definition CVE 80.
Vector Addition: The "usual" addition, given in Definition CVA 80].
Scalar Multiplication: The "usual" scalar multiplication, given in Definition CVSM 81.
Does this set with these operations fulfill the ten properties? Yes. And by design all we need to do is quote Theorem VSPCV 82. That was easy.

Example VSM

The vector space of matrices, $M_{m n}$

Set: $\quad M_{m n}$, the set of all matrices of size $m \times n$ and entries from \mathbb{C}, Example VSM 277 .
Equality: Entry-wise, Definition ME 177.
Vector Addition: The "usual" addition, given in Definition MA (177).
Scalar Multiplication: The "usual" scalar multiplication, given in Definition MSM 178.
Does this set with these operations fulfill the ten properties? Yes. And all we need to do is quote Theorem VSPM 179. Another easy one (by design).

So, the set of all matrices of a fixed size forms a vector space. That entitles us to call a matrix a vector, since a matrix is an element of a vector space. For example, if $A, B \in M_{3,4}$ then we call A and B "vectors," and we even use our previous notation for column vectors to refer to A and B. So we could legitimately write expressions like

$$
\mathbf{u}+\mathbf{v}=A+B=B+A=\mathbf{v}+\mathbf{u}
$$

This could lead to some confusion, but it is not too great a danger. But it is worth comment.
The previous two examples may be less than satisfying. We made all the relevant definitions long ago. And the required verifications were all handled by quoting old theorems. However, it is important to consider these two examples first. We have been studying vectors and matrices carefully Chapter V 79, Chapter M 177), and both objects, along with their operations, have certain properties in common, as you may have noticed in comparing Theorem VSPCV 82 with Theorem VSPM 179. Indeed, it is these two theorems that motivate us to formulate the abstract definition of a vector space, Definition VS 275 . Now, should we prove some general theorems about vector spaces (as we will shortly in Subsection VS.VSP [281), we can instantly apply the conclusions to both \mathbb{C}^{m} and $M_{m n}$. Notice too how we have taken six definitions and two theorems and reduced them down to two examples. With greater generalization and abstraction our old ideas get downgraded in stature.

Let us look at some more examples, now considering some new vector spaces.

Example VSP

The vector space of polynomials, P_{n}
Set: $\quad P_{n}$, the set of all polynomials of degree n or less in the variable x with coefficients from \mathbb{C}. Equality:

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n} \text { if and only if } a_{i}=b_{i} \text { for } 0 \leq i \leq n
$$

Vector Addition:

$$
\begin{array}{r}
\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}\right)= \\
\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\cdots+\left(a_{n}+b_{n}\right) x^{n}
\end{array}
$$

Scalar Multiplication:

$$
\alpha\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)=\left(\alpha a_{0}\right)+\left(\alpha a_{1}\right) x+\left(\alpha a_{2}\right) x^{2}+\cdots+\left(\alpha a_{n}\right) x^{n}
$$

This set, with these operations, will fulfill the ten properties, though we will not work all the details here. However, we will make a few comments and prove one of the properties. First, the zero vector (Property Z 276) is what you might expect, and you can check that it has the required property.

$$
\mathbf{0}=0+0 x+0 x^{2}+\cdots+0 x^{n}
$$

The additive inverse (Property AI 276) is also no surprise, though consider how we have chosen to write it.

$$
-\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)=\left(-a_{0}\right)+\left(-a_{1}\right) x+\left(-a_{2}\right) x^{2}+\cdots+\left(-a_{n}\right) x^{n}
$$

Now let's prove the associativity of vector addition Property AA 275). This is a bit tedious, though necessary. Throughout, the plus sign ("+") does triple-duty. You might ask yourself what each plus sign represents as you work through this proof.

$$
\begin{aligned}
\mathbf{u}+ & (\mathbf{v}+\mathbf{w}) \\
& =\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)+\left(c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right)\right) \\
& =\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)+\left(\left(b_{0}+c_{0}\right)+\left(b_{1}+c_{1}\right) x+\cdots+\left(b_{n}+c_{n}\right) x^{n}\right) \\
& =\left(a_{0}+\left(b_{0}+c_{0}\right)\right)+\left(a_{1}+\left(b_{1}+c_{1}\right)\right) x+\cdots+\left(a_{n}+\left(b_{n}+c_{n}\right)\right) x^{n} \\
& =\left(\left(a_{0}+b_{0}\right)+c_{0}\right)+\left(\left(a_{1}+b_{1}\right)+c_{1}\right) x+\cdots+\left(\left(a_{n}+b_{n}\right)+c_{n}\right) x^{n} \\
& =\left(\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}\right)+\left(c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right) \\
& =\left(\left(a_{0}+b_{1} x+\cdots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)\right)+\left(c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right) \\
& =(\mathbf{u}+\mathbf{v})+\mathbf{w}
\end{aligned}
$$

Notice how it is the application of the associativity of the (old) addition of complex numbers in the middle of this chain of equalities that makes the whole proof happen. The remainder is successive applications of our (new) definition of vector (polynomial) addition. Proving the remainder of the ten properties is similar in style and tedium. You might try proving the commutativity of vector addition (Property C 275), or one of the distributivity properties (Property DVA 276, Property DSA 276]).

Example VSIS

The vector space of infinite sequences

Set: $\quad \mathbb{C}^{\infty}=\left\{\left(c_{0}, c_{1}, c_{2}, c_{3}, \ldots\right) \mid c_{i} \in \mathbb{C}, i \in \mathbb{N}\right\}$.
Equality:

$$
\left(c_{0}, c_{1}, c_{2}, \ldots\right)=\left(d_{0}, d_{1}, d_{2}, \ldots\right) \text { if and only if } c_{i}=d_{i} \text { for all } i \geq 0
$$

Vector Addition:

$$
\left(c_{0}, c_{1}, c_{2}, \ldots\right)+\left(d_{0}, d_{1}, d_{2}, \ldots\right)=\left(c_{0}+d_{0}, c_{1}+d_{1}, c_{2}+d_{2}, \ldots\right)
$$

Scalar Multiplication:

$$
\alpha\left(c_{0}, c_{1}, c_{2}, c_{3}, \ldots\right)=\left(\alpha c_{0}, \alpha c_{1}, \alpha c_{2}, \alpha c_{3}, \ldots\right)
$$

This should remind you of the vector space \mathbb{C}^{m}, though now our lists of scalars are written horizontally with commas as delimiters and they are allowed to be infinite in length. What does the zero vector look like (Property Z [276])? Additive inverses (Property AI 276)? Can you prove the associativity of vector addition (Property AA 275)?

Example VSF

The vector space of functions
Set: $F=\{f \mid f: \mathbb{C} \rightarrow \mathbb{C}\}$.

Equality: $\quad f=g$ if and only if $f(x)=g(x)$ for all $x \in \mathbb{C}$.
Vector Addition: $f+g$ is the function with outputs defined by $(f+g)(x)=f(x)+g(x)$. Scalar Multiplication: αf is the function with outputs defined by $(\alpha f)(x)=\alpha f(x)$.

So this is the set of all functions of one variable that take a complex number to a complex number. You might have studied functions of one variable that take a real number to a real number, and that might be a more natural set to study. But since we are allowing our scalars to be complex numbers, we need to expand the domain and range of our functions also. Study carefully how the definitions of the operation are made, and think about the different uses of " + " and juxtaposition. As an example of what is required when verifying that this is a vector space, consider that the zero vector (Property Z [276]) is the function z whose definition is $z(x)=0$ for every input x.

While vector spaces of functions are very important in mathematics and physics, we will not devote them much more attention.

Here's a unique example.

Example VSS

The singleton vector space

Set: $Z=\{\mathbf{z}\}$.
Equality: Huh?
Vector Addition: $\mathbf{z}+\mathbf{z}=\mathbf{z}$.
Scalar Multiplication: $\alpha \mathbf{z}=\mathbf{z}$.
This should look pretty wild. First, just what is z? Column vector, matrix, polynomial, sequence, function? Mineral, plant, or animal? We aren't saying! z just is. And we have definitions of vector addition and scalar multiplication that are sufficient for an occurence of either that may come along.

Our only concern is if this set, along with the definitions of two operations, fulfills the ten properties of Definition VS 275. Let's check associativity of vector addition (Property AA 275). For all u, v, w $\in Z$,

$$
\begin{aligned}
\mathbf{u}+(\mathbf{v}+\mathbf{w}) & =\mathbf{z}+(\mathbf{z}+\mathbf{z}) \\
& =\mathbf{z}+\mathbf{z} \\
& =(\mathbf{z}+\mathbf{z})+\mathbf{z} \\
& =(\mathbf{u}+\mathbf{v})+\mathbf{w}
\end{aligned}
$$

What is the zero vector in this vector space Property Z 276)? With only one element in the set, we do not have much choice. Is $\mathbf{z}=\mathbf{0}$? It appears that \mathbf{z} behaves like the zero vector should, so it gets the title. Maybe now the definition of this vector space does not seem so bizarre. It is a set whose only element is the element that behaves like the zero vector, so that lone element is the zero vector.

Perhaps some of the above definitions and verifications seem obvious or like splitting hairs, but the next example should convince you that they are necessary. We will study this one carefully. Ready? Check your preconceptions at the door.

Example CVS
 The crazy vector space

Set: $\quad C=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{C}\right\}$.
Vector Addition: $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}+1, x_{2}+y_{2}+1\right)$.
Scalar Multiplication: $\quad \alpha\left(x_{1}, x_{2}\right)=\left(\alpha x_{1}+\alpha-1, \alpha x_{2}+\alpha-1\right)$.
Now, the first thing I hear you say is "You can't do that!" And my response is, "Oh yes, I can!" I am free to define my set and my operations any way I please. They may not look natural, or even useful, but we will now verify that they provide us with another example of a vector space. And that is enough. If you are adventurous, you might try first checking some of the properties yourself. What is the zero vector? Additive inverses? Can you prove associativity? Ready, here we go.

Property AC 275, Property SC 275: The result of each operation is a pair of complex numbers, so these two closure properties are fulfilled.

Property C 275:

$$
\begin{aligned}
\mathbf{u}+\mathbf{v} & =\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}+1, x_{2}+y_{2}+1\right) \\
& =\left(y_{1}+x_{1}+1, y_{2}+x_{2}+1\right)=\left(y_{1}, y_{2}\right)+\left(x_{1}, x_{2}\right) \\
& =\mathbf{v}+\mathbf{u}
\end{aligned}
$$

Property AA 275:

$$
\begin{aligned}
\mathbf{u}+(\mathbf{v}+\mathbf{w}) & =\left(x_{1}, x_{2}\right)+\left(\left(y_{1}, y_{2}\right)+\left(z_{1}, z_{2}\right)\right) \\
& =\left(x_{1}, x_{2}\right)+\left(y_{1}+z_{1}+1, y_{2}+z_{2}+1\right) \\
& =\left(x_{1}+\left(y_{1}+z_{1}+1\right)+1, x_{2}+\left(y_{2}+z_{2}+1\right)+1\right) \\
& =\left(x_{1}+y_{1}+z_{1}+2, x_{2}+y_{2}+z_{2}+2\right) \\
& =\left(\left(x_{1}+y_{1}+1\right)+z_{1}+1,\left(x_{2}+y_{2}+1\right)+z_{2}+1\right) \\
& =\left(x_{1}+y_{1}+1, x_{2}+y_{2}+1\right)+\left(z_{1}, z_{2}\right) \\
& =\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)+\left(z_{1}, z_{2}\right) \\
& =(\mathbf{u}+\mathbf{v})+\mathbf{w}
\end{aligned}
$$

Property Z 276: The zero vector is $\ldots \mathbf{0}=(-1,-1)$. Now I hear you say, "No, no, that can't be, it must be (0,0)!" Indulge me for a moment and let us check my proposal.

$$
\mathbf{u}+\mathbf{0}=\left(x_{1}, x_{2}\right)+(-1,-1)=\left(x_{1}+(-1)+1, x_{2}+(-1)+1\right)=\left(x_{1}, x_{2}\right)=\mathbf{u}
$$

Feeling better? Or worse?
Property AI 276: For each vector, \mathbf{u}, we must locate an additive inverse, $-\mathbf{u}$. Here it is, $-\left(x_{1}, x_{2}\right)=$ $\left(-x_{1}-2,-x_{2}-2\right)$. As odd as it may look, I hope you are withholding judgment. Check:

$$
\mathbf{u}+(-\mathbf{u})=\left(x_{1}, x_{2}\right)+\left(-x_{1}-2,-x_{2}-2\right)=\left(x_{1}+\left(-x_{1}-2\right)+1,-x_{2}+\left(x_{2}-2\right)+1\right)=(-1,-1)=\mathbf{0}
$$

Property SMA 276:

$$
\begin{aligned}
\alpha(\beta \mathbf{u}) & =\alpha\left(\beta\left(x_{1}, x_{2}\right)\right) \\
& =\alpha\left(\beta x_{1}+\beta-1, \beta x_{2}+\beta-1\right) \\
& =\left(\alpha\left(\beta x_{1}+\beta-1\right)+\alpha-1, \alpha\left(\beta x_{2}+\beta-1\right)+\alpha-1\right) \\
& =\left(\left(\alpha \beta x_{1}+\alpha \beta-\alpha\right)+\alpha-1,\left(\alpha \beta x_{2}+\alpha \beta-\alpha\right)+\alpha-1\right) \\
& =\left(\alpha \beta x_{1}+\alpha \beta-1, \alpha \beta x_{2}+\alpha \beta-1\right) \\
& =(\alpha \beta)\left(x_{1}, x_{2}\right) \\
& =(\alpha \beta) \mathbf{u}
\end{aligned}
$$

Property DVA 276: If you have hung on so far, here's where it gets even wilder. In the next two properties we mix and mash the two operations.

$$
\begin{aligned}
\alpha(\mathbf{u}+\mathbf{v}) & =\alpha\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right) \\
& =\alpha\left(x_{1}+y_{1}+1, x_{2}+y_{2}+1\right) \\
& =\left(\alpha\left(x_{1}+y_{1}+1\right)+\alpha-1, \alpha\left(x_{2}+y_{2}+1\right)+\alpha-1\right) \\
& =\left(\alpha x_{1}+\alpha y_{1}+\alpha+\alpha-1, \alpha x_{2}+\alpha y_{2}+\alpha+\alpha-1\right) \\
& =\left(\alpha x_{1}+\alpha-1+\alpha y_{1}+\alpha-1+1, \alpha x_{2}+\alpha-1+\alpha y_{2}+\alpha-1+1\right) \\
& =\left(\left(\alpha x_{1}+\alpha-1\right)+\left(\alpha y_{1}+\alpha-1\right)+1,\left(\alpha x_{2}+\alpha-1\right)+\left(\alpha y_{2}+\alpha-1\right)+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\alpha x_{1}+\alpha-1, \alpha x_{2}+\alpha-1\right)+\left(\alpha y_{1}+\alpha-1, \alpha y_{2}+\alpha-1\right) \\
& =\alpha\left(x_{1}, x_{2}\right)+\alpha\left(y_{1}, y_{2}\right) \\
& =\alpha \mathbf{u}+\alpha \mathbf{v}
\end{aligned}
$$

Property DSA 276:

$$
\begin{aligned}
(\alpha+\beta) \mathbf{u} & =(\alpha+\beta)\left(x_{1}, x_{2}\right) \\
& =\left((\alpha+\beta) x_{1}+(\alpha+\beta)-1,(\alpha+\beta) x_{2}+(\alpha+\beta)-1\right) \\
& =\left(\alpha x_{1}+\beta x_{1}+\alpha+\beta-1, \alpha x_{2}+\beta x_{2}+\alpha+\beta-1\right) \\
& =\left(\alpha x_{1}+\alpha-1+\beta x_{1}+\beta-1+1, \alpha x_{2}+\alpha-1+\beta x_{2}+\beta-1+1\right) \\
& =\left(\left(\alpha x_{1}+\alpha-1\right)+\left(\beta x_{1}+\beta-1\right)+1,\left(\alpha x_{2}+\alpha-1\right)+\left(\beta x_{2}+\beta-1\right)+1\right) \\
& =\left(\alpha x_{1}+\alpha-1, \alpha x_{2}+\alpha-1\right)+\left(\beta x_{1}+\beta-1, \beta x_{2}+\beta-1\right) \\
& =\alpha\left(x_{1}, x_{2}\right)+\beta\left(x_{1}, x_{2}\right) \\
& =\alpha \mathbf{u}+\beta \mathbf{u}
\end{aligned}
$$

Property O 276: After all that, this one is easy, but no less pleasing.

$$
1 \mathbf{u}=1\left(x_{1}, x_{2}\right)=\left(x_{1}+1-1, x_{2}+1-1\right)=\left(x_{1}, x_{2}\right)=\mathbf{u}
$$

That's it, C is a vector space, as crazy as that may seem.
Notice that in the case of the zero vector and additive inverses, we only had to propose possibilities and then verify that they were the correct choices. You might try to discover how you would arrive at these choices, though you should understand why the process of discovering them is not a necessary component of the proof itself.

Subsection VSP
 Vector Space Properties

Subsection VS.EVS 276 has provided us with an abundance of examples of vector spaces, most of them containing useful and interesting mathematical objects along with natural operations. In this subsection we will prove some general properties of vector spaces. Some of these results will again seem obvious, but it is important to understand why it is necessary to state and prove them. A typical hypothesis will be "Let V be a vector space." From this we may assume the ten properties of Definition VS 275, and nothing more. Its like starting over, as we learn about what can happen in this new algebra we are learning. But the power of this careful approach is that we can apply these theorems to any vector space we encounter - those in the previous examples, or new ones we have not yet contemplated. Or perhaps new ones that nobody has ever contemplated. We will illustrate some of these results with examples from the crazy vector space Example CVS 279), but mostly we are stating theorems and doing proofs. These proofs do not get too involved, but are not trivial either, so these are good theorems to try proving yourself before you study the proof given here. (See Technique P 681.)

First we show that there is just one zero vector. Notice that the properties only require there to be at least one, and say nothing about there possibly being more. That is because we can use the ten properties of a vector space (Definition VS [275]) to learn that there can never be more than one. To require that this extra condition be stated as an eleventh property would make the definition of a vector space more complicated than it needs to be.

Theorem ZVU

Zero Vector is Unique

Suppose that V is a vector space. The zero vector, $\mathbf{0}$, is unique.
Proof To prove uniqueness, a standard technique is to suppose the existence of two objects Technique U (678). So let $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ be two zero vectors in V. Then

$$
\begin{aligned}
\mathbf{0}_{1} & =\mathbf{0}_{1}+\mathbf{0}_{2} \\
& =\mathbf{0}_{2}+\mathbf{0}_{1} \\
& =\mathbf{0}_{2}
\end{aligned}
$$

Property Z	276
Property C	$\mathbf{0}_{2}$
Property Z	276

This proves the uniqueness since the two zero vectors are really the same.

Theorem AIU

Additive Inverses are Unique

Suppose that V is a vector space. For each $\mathbf{u} \in V$, the additive inverse, $-\mathbf{u}$, is unique.
Proof To prove uniqueness, a standard technique is to suppose the existence of two objects Technique U (678). So let $-\mathbf{u}_{1}$ and $-\mathbf{u}_{2}$ be two additive inverses for \mathbf{u}. Then

$$
\begin{aligned}
-\mathbf{u}_{1} & =-\mathbf{u}_{1}+\mathbf{0} \\
& =-\mathbf{u}_{1}+\left(\mathbf{u}+-\mathbf{u}_{2}\right) \\
& =\left(-\mathbf{u}_{1}+\mathbf{u}\right)+-\mathbf{u}_{2} \\
& =\mathbf{0}+-\mathbf{u}_{2} \\
& =-\mathbf{u}_{2}
\end{aligned}
$$

$$
\text { Property Z } 276
$$

$$
\text { Property AI } 276
$$

$$
\text { Property AA } 275
$$

$$
\text { Property AI } 276
$$

$$
\text { Property Z } 276
$$

So the two additive inverses are really the same.
As obvious as the next three theorems appear, nowhere have we guaranteed that the zero scalar, scalar multiplication and the zero vector all interact this way. Until we have proved it, anyway.

Theorem ZSSM

Zero Scalar in Scalar Multiplication

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $0 \mathbf{u}=\mathbf{0}$.
Proof Notice that 0 is a scalar, \mathbf{u} is a vector, so Property SC 275 says $0 \mathbf{u}$ is again a vector. As such, $0 \mathbf{u}$ has an additive inverse, $-(0 \mathbf{u})$ by Property AI 276.

$$
\begin{array}{rlrl}
0 \mathbf{u} & =\mathbf{0}+0 \mathbf{u} & & \text { Property Z } 276 \\
& =(-(0 \mathbf{u})+0 \mathbf{u})+0 \mathbf{u} & & \text { Property AI } 276 \\
& =-(0 \mathbf{u})+(0 \mathbf{u}+0 \mathbf{u}) & & \text { Property AA } 275 \\
& =-(0 \mathbf{u})+(0+0) \mathbf{u} & & \text { Property DSA } 276 \\
& =-(0 \mathbf{u})+0 \mathbf{u} & & 0 \text { in } \mathbb{C} \\
& =\mathbf{0} & & \text { Property AI } 276 \\
\hline
\end{array}
$$

Here's another theorem that looks like it should be obvious, but is still in need of a proof.

Theorem ZVSM

Zero Vector in Scalar Multiplication

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. Then $\alpha \mathbf{0}=\mathbf{0}$.
Proof Notice that α is a scalar, $\mathbf{0}$ is a vector, so Property SC 275 means $\alpha \mathbf{0}$ is again a vector. As such, $\alpha \mathbf{0}$ has an additive inverse, $-(\alpha \mathbf{0})$ by Property AI 276.

$$
\alpha \mathbf{0}=\mathbf{0}+\alpha \mathbf{0}
$$

$$
\text { Property Z } 276
$$

$$
\begin{aligned}
& =(-(\alpha \mathbf{0})+\alpha \mathbf{0})+\alpha \mathbf{0} \\
& =-(\alpha \mathbf{0})+(\alpha \mathbf{0}+\alpha \mathbf{0}) \\
& =-(\alpha \mathbf{0})+\alpha(\mathbf{0}+\mathbf{0}) \\
& =-(\alpha \mathbf{0})+\alpha \mathbf{0} \\
& =\mathbf{0}
\end{aligned}
$$

Here's another one that sure looks obvious. But understand that we have chosen to use certain notation because it makes the theorem's conclusion look so nice. The theorem is not true because the notation looks so good, it still needs a proof. If we had really wanted to make this point, we might have defined the additive inverse of \mathbf{u} as \mathbf{u}^{\sharp}. Then we would have written the defining property, Property AI 276, as $\mathbf{u}+\mathbf{u}^{\sharp}=\mathbf{0}$. This theorem would become $\mathbf{u}^{\sharp}=(-1) \mathbf{u}$. Not really quite as pretty, is it?

Theorem AISM

Additive Inverses from Scalar Multiplication

Suppose that V is a vector space and $\mathbf{u} \in V$. Then $-\mathbf{u}=(-1) \mathbf{u}$.

Proof

$$
\begin{aligned}
-\mathbf{u} & =-\mathbf{u}+\mathbf{0} \\
& =-\mathbf{u}+0 \mathbf{u} \\
& =-\mathbf{u}+(1+(-1)) \mathbf{u} \\
& =-\mathbf{u}+(1 \mathbf{u}+(-1) \mathbf{u}) \\
& =-\mathbf{u}+(\mathbf{u}+(-1) \mathbf{u}) \\
& =(-\mathbf{u}+\mathbf{u})+(-1) \mathbf{u} \\
& =\mathbf{0}+(-1) \mathbf{u} \\
& =(-1) \mathbf{u}
\end{aligned}
$$

$$
\begin{aligned}
& \hline \text { Property Z } 276 \\
& \hline \text { Theorem ZSSM } \\
& \hline \\
& \hline \text { Property DSA } \\
& \hline \text { Prosery O } 276 \\
& \hline \text { Property } \\
& \hline \text { Property AA } \\
& \hline \text { Property AI } \\
& \hline \text { Pre } 276 \\
& \hline \text { Property Z } \\
& \hline \text { P76 } \\
& \hline
\end{aligned}
$$

Because of this theorem, we can now write linear combinations like $6 \mathbf{u}_{1}+(-4) \mathbf{u}_{2}$ as $6 \mathbf{u}_{1}-4 \mathbf{u}_{2}$, even though we have not formally defined an operation called vector subtraction.

Example PCVS

Properties for the Crazy Vector Space

Several of the above theorems have interesting demonstrations when applied to the crazy vector space, C Example CVS 279). We are not proving anything new here, or learning anything we did not know already about C. It is just plain fun to see how these general theorems apply in a specific instance. For most of our examples, the applications are obvious or trivial, but not with C.

Suppose $\mathbf{u} \in C$.
Then, as given by Theorem ZSSM 282,

$$
0 \mathbf{u}=0\left(x_{1}, x_{2}\right)=\left(0 x_{1}+0-1,0 x_{2}+0-1\right)=(-1,-1)=\mathbf{0}
$$

And as given by Theorem ZVSM 282,

$$
\begin{aligned}
\alpha \mathbf{0} & =\alpha(-1,-1)=(\alpha(-1)+\alpha-1, \alpha(-1)+\alpha-1) \\
& =(-\alpha+\alpha-1,-\alpha+\alpha-1)=(-1,-1)=\mathbf{0}
\end{aligned}
$$

Finally, as given by Theorem AISM 283,

$$
(-1) \mathbf{u}=(-1)\left(x_{1}, x_{2}\right)=\left((-1) x_{1}+(-1)-1,(-1) x_{2}+(-1)-1\right)
$$

$$
=\left(-x_{1}-2,-x_{2}-2\right)=-\mathbf{u}
$$

Our next theorem is a bit different from several of the others in the list. Rather than making a declaration ("the zero vector is unique") it is an implication ("if..., then...") and so can be used in proofs to move from one statement to another.

Theorem SMEZV

Scalar Multiplication Equals the Zero Vector

Suppose that V is a vector space and $\alpha \in \mathbb{C}$. If $\alpha \mathbf{u}=\mathbf{0}$, then either $\alpha=0$ or $\mathbf{u}=\mathbf{0}$.
Proof We prove this theorem by breaking up the analysis into two cases. The first seems too trivial, and it is, but the logic of the argument is still legitimate.

Case 1. Suppose $\alpha=0$. In this case our conclusion is true (the first part of the either/or is true) and we are done. That was easy.

Case 2. Suppose $\alpha \neq 0$.

$$
\begin{aligned}
\mathbf{u} & =1 \mathbf{u} & & \text { Property O 276 } \\
& =\left(\frac{1}{\alpha} \alpha\right) \mathbf{u} & & \alpha \neq 0 \\
& =\frac{1}{\alpha}(\alpha \mathbf{u}) & & \text { Property SMA 276 } \\
& =\frac{1}{\alpha}(\mathbf{0}) & & \text { Hypothesis } \\
& =\mathbf{0} & & \text { Theorem ZVSM 282 }
\end{aligned}
$$

So in this case, the conclusion is true (the second part of the either/or is true) and we are done since the conclusion was true in each of the two cases.

The next three theorems give us cancellation properties. The two concerned with scalar multiplication are intimately connected with Theorem SMEZV 284. All three are implications. So we will prove each once, here and now, and then we can apply them at will in the future, saving several steps in a proof whenever we do.

Theorem VAC

Vector Addition Cancellation

Suppose that V is a vector space, and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$. If $\mathbf{w}+\mathbf{u}=\mathbf{w}+\mathbf{v}$, then $\mathbf{u}=\mathbf{v}$.

Proof

$$
\begin{aligned}
\mathbf{u} & =\mathbf{0}+\mathbf{u} & & \text { Property Z } 276 \\
& =(-\mathbf{w}+\mathbf{w})+\mathbf{u} & & \text { Property AI } 276 \\
& =-\mathbf{w}+(\mathbf{w}+\mathbf{u}) & & \text { Property AA } 275 \\
& =-\mathbf{w}+(\mathbf{w}+\mathbf{v}) & & \text { Hypothesis } \\
& =(-\mathbf{w}+\mathbf{w})+\mathbf{v} & & \text { Property AA } 275 \\
& =\mathbf{0}+\mathbf{v} & & \text { Property AI } 276 \\
& =\mathbf{v} & & \text { Property Z } 276
\end{aligned}
$$

Theorem CSSM

Canceling Scalars in Scalar Multiplication

Suppose V is a vector space, $\mathbf{u}, \mathbf{v} \in V$ and α is a nonzero scalar from \mathbb{C}. If $\alpha \mathbf{u}=\alpha \mathbf{v}$, then $\mathbf{u}=\mathbf{v}$.
Proof

$$
\mathbf{u}=1 \mathbf{u}
$$

Property O 276

$$
\begin{array}{ll}
=\left(\frac{1}{\alpha} \alpha\right) \mathbf{u} & \\
=\frac{1}{\alpha}(\alpha \mathbf{u}) & \\
=\frac{1}{\alpha}(\alpha \mathbf{v}) & \\
=\left(\frac{1}{\alpha} \alpha\right) \mathbf{P r o p e r t y ~ S M A ~ 2 7 6 ~} \\
=1 \mathbf{v} & \\
=\mathbf{v} & \\
\hline
\end{array}
$$

Theorem CVSM

Canceling Vectors in Scalar Multiplication

Suppose V is a vector space, $\mathbf{u} \neq \mathbf{0}$ is a vector in V and $\alpha, \beta \in \mathbb{C}$. If $\alpha \mathbf{u}=\beta \mathbf{u}$, then $\alpha=\beta$.

Proof

$$
\begin{aligned}
\mathbf{0} & =\alpha \mathbf{u}+-(\alpha \mathbf{u}) & & \text { Property AI } 276 \\
& =\beta \mathbf{u}+-(\alpha \mathbf{u}) & & \text { Hypothesis } \\
& =\beta \mathbf{u}+(-1)(\alpha \mathbf{u}) & & \text { Theorem AISM } 283 \\
& =\beta \mathbf{u}+((-1) \alpha) \mathbf{u} & & \text { Property SMA } 276 \\
& =\beta \mathbf{u}+(-\alpha) \mathbf{u} & & \\
& =(\beta-\alpha) \mathbf{u} & & \text { Property DSA } 276
\end{aligned}
$$

By hypothesis, $\mathbf{u} \neq \mathbf{0}$, so Theorem SMEZV 284 implies

$$
\begin{aligned}
0 & =\beta-\alpha \\
\alpha & =\beta
\end{aligned}
$$

So with these three theorems in hand, we can return to our practice of "slashing" out parts of an equation, so long as we are careful about not canceling a scalar that might possibly be zero, or canceling a vector in a scalar multiplication that might be the zero vector.

Subsection RD
 Recycling Definitions

When we say that V is a vector space, we then know we have a set of objects (the "vectors"), but we also know we have been provided with two operations ("vector addition" and "scalar multiplication") and these operations behave with these objects according to the ten properties of Definition VS 275. One combines two vectors and produces a vector, the other takes a scalar and a vector, producing a vector as the result. So if $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3} \in V$ then an expression like

$$
5 \mathbf{u}_{1}+7 \mathbf{u}_{2}-13 \mathbf{u}_{3}
$$

would be unambiguous in any of the vector spaces we have discussed in this section. And the resulting object would be another vector in the vector space. If you were tempted to call the above expression a
linear combination, you would be right. Four of the definitions that were central to our discussions in Chapter V [79] were stated in the context of vectors being column vectors, but were purposely kept broad enough that they could be applied in the context of any vector space. They only rely on the presence of scalars, vectors, vector addition and scalar multiplication to make sense. We will restate them shortly, unchanged, except that their titles and acronyms no longer refer to column vectors, and the hypothesis of being in a vector space has been added. Take the time now to look forward and review each one, and begin to form some connections to what we have done earlier and what we will be doing in subsequent sections and chapters. Specifically, compare the following pairs of definitions:

Definition LCCV 87) and Definition LC 294
Definition SSCV 111 and Definition SS 295

| Definition RLDCV | 131 |
| :--- | :--- | :--- | :--- | and Definition RLD 305

Definition LICV 131 and Definition LI 305

Subsection READ

Reading Questions

1. Comment on how the vector space \mathbb{C}^{m} went from a theorem Theorem VSPCV 82) to an example (Example VSCV 277).
2. In the crazy vector space, C, Example CVS 279) compute the linear combination

$$
2(3,4)+(-6)(1,2) .
$$

3. Suppose that α is a scalar and $\mathbf{0}$ is the zero vector. Why should we prove anything as obvious as $\alpha \mathbf{0}=\mathbf{0}$ such as we did in Theorem ZVSM 282]?

Subsection EXC
 Exercises

T10 Prove each of the ten properties of Definition VS 275 for each of the following examples of a vector space:
Example VSP 277
Example VSIS 278
Example VSF 278
Example VSS 279
Contributed by Robert Beezer
M10 Define a possibly new vector space by beginning with the set and vector addition from \mathbb{C}^{2} Example VSCV 277]) but change the definition of scalar multiplication to

$$
\alpha \mathbf{x}=\mathbf{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \alpha \in \mathbb{C}, \mathbf{x} \in \mathbb{C}^{2}
$$

Prove that the first nine properties required for a vector space hold, but Property O [276] does not hold.
This example shows us that we cannot expect to be able to derive Property O 276 as a consequence of assuming the first nine properties. In other words, we cannot slim down our list of properties by jettisoning the last one, and still have the same collection of objects qualify as vector spaces.
Contributed by Robert Beezer

Section S
 Subspaces

A subspace is a vector space that is contained within another vector space. So every subspace is a vector space in its own right, but it is also defined relative to some other (larger) vector space. We will discover shortly that we are already familiar with a wide variety of subspaces from previous sections. Here's the definition.

Definition S

Subspace

Suppose that V and W are two vector spaces that have identical definitions of vector addition and scalar multiplication, and that W is a subset of $V, W \subseteq V$. Then W is a subspace of V.

Lets look at an example of a vector space inside another vector space.

Example SC3

A subspace of \mathbb{C}^{3}
We know that \mathbb{C}^{3} is a vector space Example VSCV 277). Consider the subset,

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, 2 x_{1}-5 x_{2}+7 x_{3}=0\right\}
$$

It is clear that $W \subseteq \mathbb{C}^{3}$, since the objects in W are column vectors of size 3 . But is W a vector space? Does it satisfy the ten properties of Definition VS 275 when we use the same operations? That is the main question. Suppose $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$ are vectors from W. Then we know that these vectors cannot be totally arbitrary, they must have gained membership in W by virtue of meeting the membership test. For example, we know that \mathbf{x} must satisfy $2 x_{1}-5 x_{2}+7 x_{3}=0$ while \mathbf{y} must satisfy $2 y_{1}-5 y_{2}+7 y_{3}=0$. Our first property Property AC 275) asks the question, is $\mathbf{x}+\mathbf{y} \in W$? When our set of vectors was \mathbb{C}^{3}, this was an easy question to answer. Now it is not so obvious. Notice first that

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]
$$

and we can test this vector for membership in W as follows,

$$
\begin{array}{rlrl}
2\left(x_{1}+y_{1}\right)-5\left(x_{2}+y_{2}\right)+7\left(x_{3}+y_{3}\right) & =2 x_{1}+2 y_{1}-5 x_{2}-5 y_{2}+7 x_{3}+7 y_{3} & \\
& =\left(2 x_{1}-5 x_{2}+7 x_{3}\right)+\left(2 y_{1}-5 y_{2}+7 y_{3}\right) & & \\
& =0+0 & \mathbf{x} \in W, \mathbf{y} \in W \\
& =0 &
\end{array}
$$

and by this computation we see that $\mathbf{x}+\mathbf{y} \in W$. One property down, nine to go.
If α is a scalar and $\mathbf{x} \in W$, is it always true that $\alpha \mathbf{x} \in W$? This is what we need to establish Property SC 275 . Again, the answer is not as obvious as it was when our set of vectors was all of \mathbb{C}^{3}. Let's see.

$$
\alpha \mathbf{x}=\alpha\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\alpha x_{1} \\
\alpha x_{2} \\
\alpha x_{3}
\end{array}\right]
$$

and we can test this vector for membership in W with

$$
\begin{array}{rlr}
2\left(\alpha x_{1}\right)-5\left(\alpha x_{2}\right)+7\left(\alpha x_{3}\right) & =\alpha\left(2 x_{1}-5 x_{2}+7 x_{3}\right) & \\
& =\alpha 0 & \mathbf{x} \in W \\
& =0 &
\end{array}
$$

and we see that indeed $\alpha \mathbf{x} \in W$. Always.
If W has a zero vector, it will be unique Theorem ZVU 281). The zero vector for \mathbb{C}^{3} should also perform the required duties when added to elements of W. So the likely candidate for a zero vector in W is the same zero vector that we know \mathbb{C}^{3} has. You can check that $\mathbf{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is a zero vector in W too (Property Z 276).

With a zero vector, we can now ask about additive inverses (Property AI 276). As you might suspect, the natural candidate for an additive inverse in W is the same as the additive inverse from \mathbb{C}^{3}. However, we must insure that these additive inverses actually are elements of W. Given $\mathbf{x} \in W$, is $-\mathbf{x} \in W$?

$$
-\mathbf{x}=\left[\begin{array}{l}
-x_{1} \\
-x_{2} \\
-x_{3}
\end{array}\right]
$$

and we can test this vector for membership in W with

$$
\begin{array}{rlr}
2\left(-x_{1}\right)-5\left(-x_{2}\right)+7\left(-x_{3}\right) & =-\left(2 x_{1}-5 x_{2}+7 x_{3}\right) & \\
& =-0 & \mathbf{x} \in W \\
& =0 &
\end{array}
$$

and we now believe that $-\mathrm{x} \in W$.
Is the vector addition in W commutative Property C 275)? Is $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$? Of course! Nothing about restricting the scope of our set of vectors will prevent the operation from still being commutative. Indeed, the remaining five properties are unaffected by the transition to a smaller set of vectors, and so remain true. That was convenient.

So W satisfies all ten properties, is therefore a vector space, and thus earns the title of being a subspace of \mathbb{C}^{3}.

Subsection TS

 Testing SubspacesIn Example SC3 289 we proceeded through all ten of the vector space properties before believing that a subset was a subspace. But six of the properties were easy to prove, and we can lean on some of the properties of the vector space (the superset) to make the other four easier. Here is a theorem that will make it easier to test if a subset is a vector space. A shortcut if there ever was one.

Theorem TSS

Testing Subsets for Subspaces

Suppose that V is a vector space and W is a subset of $V, W \subseteq V$. Endow W with the same operations as V. Then W is a subspace if and only if three conditions are met

1. W is non-empty, $W \neq \emptyset$.
2. If $\mathbf{x} \in W$ and $\mathbf{y} \in W$, then $\mathbf{x}+\mathbf{y} \in W$.
3. If $\alpha \in \mathbb{C}$ and $\mathbf{x} \in W$, then $\alpha \mathbf{x} \in W$.

Proof (\Rightarrow) We have the hypothesis that W is a subspace, so by Definition VS 275 we know that W contains a zero vector. This is enough to show that $W \neq \emptyset$. Also, since W is a vector space it satisfies the additive and scalar multiplication closure properties, and so exactly meets the second and third conditions. If that was easy, the the other direction might require a bit more work.
(\Leftarrow) We have three properties for our hypothesis, and from this we should conclude that W has the ten defining properties of a vector space. The second and third conditions of our hypothesis are exactly Property AC 275 and Property SC 275. Our hypothesis that V is a vector space implies that Property C [275, Property AA 275 , Property SMA 276, Property DVA 276, Property DSA 276 and Property O 276 all hold. They continue to be true for vectors from W since passing to a subset, and keeping the operation the same, leaves their statements unchanged. Eight down, two to go.

Suppose $\mathbf{x} \in W$. Then by the third part of our hypothesis (scalar closure), we know that $(-1) \mathbf{x} \in W$. By Theorem AISM 283 (-1$) \mathbf{x}=-\mathbf{x}$, so together these statements show us that $-\mathbf{x} \in W$. $-\mathbf{x}$ is the additive inverse of \mathbf{x} in V, but will continue in this role when viewed as element of the subset W. So every element of W has an additive inverse that is an element of W and Property AI 276 is completed. Just one property left.

While we have implicitly discussed the sero vector in the previous paragraph, we need to be certain that the zero vector (of V) really lives in W. Since W is non-empty, we can choose some vector $\mathbf{z} \in W$. Then by the argument in the previous paragraph, we know $-\mathbf{z} \in W$. Now by Property AI 276 for V and then by the second part of our hypothesis (additive closure) we see that

$$
\mathbf{0}=\mathbf{z}+(-\mathbf{z}) \in W
$$

So W contain the zero vector from V. Since this vector performs the required duties of a zero vector in V, it will continue in that role as an element of W. This gives us, Property Z 276, the final property of the ten required. (Sarah Fellez contributed to this proof.)

Three conditions, plus being a subset of a known vector space, gets us all ten properties. Fabulous!
This theorem can be paraphrased by saying that a subspace is "a non-empty subset (of a vector space) that is closed under vector addition and scalar multiplication."

You might want to go back and rework Example SC3 289 in light of this result, perhaps seeing where we can now economize or where the work done in the example mirrored the proof and where it did not. We will press on and apply this theorem in a slightly more abstract setting.

Example SP4

A subspace of P_{4}

P_{4} is the vector space of polynomials with degree at most 4 (Example VSP 277). Define a subset W as

$$
W=\left\{p(x) \mid p \in P_{4}, p(2)=0\right\}
$$

so W is the collection of those polynomials (with degree 4 or less) whose graphs cross the x-axis at $x=2$. Whenever we encounter a new set it is a good idea to gain a better understanding of the set by finding a few elements in the set, and a few outside it. For example $x^{2}-x-2 \in W$, while $x^{4}+x^{3}-7 \notin W$.

Is W nonempty? Yes, $x-2 \in W$.
Additive closure? Suppose $p \in W$ and $q \in W$. Is $p+q \in W ? p$ and q are not totally arbitrary, we know that $p(2)=0$ and $q(2)=0$. Then we can check $p+q$ for membership in W,

$$
\begin{aligned}
(p+q)(2) & =p(2)+q(2) & & \text { Addition in } P_{4} \\
& =0+0 & & p \in W, q \in W \\
& =0 & &
\end{aligned}
$$

so we see that $p+q$ qualifies for membership in W.
Scalar multiplication closure? Suppose that $\alpha \in \mathbb{C}$ and $p \in W$. Then we know that $p(2)=0$. Testing αp for membership,

$$
\begin{aligned}
(\alpha p)(2) & =\alpha p(2) & & \text { Scalar multiplication in } P_{4} \\
& =\alpha 0 & & p \in W \\
& =0 & &
\end{aligned}
$$

so $\alpha p \in W$.
We have shown that W meets the three conditions of Theorem TSS 290 and so qualifies as a subspace of P_{4}. Notice that by Definition S 289 we now know that W is also a vector space. So all the properties of a vector space Definition VS 275) and the theorems of Section VS 275 apply in full.

Much of the power of Theorem TSS 290 is that we can easily establish new vector spaces if we can locate them as subsets of other vector spaces, such as the ones presented in Subsection VS.EVS 276 .

It can be as instructive to consider some subsets that are not subspaces. Since Theorem TSS 290 is an equivalence (see Technique E 676) we can be assured that a subset is not a subspace if it violates one of the three conditions, and in any example of interest this will not be the "non-empty" condition. However, since a subspace has to be a vector space in its own right, we can also search for a violation of any one of the ten defining properties in Definition VS 275 or any inherent property of a vector space, such as those given by the basic theorems of Subsection VS.VSP 281. Notice also that a violation need only be for a specific vector or pair of vectors.

Example NSC2Z

A non-subspace in \mathbb{C}^{2}, zero vector
Consider the subset W below as a candidate for being a subspace of \mathbb{C}^{2}

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, 3 x_{1}-5 x_{2}=12\right\}
$$

The zero vector of $\mathbb{C}^{2}, \mathbf{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ will need to be the zero vector in W also. However, $\mathbf{0} \notin W$ since $3(0)-5(0)=0 \neq 12$. So W has no zero vector and fails Property Z 276 of Definition VS 275. This subspace also fails to be closed under addition and scalar multiplication. Can you find examples of this? \boxtimes

Example NSC2A

A non-subspace in \mathbb{C}^{2}, additive closure
Consider the subset X below as a candidate for being a subspace of \mathbb{C}^{2}

$$
X=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1} x_{2}=0\right\}
$$

You can check that $\mathbf{0} \in X$, so the approach of the last example will not get us anywhere. However, notice that $\mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \in X$ and $\mathbf{y}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \in X$. Yet

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \notin X
$$

So X fails the additive closure requirement of either Property AC 275 or Theorem TSS 290, and is therefore not a subspace.

Example NSC2S

A non-subspace in \mathbb{C}^{2}, scalar multiplication closure

Consider the subset Y below as a candidate for being a subspace of \mathbb{C}^{2}

$$
Y=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1} \in \mathbb{Z}, x_{2} \in \mathbb{Z}\right\}
$$

\mathbb{Z} is the set of integers, so we are only allowing "whole numbers" as the constituents of our vectors. Now, $\mathbf{0} \in Y$, and additive closure also holds (can you prove these claims?). So we will have to try something different. Note that $\alpha=\frac{1}{2} \in \mathbb{C}$ and $\left[\begin{array}{l}2 \\ 3\end{array}\right] \in Y$, but

$$
\alpha \mathbf{x}=\frac{1}{2}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
\frac{3}{2}
\end{array}\right] \notin Y
$$

So Y fails the scalar multiplication closure requirement of either Property SC 275 or Theorem TSS 290, and is therefore not a subspace.

There are two examples of subspaces that are trivial. Suppose that V is any vector space. Then V is a subset of itself and is a vector space. By Definition S 289, V qualifies as a subspace of itself. The set containing just the zero vector $Z=\{\mathbf{0}\}$ is also a subspace as can be seen by applying Theorem TSS 290 or by simple modifications of the techniques hinted at in Example VSS 279. Since these subspaces are so obvious (and therefore not too interesting) we will refer to them as being trivial.

Definition TS

Trivial Subspaces

Given the vector space V, the subspaces V and $\{0\}$ are each called a trivial subspace.
We can also use Theorem TSS 290 to prove more general statements about subspaces, as illustrated in the next theorem.

Theorem NSMS

Null Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then the null space of $A, \mathcal{N}(A)$, is a subspace of \mathbb{C}^{n}.
Proof We will examine the three requirements of Theorem TSS 290. Recall that $\mathcal{N}(A)=\left\{\mathbf{x} \in \mathbb{C}^{n} \mid A \mathbf{x}=\mathbf{0}\right\}$.
First, $\mathbf{0} \in \mathcal{N}(A)$, which can be inferred as a consequence of Theorem HSC [57. So $\mathcal{N}(A) \neq \emptyset$.
Second, check additive closure by supposing that $\mathrm{x} \in \mathcal{N}(A)$ and $\mathbf{y} \in \mathcal{N}(A)$. So we know a little something about \mathbf{x} and $\mathbf{y}: A \mathbf{x}=\mathbf{0}$ and $A \mathbf{y}=\mathbf{0}$, and that is all we know. Question: Is $\mathbf{x}+\mathbf{y} \in \mathcal{N}(A)$? Let's check.

$$
\begin{aligned}
A(\mathbf{x}+\mathbf{y}) & =A \mathbf{x}+A \mathbf{y} & & \text { Theorem MMDAA } 196 \\
& =\mathbf{0}+\mathbf{0} & & \mathbf{x} \in \mathcal{N}(A), \mathbf{y} \in \mathcal{N}(A) \\
& =\mathbf{0} & & \text { Theorem VSPCV } 82
\end{aligned}
$$

So, yes, $\mathbf{x}+\mathbf{y}$ qualifies for membership in $\mathcal{N}(A)$.
Third, check scalar multiplication closure by supposing that $\alpha \in \mathbb{C}$ and $\mathbf{x} \in \mathcal{N}(A)$. So we know a little something about $\mathbf{x}: A \mathbf{x}=\mathbf{0}$, and that is all we know. Question: Is $\alpha \mathbf{x} \in \mathcal{N}(A)$? Let's check.

$$
\begin{aligned}
A(\alpha \mathbf{x}) & =\alpha(A \mathbf{x}) \\
& =\alpha \mathbf{0} \\
& =\mathbf{0}
\end{aligned}
$$

Theorem MMSMM 196
$\mathbf{x} \in \mathcal{N}(A)$
Theorem ZVSM 282

So, yes, $\alpha \mathbf{x}$ qualifies for membership in $\mathcal{N}(A)$.
Having met the three conditions in Theorem TSS 290 we can now say that the null space of a matrix is a subspace (and hence a vector space in its own right!).

Here is an example where we can exercise Theorem NSMS 293.

Example RSNS

Recasting a subspace as a null space

Consider the subset of \mathbb{C}^{5} defined as

$$
\left.W=\left\{\begin{array}{l|l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right] \left\lvert\, \begin{array}{l}
3 x_{1}+x_{2}-5 x_{3}+7 x_{4}+x_{5}=0, \\
4 x_{1}+6 x_{2}+3 x_{3}-6 x_{4}-5 x_{5}=0, \\
-2 x_{1}+4 x_{2}+7 x_{4}+x_{5}=0
\end{array}\right.\right\}
$$

It is possible to show that W is a subspace of \mathbb{C}^{5} by checking the three conditions of Theorem TSS 290 directly, but it will get tedious rather quickly. Instead, give W a fresh look and notice that it is a set of solutions to a homogeneous system of equations. Define the matrix

$$
A=\left[\begin{array}{ccccc}
3 & 1 & -5 & 7 & 1 \\
4 & 6 & 3 & -6 & -5 \\
-2 & 4 & 0 & 7 & 1
\end{array}\right]
$$

and then recognize that $W=\mathcal{N}(A)$. By Theorem NSMS 293 we can immediately see that W is a subspace. Boom!

Subsection TSS

The Span of a Set

The span of a set of column vectors got a heavy workout in Chapter V 79 and Chapter M 177. The definition of the span depended only on being able to formulate linear combinations. In any of our more general vector spaces we always have a definition of vector addition and of scalar multiplication. So we can build linear combinations and manufacture spans. This subsection contains two definitions that are just mild variants of definitions we have seen earlier for column vectors. If you haven't already, compare them with Definition LCCV 87 and Definition SSCV 111.

Definition LC

Linear Combination

Suppose that V is a vector space. Given n vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}$ and n scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$, their linear combination is the vector

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n} .
$$

Example LCM

A linear combination of matrices

In the vector space M_{23} of 2×3 matrices, we have the vectors

$$
\mathbf{x}=\left[\begin{array}{ccc}
1 & 3 & -2 \\
2 & 0 & 7
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{ccc}
3 & -1 & 2 \\
5 & 5 & 1
\end{array}\right] \quad \mathbf{z}=\left[\begin{array}{ccc}
4 & 2 & -4 \\
1 & 1 & 1
\end{array}\right]
$$

and we can form linear combinations such as

$$
\begin{aligned}
2 \mathbf{x}+4 \mathbf{y}+(-1) \mathbf{z} & =2\left[\begin{array}{ccc}
1 & 3 & -2 \\
2 & 0 & 7
\end{array}\right]+4\left[\begin{array}{ccc}
3 & -1 & 2 \\
5 & 5 & 1
\end{array}\right]+(-1)\left[\begin{array}{ccc}
4 & 2 & -4 \\
1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 & 6 & -4 \\
4 & 0 & 14
\end{array}\right]+\left[\begin{array}{ccc}
12 & -4 & 8 \\
20 & 20 & 4
\end{array}\right]+\left[\begin{array}{ccc}
-4 & -2 & 4 \\
-1 & -1 & -1
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
10 & 0 & 8 \\
23 & 19 & 17
\end{array}\right]
$$

or,

$$
\begin{aligned}
4 \mathbf{x}-2 \mathbf{y}+3 \mathbf{z} & =4\left[\begin{array}{ccc}
1 & 3 & -2 \\
2 & 0 & 7
\end{array}\right]-2\left[\begin{array}{ccc}
3 & -1 & 2 \\
5 & 5 & 1
\end{array}\right]+3\left[\begin{array}{ccc}
4 & 2 & -4 \\
1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 12 & -8 \\
8 & 0 & 28
\end{array}\right]+\left[\begin{array}{ccc}
-6 & 2 & -4 \\
-10 & -10 & -2
\end{array}\right]+\left[\begin{array}{ccc}
12 & 6 & -12 \\
3 & 3 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
10 & 20 & -24 \\
1 & -7 & 29
\end{array}\right]
\end{aligned}
$$

When we realize that we can form linear combinations in any vector space, then it is natural to revisit our definition of the span of a set, since it is the set of all possible linear combinations of a set of vectors.

Definition SS

Span of a Set
Suppose that V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$, their span, $\langle S\rangle$, is the set of all possible linear combinations of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}$. Symbolically,

$$
\begin{aligned}
\langle S\rangle & =\left\{\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\} \\
& =\left\{\sum_{i=1}^{t} \alpha_{i} \mathbf{u}_{i} \mid \alpha_{i} \in \mathbb{C}, 1 \leq i \leq t\right\}
\end{aligned}
$$

Theorem SSS

Span of a Set is a Subspace

Suppose V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\} \subseteq V$, their span, $\langle S\rangle$, is a subspace.
Proof We will verify the three conditions of Theorem TSS 290. First,

$$
\begin{array}{rlrl}
\mathbf{0} & =\mathbf{0}+\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0} & & \text { Property Z 276 for } V \\
& =0 \mathbf{u}_{1}+0 \mathbf{u}_{2}+0 \mathbf{u}_{3}+\cdots+0 \mathbf{u}_{t} & & \text { Theorem ZSSM } 282 \\
\hline
\end{array}
$$

So we have written $\mathbf{0}$ as a linear combination of the vectors in S and by Definition SS 295, $\mathbf{0} \in\langle S\rangle$ and therefore $S \neq \emptyset$.

Second, suppose $\mathbf{x} \in\langle S\rangle$ and $\mathbf{y} \in\langle S\rangle$. Can we conclude that $\mathbf{x}+\mathbf{y} \in\langle S\rangle$? What do we know about \mathbf{x} and \mathbf{y} by virtue of their membership in $\langle S\rangle$? There must be scalars from $\mathbb{C}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{t}$ and $\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{t}$ so that

$$
\begin{aligned}
& \mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t} \\
& \mathbf{y}=\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\beta_{3} \mathbf{u}_{3}+\cdots+\beta_{t} \mathbf{u}_{t}
\end{aligned}
$$

Then

$$
\begin{gathered}
\mathbf{x}+\mathbf{y}=\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t} \\
\quad+\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\beta_{3} \mathbf{u}_{3}+\cdots+\beta_{t} \mathbf{u}_{t} \\
=\alpha_{1} \mathbf{u}_{1}+\beta_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\beta_{2} \mathbf{u}_{2}
\end{gathered}
$$

$$
\begin{array}{cl}
\quad+\alpha_{3} \mathbf{u}_{3}+\beta_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t}+\beta_{t} \mathbf{u}_{t} & \text { Property AA 275, Property C } 275 \\
=\left(\alpha_{1}+\beta_{1}\right) \mathbf{u}_{1}+\left(\alpha_{2}+\beta_{2}\right) \mathbf{u}_{2} & \\
\quad+\left(\alpha_{3}+\beta_{3}\right) \mathbf{u}_{3}+\cdots+\left(\alpha_{t}+\beta_{t}\right) \mathbf{u}_{t} & \text { Property DSA 276 }
\end{array}
$$

Since each $\alpha_{i}+\beta_{i}$ is again a scalar from \mathbb{C} we have expressed the vector sum $\mathbf{x}+\mathbf{y}$ as a linear combination of the vectors from S, and therefore by Definition SS 295 we can say that $\mathbf{x}+\mathbf{y} \in\langle S\rangle$.

Third, suppose $\alpha \in \mathbb{C}$ and $\mathbf{x} \in\langle S\rangle$. Can we conclude that $\alpha \mathbf{x} \in\langle S\rangle$? What do we know about \mathbf{x} by virtue of its membership in $\langle S\rangle$? There must be scalars from $\mathbb{C}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{t}$ so that

$$
\mathbf{x}=\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t}
$$

Then

$$
\begin{aligned}
\alpha \mathbf{x} & =\alpha\left(\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{t} \mathbf{u}_{t}\right) \\
& =\alpha\left(\alpha_{1} \mathbf{u}_{1}\right)+\alpha\left(\alpha_{2} \mathbf{u}_{2}\right)+\alpha\left(\alpha_{3} \mathbf{u}_{3}\right)+\cdots+\alpha\left(\alpha_{t} \mathbf{u}_{t}\right) \\
& =\left(\alpha \alpha_{1}\right) \mathbf{u}_{1}+\left(\alpha \alpha_{2}\right) \mathbf{u}_{2}+\left(\alpha \alpha_{3}\right) \mathbf{u}_{3}+\cdots+\left(\alpha \alpha_{t}\right) \mathbf{u}_{t}
\end{aligned}
$$

$$
=\alpha\left(\alpha_{1} \mathbf{u}_{1}\right)+\alpha\left(\alpha_{2} \mathbf{u}_{2}\right)+\alpha\left(\alpha_{3} \mathbf{u}_{3}\right)+\cdots+\alpha\left(\alpha_{t} \mathbf{u}_{t}\right) \quad \text { Property DVA } 276
$$

Property SMA 276

Since each $\alpha \alpha_{i}$ is again a scalar from \mathbb{C} we have expressed the scalar multiple $\alpha \mathbf{x}$ as a linear combination of the vectors from S, and therefore by Definition SS 295 we can say that $\alpha \mathbf{x} \in\langle S\rangle$.

With the three conditions of Theorem TSS [290] met, we can say that $\langle S\rangle$ is a subspace (and so is also vector space, Definition VS 275). (See Exercise SS.T20 124 , Exercise SS.T21 124 , Exercise SS.T22 124.)

Example SSP

Span of a set of polynomials
In Example SP4 291 we proved that

$$
W=\left\{p(x) \mid p \in P_{4}, p(2)=0\right\}
$$

is a subspace of P_{4}, the vector space of polynomials of degree at most 4 . Since W is a vector space itself, let's construct a span within W. First let

$$
S=\left\{x^{4}-4 x^{3}+5 x^{2}-x-2,2 x^{4}-3 x^{3}-6 x^{2}+6 x+4\right\}
$$

and verify that S is a subset of W by checking that each of these two polynomials has $x=2$ as a root. Now, if we define $U=\langle S\rangle$, then Theorem SSS 295 tells us that U is a subspace of W. So quite quickly we have built a chain of subspaces, U inside W, and W inside P_{4}.

Rather than dwell on how quickly we can build subspaces, let's try to gain a better understanding of just how the span construction creates subspaces, in the context of this example. We can quickly build representative elements of U,

$$
3\left(x^{4}-4 x^{3}+5 x^{2}-x-2\right)+5\left(2 x^{4}-3 x^{3}-6 x^{2}+6 x+4\right)=13 x^{4}-27 x^{3}-15 x^{2}+27 x+14
$$

and

$$
(-2)\left(x^{4}-4 x^{3}+5 x^{2}-x-2\right)+8\left(2 x^{4}-3 x^{3}-6 x^{2}+6 x+4\right)=14 x^{4}-16 x^{3}-58 x^{2}+50 x+36
$$

and each of these polynomials must be in W since it is closed under addition and scalar multiplication. But you might check for yourself that both of these polynomials have $x=2$ as a root.

I can tell you that $\mathbf{y}=3 x^{4}-7 x^{3}-x^{2}+7 x-2$ is not in U, but would you believe me? A first check shows that \mathbf{y} does have $x=2$ as a root, but that only shows that $\mathbf{y} \in W$. What does \mathbf{y} have to do to gain
membership in $U=\langle S\rangle$? It must be a linear combination of the vectors in $S, x^{4}-4 x^{3}+5 x^{2}-x-2$ and $2 x^{4}-3 x^{3}-6 x^{2}+6 x+4$. So let's suppose that \mathbf{y} is such a linear combination,

$$
\begin{aligned}
\mathbf{y} & =3 x^{4}-7 x^{3}-x^{2}+7 x-2 \\
& =\alpha_{1}\left(x^{4}-4 x^{3}+5 x^{2}-x-2\right)+\alpha_{2}\left(2 x^{4}-3 x^{3}-6 x^{2}+6 x+4\right) \\
& =\left(\alpha_{1}+2 \alpha_{2}\right) x^{4}+\left(-4 \alpha_{1}-3 \alpha_{2}\right) x^{3}+\left(5 \alpha_{1}-6 \alpha_{2}\right) x^{2}+\left(-\alpha_{1}+6 \alpha_{2}\right) x-\left(-2 \alpha_{1}+4 \alpha_{2}\right)
\end{aligned}
$$

Notice that operations above are done in accordance with the definition of the vector space of polynomials (Example VSP 277). Now, if we equate coefficients, which is the definition of equality for polynomials, then we obtain the system of five linear equations in two variables

$$
\begin{aligned}
\alpha_{1}+2 \alpha_{2} & =3 \\
-4 \alpha_{1}-3 \alpha_{2} & =-7 \\
5 \alpha_{1}-6 \alpha_{2} & =-1 \\
-\alpha_{1}+6 \alpha_{2} & =7 \\
-2 \alpha_{1}+4 \alpha_{2} & =-2
\end{aligned}
$$

Build an augmented matrix from the system and row-reduce,

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & -3 & -7 \\
5 & -6 & -1 \\
-1 & 6 & 7 \\
-2 & 4 & -2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
\hline 1 & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & \boxed{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

With a leading 1 in the final column of the row-reduced augmented matrix, Theorem RCLS 50 tells us the system of equations is inconsistent. Therefore, there are no scalars, α_{1} and α_{2}, to establish \mathbf{y} as a linear combination of the elements in U. So $\mathbf{y} \notin U$.

Let's again examine membership in a span.

Example SM32

A subspace of M_{32}

The set of all 3×2 matrices forms a vector space when we use the operations of matrix addition Definition MA 177) and scalar matrix multiplication (Definition MSM 178), as was show in Example VSM 277. Consider the subset

$$
S=\left\{\left[\begin{array}{cc}
3 & 1 \\
4 & 2 \\
5 & -5
\end{array}\right],\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
14 & -1
\end{array}\right],\left[\begin{array}{cc}
3 & -1 \\
-1 & 2 \\
-19 & -11
\end{array}\right],\left[\begin{array}{cc}
4 & 2 \\
1 & -2 \\
14 & -2
\end{array}\right],\left[\begin{array}{cc}
3 & 1 \\
-4 & 0 \\
-17 & 7
\end{array}\right]\right\}
$$

and define a new subset of vectors W in M_{32} using the span (Definition SS 295), $W=\langle S\rangle$. So by Theorem SSS 295 we know that W is a subspace of M_{32}. While W is an infinite set, and this is a precise description, it would still be worthwhile to investigate whether or not W contains certain elements.

First, is

$$
\mathbf{y}=\left[\begin{array}{cc}
9 & 3 \\
7 & 3 \\
10 & -11
\end{array}\right]
$$

in W ? To answer this, we want to determine if \mathbf{y} can be written as a linear combination of the five matrices in S. Can we find scalars, $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ so that

$$
\left[\begin{array}{cc}
9 & 3 \\
7 & 3 \\
10 & -11
\end{array}\right]=\alpha_{1}\left[\begin{array}{cc}
3 & 1 \\
4 & 2 \\
5 & -5
\end{array}\right]+\alpha_{2}\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
14 & -1
\end{array}\right]+\alpha_{3}\left[\begin{array}{cc}
3 & -1 \\
-1 & 2 \\
-19 & -11
\end{array}\right]+\alpha_{4}\left[\begin{array}{cc}
4 & 2 \\
1 & -2 \\
14 & -2
\end{array}\right]+\alpha_{5}\left[\begin{array}{cc}
3 & 1 \\
-4 & 0 \\
-17 & 7
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
3 \alpha_{1}+\alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5} & \alpha_{1}+\alpha_{2}-\alpha_{3}+2 \alpha_{4}+\alpha_{5} \\
4 \alpha_{1}+2 \alpha_{2}-\alpha_{3}+\alpha_{4}-4 \alpha_{5} & 2 \alpha_{1}-\alpha_{2}+2 \alpha_{3}-2 \alpha_{4} \\
5 \alpha_{1}+14 \alpha_{2}-19 \alpha_{3}+14 \alpha_{4}-17 \alpha_{5} & -5 \alpha_{1}-\alpha_{2}-11 \alpha_{3}-2 \alpha_{4}+7 \alpha_{5}
\end{array}\right]
$$

Using our definition of matrix equality (Definition ME (177) we can translate this statement into six equations in the five unknowns,

$$
\begin{aligned}
3 \alpha_{1}+\alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5} & =9 \\
\alpha_{1}+\alpha_{2}-\alpha_{3}+2 \alpha_{4}+\alpha_{5} & =3 \\
4 \alpha_{1}+2 \alpha_{2}-\alpha_{3}+\alpha_{4}-4 \alpha_{5} & =7 \\
2 \alpha_{1}-\alpha_{2}+2 \alpha_{3}-2 \alpha_{4} & =3 \\
5 \alpha_{1}+14 \alpha_{2}-19 \alpha_{3}+14 \alpha_{4}-17 \alpha_{5} & =10 \\
-5 \alpha_{1}-\alpha_{2}-11 \alpha_{3}-2 \alpha_{4}+7 \alpha_{5} & =-11
\end{aligned}
$$

This is a linear system of equations, which we can represent with an augmented matrix and row-reduce in search of solutions. The matrix that is row-equivalent to the augmented matrix is

$$
\left[\begin{array}{cccccc}
\hline 1 & 0 & 0 & 0 & \frac{5}{8} & 2 \\
0 & \boxed{1} & 0 & 0 & \frac{-19}{4} & -1 \\
0 & 0 & \boxed{1} & 0 & \frac{-7}{8} & 0 \\
0 & 0 & 0 & 1 & \frac{17}{8} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So we recognize that the system is consistent since there is no leading 1 in the final column Theorem RCLS (50), and compute $n-r=5-4=1$ free variables (Theorem FVCS 51). While there are infinitely many solutions, we are only in pursuit of a single solution, so let's choose the free variable $\alpha_{5}=0$ for simplicity's sake. Then we easily see that $\alpha_{1}=2, \alpha_{2}=-1, \alpha_{3}=0, \alpha_{4}=1$. So the scalars $\alpha_{1}=2, \alpha_{2}=-1, \alpha_{3}=0$, $\alpha_{4}=1, \alpha_{5}=0$ will provide a linear combination of the elements of S that equals \mathbf{y}, as we can verify by checking,

$$
\left[\begin{array}{cc}
9 & 3 \\
7 & 3 \\
10 & -11
\end{array}\right]=2\left[\begin{array}{cc}
3 & 1 \\
4 & 2 \\
5 & -5
\end{array}\right]+(-1)\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
14 & -1
\end{array}\right]+(1)\left[\begin{array}{cc}
4 & 2 \\
1 & -2 \\
14 & -2
\end{array}\right]
$$

So with one particular linear combination in hand, we are convinced that \mathbf{y} deserves to be a member of $W=\langle S\rangle$. Second, is

$$
\mathbf{x}=\left[\begin{array}{cc}
2 & 1 \\
3 & 1 \\
4 & -2
\end{array}\right]
$$

in W ? To answer this, we want to determine if \mathbf{x} can be written as a linear combination of the five matrices in S. Can we find scalars, $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ so that

$$
\begin{aligned}
{\left[\begin{array}{cc}
2 & 1 \\
3 & 1 \\
4 & -2
\end{array}\right] } & =\alpha_{1}\left[\begin{array}{cc}
3 & 1 \\
4 & 2 \\
5 & -5
\end{array}\right]+\alpha_{2}\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
14 & -1
\end{array}\right]+\alpha_{3}\left[\begin{array}{cc}
3 & -1 \\
-1 & 2 \\
-19 & -11
\end{array}\right]+\alpha_{4}\left[\begin{array}{cc}
4 & 2 \\
1 & -2 \\
14 & -2
\end{array}\right]+\alpha_{5}\left[\begin{array}{cc}
3 & 1 \\
-4 & 0 \\
-17 & 7
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 \alpha_{1}+\alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5} & \alpha_{1}+\alpha_{2}-\alpha_{3}+2 \alpha_{4}+\alpha_{5} \\
4 \alpha_{1}+2 \alpha_{2}-\alpha_{3}+\alpha_{4}-4 \alpha_{5} & 2 \alpha_{1}-\alpha_{2}+2 \alpha_{3}-2 \alpha_{4} \\
5 \alpha_{1}+14 \alpha_{2}-19 \alpha_{3}+14 \alpha_{4}-17 \alpha_{5} & -5 \alpha_{1}-\alpha_{2}-11 \alpha_{3}-2 \alpha_{4}+7 \alpha_{5}
\end{array}\right]
\end{aligned}
$$

Using our definition of matrix equality (Definition ME (177) we can translate this statement into six equations in the five unknowns,

$$
\begin{aligned}
3 \alpha_{1}+\alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5} & =2 \\
\alpha_{1}+\alpha_{2}-\alpha_{3}+2 \alpha_{4}+\alpha_{5} & =1 \\
4 \alpha_{1}+2 \alpha_{2}-\alpha_{3}+\alpha_{4}-4 \alpha_{5} & =3 \\
2 \alpha_{1}-\alpha_{2}+2 \alpha_{3}-2 \alpha_{4} & =1 \\
5 \alpha_{1}+14 \alpha_{2}-19 \alpha_{3}+14 \alpha_{4}-17 \alpha_{5} & =4 \\
-5 \alpha_{1}-\alpha_{2}-11 \alpha_{3}-2 \alpha_{4}+7 \alpha_{5} & =-2
\end{aligned}
$$

This is a linear system of equations, which we can represent with an augmented matrix and row-reduce in search of solutions. The matrix that is row-equivalent to the augmented matrix is

$$
\left[\begin{array}{cccccc}
{[1} & 0 & 0 & 0 & \frac{5}{8} & 0 \\
0 & \boxed{1} & 0 & 0 & -\frac{38}{8} & 0 \\
0 & 0 & \boxed{1} & 0 & -\frac{7}{8} & 0 \\
0 & 0 & 0 & \boxed{1} & -\frac{17}{8} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

With a leading 1 in the last column Theorem RCLS 50 tells us that the system is inconsistent. Therefore, there are no values for the scalars that will place \mathbf{x} in W, and so we conclude that $\mathbf{x} \notin W$.

Notice how Example SSP 296 and Example SM32 297 contained questions about membership in a span, but these questions quickly became questions about solutions to a system of linear equations. This will be a common theme going forward.

Subsection SC
 Subspace Constructions

Several of the subsets of vectors spaces that we worked with in Chapter M 177 are also subspaces - they are closed under vector addition and scalar multiplication in \mathbb{C}^{m}.

Theorem CSMS

Column Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then $\mathcal{C}(A)$ is a subspace of \mathbb{C}^{m}.
Proof Definition CSM 231 shows us that $\mathcal{C}(A)$ is a subset of \mathbb{C}^{m}, and that it is defined as the span of a set of vectors from \mathbb{C}^{m} (the columns of the matrix). Since $\mathcal{C}(A)$ is a span, Theorem SSS 295 says it is a subspace.

That was easy! Notice that we could have used this same approach to prove that the null space is a subspace, since Theorem SSNS 117 provided a description of the null space of a matrix as the span of a set of vectors. However, I much prefer the current proof of Theorem NSMS 293. Speaking of easy, here is a very easy theorem that exposes another of our constructions as creating subspaces.

Theorem RSMS

Row Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then $\mathcal{R}(A)$ is a subspace of \mathbb{C}^{n}.
Proof Definition RSM 237 says $\mathcal{R}(A)=\mathcal{C}\left(A^{t}\right)$, so the row space of a matrix is a column space, and every column space is a subspace by Theorem CSMS 299. That's enough.

One more.

Theorem LNSMS

Left Null Space of a Matrix is a Subspace

Suppose that A is an $m \times n$ matrix. Then $\mathcal{L}(A)$ is a subspace of \mathbb{C}^{m}.
Proof Definition LNS 253 says $\mathcal{L}(A)=\mathcal{N}\left(A^{t}\right)$, so the left null space is a null space, and every null space is a subspace by Theorem NSMS 293. Done.

So the span of a set of vectors, and the null space, column space, row space and left null space of a matrix are all subspaces, and hence are all vector spaces, meaning they have all the properties detailed in Definition VS 275 and in the basic theorems presented in Section VS 275. We have worked with these objects as just sets in Chapter V 79 and Chapter M 177, but now we understand that they have much more structure. In particular, being closed under vector addition and scalar multiplication means a subspace is also closed under linear combinations.

Subsection READ
 Reading Questions

1. Summarize the three conditions that allow us to quickly test if a set is a subspace.
2. Consider the set of vectors

$$
\left\{\left.\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \right\rvert\, 3 a-2 b+c=5\right\}
$$

Is this set a subspace of \mathbb{C}^{3} ? Explain your answer.
3. Name five general constructions of sets of column vectors (subsets of \mathbb{C}^{m}) that we now know as subspaces.

Subsection EXC
 Exercises

C20 Working within the vector space P_{3} of polynomials of degree 3 or less, determine if $p(x)=x^{3}+6 x+4$ is in the subspace W below.

$$
W=\left\langle\left\{x^{3}+x^{2}+x, x^{3}+2 x-6, x^{2}-5\right\}\right\rangle
$$

Contributed by Robert Beezer Solution 302
C21 Consider the subspace

$$
W=\left\langle\left\{\left[\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right],\left[\begin{array}{ll}
4 & 0 \\
2 & 3
\end{array}\right],\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]\right\}\right\rangle
$$

of the vector space of 2×2 matrices, M_{22}. Is $C=\left[\begin{array}{cc}-3 & 3 \\ 6 & -4\end{array}\right]$ an element of W ?
Contributed by Robert Beezer Solution 302
C25 Show that the set $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \right\rvert\, 3 x_{1}-5 x_{2}=12\right\}$ from Example NSC2Z 292 fails Property AC 275 and Property SC 275.
Contributed by Robert Beezer
C26 Show that the set $Y=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \right\rvert\, x_{1} \in \mathbb{Z}, x_{2} \in \mathbb{Z}\right\}$ from Example NSC2S 292 has Property AC 275.
Contributed by Robert Beezer
M20 In \mathbb{C}^{3}, the vector space of column vectors of size 3 , prove that the set Z is a subspace.

$$
Z=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, 4 x_{1}-x_{2}+5 x_{3}=0\right\}
$$

Contributed by Robert Beezer Solution 303
T20 A square matrix A of size n is upper triangular if $[A]_{i j}=0$ whenever $i>j$. Let $U T_{n}$ be the set of all upper triangular matrices of size n. Prove that $U T_{n}$ is a subspace of the vector space of all square matrices of size $n, M_{n n}$.
Contributed by Robert Beezer Solution 303

Subsection SOL
 Solutions

C20 Contributed by Robert Beezer Statement 301
The question is if p can be written as a linear combination of the vectors in W. To check this, we set p equal to a linear combination and massage with the definitions of vector addition and scalar multiplication that we get with P_{3} (Example VSP 277)

$$
\begin{aligned}
p(x) & =a_{1}\left(x^{3}+x^{2}+x\right)+a_{2}\left(x^{3}+2 x-6\right)+a_{3}\left(x^{2}-5\right) \\
x^{3}+6 x+4 & =\left(a_{1}+a_{2}\right) x^{3}+\left(a_{1}+a_{3}\right) x^{2}+\left(a_{1}+2 a_{2}\right) x+\left(-6 a_{2}-5 a_{3}\right)
\end{aligned}
$$

Equating coefficients of equal powers of x, we get the system of equations,

$$
\begin{array}{r}
a_{1}+a_{2}=1 \\
a_{1}+a_{3}=0 \\
a_{1}+2 a_{2}=6 \\
-6 a_{2}-5 a_{3}=4
\end{array}
$$

The augmented matrix of this system of equations row-reduces to

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

There is a leading 1 in the last column, so Theorem RCLS 50 implies that the system is inconsistent. So there is no way for p to gain membership in W, so $p \notin W$.

C21 Contributed by Robert Beezer Statement 301
In order to belong to W, we must be able to express C as a linear combination of the elements in the spanning set of W. So we begin with such an expression, using the unknowns a, b, c for the scalars in the linear combination.

$$
C=\left[\begin{array}{cc}
-3 & 3 \\
6 & -4
\end{array}\right]=a\left[\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right]+b\left[\begin{array}{cc}
4 & 0 \\
2 & 3
\end{array}\right]+c\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]
$$

Massaging the right-hand side, according to the definition of the vector space operations in M_{22} (Example VSM 277), we find the matrix equality,

$$
\left[\begin{array}{cc}
-3 & 3 \\
6 & -4
\end{array}\right]=\left[\begin{array}{cc}
2 a+4 b-3 c & a+c \\
3 a+2 b+2 c & -a+3 b+c
\end{array}\right]
$$

Matrix equality allows us to form a system of four equations in three variables, whose augmented matrix row-reduces as follows,

$$
\left[\begin{array}{cccc}
2 & 4 & -3 & -3 \\
1 & 0 & 1 & 3 \\
3 & 2 & 2 & 6 \\
-1 & 3 & 1 & -4
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{[1} & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since this system of equations is consistent Theorem RCLS 50), a solution will provide values for a, b and c that alllow us to recognize C as an element of W.

M20 Contributed by Robert Beezer Statement 301
The membership criteria for Z is a single linear equation, which comprises a homogeneous system of equations. As such, we can recognize Z as the solutions to this system, and therefore Z is a null space. Specifically, $Z=\mathcal{N}\left(\left[\begin{array}{lll}4 & -1 & 5\end{array}\right]\right)$. Every null space is a subspace by Theorem NSMS 293.

A less direct solution appeals to Theorem TSS 290.
First, we want to be certain Z is non-empty. The zero vector of $\mathbb{C}^{3}, \mathbf{0}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, is a good candidate, since if it fails to be in Z, we will know that Z is not a vector space. Check that

$$
4(0)-(0)+5(0)=0
$$

so that $\mathbf{0} \in Z$.
Suppose $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$ are vectors from Z. Then we know that these vectors cannot be totally arbitrary, they must have gained membership in Z by virtue of meeting the membership test. For example, we know that \mathbf{x} must satisfy $4 x_{1}-x_{2}+5 x_{3}=0$ while \mathbf{y} must satisfy $4 y_{1}-y_{2}+5 y_{3}=0$. Our second criteria asks the question, is $\mathbf{x}+\mathbf{y} \in Z$? Notice first that

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]
$$

and we can test this vector for membership in Z as follows,

$$
\begin{array}{ll}
4\left(x_{1}+y_{1}\right)-1\left(x_{2}+y_{2}\right)+5\left(x_{3}+y_{3}\right) & \\
=4 x_{1}+4 y_{1}-x_{2}-y_{2}+5 x_{3}+5 y_{3} & \\
=\left(4 x_{1}-x_{2}+5 x_{3}\right)+\left(4 y_{1}-y_{2}+5 y_{3}\right) \\
=0+0 & \mathbf{x} \in Z, \mathbf{y} \in Z \\
=0 &
\end{array}
$$

and by this computation we see that $\mathbf{x}+\mathbf{y} \in Z$.
If α is a scalar and $\mathbf{x} \in Z$, is it always true that $\alpha \mathbf{x} \in Z$? To check our third criteria, we examine

$$
\alpha \mathbf{x}=\alpha\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\alpha x_{1} \\
\alpha x_{2} \\
\alpha x_{3}
\end{array}\right]
$$

and we can test this vector for membership in Z with

$$
\begin{array}{ll}
4\left(\alpha x_{1}\right)-\left(\alpha x_{2}\right)+5\left(\alpha x_{3}\right) & \\
\quad=\alpha\left(4 x_{1}-x_{2}+5 x_{3}\right) & \mathbf{x} \in Z \\
\quad=\alpha 0 &
\end{array}
$$

and we see that indeed $\alpha \mathbf{x} \in Z$. With the three conditions of Theorem TSS 290 fulfilled, we can conclude that Z is a subspace of \mathbb{C}^{3}.
T20 Contributed by Robert Beezer Statement 301
Apply Theorem TSS 290.
First, the zero vector of $M_{n n}$ is the zero matrix, \mathcal{O}, whose entries are all zero Definition ZM 180). This matrix then meets the condition that $[\mathcal{O}]_{i j}=0$ for $i>j$ and so is an element of $U T_{n}$.

Suppose $A, B \in U T_{n}$. Is $A+B \in U T_{n}$? We examine the entries of $A+B$ "below" the diagonal. That is, in the following, assume that $i>j$.

$$
\begin{aligned}
{[A+B]_{i j} } & =[A]_{i j}+[B]_{i j} & & \text { Definition MA } 177 \\
& =0+0 & & A, B \in U T_{n} \\
& =0 & &
\end{aligned}
$$

which qualifies $A+B$ for membership in $U T_{n}$.
Suppose $\alpha \in \mathbb{C}$ and $A \in U T_{n}$. Is $\alpha A \in U T_{n}$? We examine the entries of αA "below" the diagonal. That is, in the following, assume that $i>j$.

$$
\begin{aligned}
{[\alpha A]_{i j} } & =\alpha[A]_{i j} & & \text { Definition MSM } 178 \\
& =\alpha 0 & & A \in U T_{n} \\
& =0 & &
\end{aligned}
$$

which qualifies αA for membership in $U T_{n}$.
Having fulfilled the three conditions of Theorem TSS 290 we see that $U T_{n}$ is a subspace of $M_{n n}$.

Section LISS
 Linear Independence and Spanning Sets

A vector space is defined as a set with two operations, meeting ten properties (Definition VS 275). Just as the definition of span of a set of vectors only required knowing how to add vectors and how to multiply vectors by scalars, so it is with linear independence. A definition of a linear independent set of vectors in an arbitrary vector space only requires knowing how to form linear combinations and equating these with the zero vector. Since every vector space must have a zero vector (Property Z 276), we always have a zero vector at our disposal.

In this section we will also put a twist on the notion of the span of a set of vectors. Rather than beginning with a set of vectors and creating a subspace that is the span, we will instead begin with a subspace and look for a set of vectors whose span equals the subspace.

The combination of linear independence and spanning will be very important going forward.

Subsection LI
 Linear Independence

Our previous definition of linear independence (Definition LT 305) employed a relation of linear dependence that was a linear combination on one side of an equality and a zero vector on the other side. As a linear combination in a vector space (Definition LC (294) depends only on vector addition and scalar multiplication, and every vector space must have a zero vector (Property Z [276), we can extend our definition of linear independence from the setting of \mathbb{C}^{m} to the setting of a general vector space V with almost no changes. Compare these next two definitions with Definition RLDCV 131 and Definition LICV 131.

Definition RLD

Relation of Linear Dependence

Suppose that V is a vector space. Given a set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$, an equation of the form

$$
\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}+\alpha_{3} \mathbf{u}_{3}+\cdots+\alpha_{n} \mathbf{u}_{n}=\mathbf{0}
$$

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e. $\alpha_{i}=0$, $1 \leq i \leq n$, then we say it is a trivial relation of linear dependence on S.

Definition LI

Linear Independence

Suppose that V is a vector space. The set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ from V is linearly dependent if there is a relation of linear dependence on S that is not trivial. In the case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent set of vectors. \triangle

Notice the emphasis on the word "only." This might remind you of the definition of a nonsingular matrix, where if the matrix is employed as the coefficient matrix of a homogeneous system then the only solution is the trivial one.

Example LIP4

Linear independence in P_{4}
In the vector space of polynomials with degree 4 or less, P_{4} Example VSP 277) consider the set

$$
S=\left\{2 x^{4}+3 x^{3}+2 x^{2}-x+10,-x^{4}-2 x^{3}+x^{2}+5 x-8,2 x^{4}+x^{3}+10 x^{2}+17 x-2\right\} .
$$

Is this set of vectors linearly independent or dependent? Consider that

$$
\begin{aligned}
& 3\left(2 x^{4}+3 x^{3}+2 x^{2}-x+10\right)+4\left(-x^{4}-2 x^{3}+x^{2}+5 x-8\right) \\
& \quad+(-1)\left(2 x^{4}+x^{3}+10 x^{2}+17 x-2\right)=0 x^{4}+0 x^{3}+0 x^{2}+0 x+0=\mathbf{0}
\end{aligned}
$$

This is a nontrivial relation of linear dependence Definition RLD 305) on the set S and so convinces us that S is linearly dependent (Definition LI 305).

Now, I hear you say, "Where did those scalars come from?" Do not worry about that right now, just be sure you understand why the above explanation is sufficient to prove that S is linearly dependent. The remainder of the example will demonstrate how we might find these scalars if they had not been provided so readily. Let's look at another set of vectors (polynomials) from P_{4}. Let

$$
\begin{aligned}
T= & \left\{3 x^{4}-2 x^{3}+4 x^{2}+6 x-1,-3 x^{4}+1 x^{3}+0 x^{2}+4 x+2,\right. \\
& \left.4 x^{4}+5 x^{3}-2 x^{2}+3 x+1,2 x^{4}-7 x^{3}+4 x^{2}+2 x+1\right\}
\end{aligned}
$$

Suppose we have a relation of linear dependence on this set,

$$
\begin{aligned}
\mathbf{0}= & 0 x^{4}+0 x^{3}+0 x^{2}+0 x+0 \\
= & \alpha_{1}\left(3 x^{4}-2 x^{3}+4 x^{2}+6 x-1\right)+\alpha_{2}\left(-3 x^{4}+1 x^{3}+0 x^{2}+4 x+2\right) \\
& +\alpha_{3}\left(4 x^{4}+5 x^{3}-2 x^{2}+3 x+1\right)+\alpha_{4}\left(2 x^{4}-7 x^{3}+4 x^{2}+2 x+1\right)
\end{aligned}
$$

Using our definitions of vector addition and scalar multiplication in P_{4} Example VSP 277), we arrive at,

$$
\begin{aligned}
0 x^{4}+0 x^{3}+0 x^{2}+0 x+0= & \left(3 \alpha_{1}-3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}\right) x^{4}+\left(-2 \alpha_{1}+\alpha_{2}+5 \alpha_{3}-7 \alpha_{4}\right) x^{3} \\
& +\left(4 \alpha_{1}+-2 \alpha_{3}+4 \alpha_{4}\right) x^{2}+\left(6 \alpha_{1}+4 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}\right) x \\
& +\left(-\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}\right) .
\end{aligned}
$$

Equating coefficients, we arrive at the homogeneous system of equations,

$$
\begin{array}{r}
3 \alpha_{1}-3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}=0 \\
-2 \alpha_{1}+\alpha_{2}+5 \alpha_{3}-7 \alpha_{4}=0 \\
4 \alpha_{1}+-2 \alpha_{3}+4 \alpha_{4}=0 \\
6 \alpha_{1}+4 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}=0 \\
-\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}=0
\end{array}
$$

We form the coefficient matrix of this homogeneous system of equations and row-reduce to find

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & \boxed{1} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We expected the system to be consistent Theorem HSC (57) and so can compute $n-r=4-4=0$ and Theorem CSRN 51 tells us that the solution is unique. Since this is a homogeneous system, this unique solution is the trivial solution (Definition TSHSE (57), $\alpha_{1}=0, \alpha_{2}=0, \alpha_{3}=0, \alpha_{4}=0$. So by Definition LI 305 the set T is linearly independent.

A few observations. If we had discovered infinitely many solutions, then we could have used one of the non-trivial ones to provide a linear combination in the manner we used to show that S was linearly dependent. It is important to realize that it is not interesting that we can create a relation of linear dependence with zero scalars - we can always do that - but that for T, this is the only way to create a
relation of linear dependence. It was no accident that we arrived at a homogeneous system of equations in this example, it is related to our use of the zero vector in defining a relation of linear dependence. It is easy to present a convincing statement that a set is linearly dependent (just exhibit a nontrivial relation of linear dependence) but a convincing statement of linear independence requires demonstrating that there is no relation of linear dependence other than the trivial one. Notice how we relied on theorems from Chapter SLE 3 to provide this demonstration. Whew! There's a lot going on in this example. Spend some time with it, we'll be waiting patiently right here when you get back.

Example LIM32

Linear independence in M_{32}

Consider the two sets of vectors R and S from the vector space of all 3×2 matrices, M_{32} Example VSM 277)

$$
\begin{aligned}
& R=\left\{\left[\begin{array}{cc}
3 & -1 \\
1 & 4 \\
6 & -6
\end{array}\right],\left[\begin{array}{cc}
-2 & 3 \\
1 & -3 \\
-2 & -6
\end{array}\right],\left[\begin{array}{cc}
6 & -6 \\
-1 & 0 \\
7 & -9
\end{array}\right],\left[\begin{array}{cc}
7 & 9 \\
-4 & -5 \\
2 & 5
\end{array}\right]\right\} \\
& S=\left\{\left[\begin{array}{cc}
2 & 0 \\
1 & -1 \\
1 & 3
\end{array}\right],\left[\begin{array}{cc}
-4 & 0 \\
-2 & 2 \\
-2 & -6
\end{array}\right],\left[\begin{array}{cc}
1 & 1 \\
-2 & 1 \\
2 & 4
\end{array}\right],\left[\begin{array}{cc}
-5 & 3 \\
-10 & 7 \\
2 & 0
\end{array}\right]\right\}
\end{aligned}
$$

One set is linearly independent, the other is not. Which is which? Let's examine R first. Build a generic relation of linear dependence (Definition RLD 305),

$$
\alpha_{1}\left[\begin{array}{cc}
3 & -1 \\
1 & 4 \\
6 & -6
\end{array}\right]+\alpha_{2}\left[\begin{array}{cc}
-2 & 3 \\
1 & -3 \\
-2 & -6
\end{array}\right]+\alpha_{3}\left[\begin{array}{cc}
6 & -6 \\
-1 & 0 \\
7 & -9
\end{array}\right]+\alpha_{4}\left[\begin{array}{cc}
7 & 9 \\
-4 & -5 \\
2 & 5
\end{array}\right]=\mathbf{0}
$$

Massaging the left-hand side with our definitions of vector addition and scalar multiplication in M_{32} (Example VSM 277) we obtain,

$$
\left[\begin{array}{cc}
3 \alpha_{1}-2 \alpha_{2}+6 \alpha_{3}+7 \alpha_{4} & -1 \alpha_{1}+3 \alpha_{2}-6 \alpha_{3}+9 \alpha_{4} \\
1 \alpha_{1}+1 \alpha_{2}-\alpha_{3}-4 \alpha_{4} & 4 \alpha_{1}-3 \alpha_{2}+-5 \alpha_{4} \\
6 \alpha_{1}-2 \alpha_{2}+7 \alpha_{3}+2 \alpha_{4} & -6 \alpha_{1}-6 \alpha_{2}-9 \alpha_{3}+5 \alpha_{4}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Using our definition of matrix equality (Definition ME 177) and equating corresponding entries we get the homogeneous system of six equations in four variables,

$$
\begin{aligned}
3 \alpha_{1}-2 \alpha_{2}+6 \alpha_{3}+7 \alpha_{4} & =0 \\
-1 \alpha_{1}+3 \alpha_{2}-6 \alpha_{3}+9 \alpha_{4} & =0 \\
1 \alpha_{1}+1 \alpha_{2}-\alpha_{3}-4 \alpha_{4} & =0 \\
4 \alpha_{1}-3 \alpha_{2}+-5 \alpha_{4} & =0 \\
6 \alpha_{1}-2 \alpha_{2}+7 \alpha_{3}+2 \alpha_{4} & =0 \\
-6 \alpha_{1}-6 \alpha_{2}-9 \alpha_{3}+5 \alpha_{4} & =0
\end{aligned}
$$

Form the coefficient matrix of this homogeneous system and row-reduce to obtain

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & \boxed{1} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Analyzing this matrix we are led to conclude that $\alpha_{1}=0, \alpha_{2}=0, \alpha_{3}=0, \alpha_{4}=0$. This means there is only a trivial relation of linear dependence on the vectors of R and so we call R a linearly independent set (Definition LI 305).

So it must be that S is linearly dependent. Let's see if we can find a non-trivial relation of linear dependence on S. We will begin as with R, by constructing a relation of linear dependence Definition RLD 305) with unknown scalars,

$$
\alpha_{1}\left[\begin{array}{cc}
2 & 0 \\
1 & -1 \\
1 & 3
\end{array}\right]+\alpha_{2}\left[\begin{array}{cc}
-4 & 0 \\
-2 & 2 \\
-2 & -6
\end{array}\right]+\alpha_{3}\left[\begin{array}{cc}
1 & 1 \\
-2 & 1 \\
2 & 4
\end{array}\right]+\alpha_{4}\left[\begin{array}{cc}
-5 & 3 \\
-10 & 7 \\
2 & 0
\end{array}\right]=\mathbf{0}
$$

Massaging the left-hand side with our definitions of vector addition and scalar multiplication in M_{32} (Example VSM 277) we obtain,

$$
\left[\begin{array}{cc}
2 \alpha_{1}-4 \alpha_{2}+\alpha_{3}-5 \alpha_{4} & \alpha_{3}+3 \alpha_{4} \\
\alpha_{1}-2 \alpha_{2}-2 \alpha_{3}-10 \alpha_{4} & -\alpha_{1}+2 \alpha_{2}+\alpha_{3}+7 \alpha_{4} \\
\alpha_{1}-2 \alpha_{2}+2 \alpha_{3}+2 \alpha_{4} & 3 \alpha_{1}-6 \alpha_{2}+4 \alpha_{3}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Using our definition of matrix equality (Definition ME 177) and equating corresponding entries we get the homogeneous system of six equations in four variables,

$$
\begin{aligned}
2 \alpha_{1}-4 \alpha_{2}+\alpha_{3}-5 \alpha_{4} & =0 \\
+\alpha_{3}+3 \alpha_{4} & =0 \\
\alpha_{1}-2 \alpha_{2}-2 \alpha_{3}-10 \alpha_{4} & =0 \\
-\alpha_{1}+2 \alpha_{2}+\alpha_{3}+7 \alpha_{4} & =0 \\
\alpha_{1}-2 \alpha_{2}+2 \alpha_{3}+2 \alpha_{4} & =0 \\
3 \alpha_{1}-6 \alpha_{2}+4 \alpha_{3} & =0
\end{aligned}
$$

Form the coefficient matrix of this homogeneous system and row-reduce to obtain

$$
\left[\begin{array}{cccc}
\boxed{1} & -2 & 0 & -4 \\
0 & 0 & \boxed{1} & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Analyzing this we see that the system is consistent (we expected this since the system is homogeneous, Theorem HSC (57) and has $n-r=4-2=2$ free variables, namely α_{2} and α_{4}. This means there are infinitely many solutions, and in particular, we can find a non-trivial solution, so long as we do not pick all of our free variables to be zero. The mere presence of a nontrivial solution for these scalars is enough to conclude that S is a linearly dependent set Definition LI 305). But let's go ahead and explicitly construct a non-trivial relation of linear dependence.

Choose $\alpha_{2}=1$ and $\alpha_{4}=-1$. There is nothing special about this choice, there are infinitely many possibilities, some "easier" than this one, just avoid picking both variables to be zero. Then we find the corresponding dependent variables to be $\alpha_{1}=-2$ and $\alpha_{3}=3$. So the relation of linear dependence,

$$
(-2)\left[\begin{array}{cc}
2 & 0 \\
1 & -1 \\
1 & 3
\end{array}\right]+(1)\left[\begin{array}{cc}
-4 & 0 \\
-2 & 2 \\
-2 & -6
\end{array}\right]+(3)\left[\begin{array}{cc}
1 & 1 \\
-2 & 1 \\
2 & 4
\end{array}\right]+(-1)\left[\begin{array}{cc}
-5 & 3 \\
-10 & 7 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

is an iron-clad demonstration that S is linearly dependent. Can you construct another such demonstration?

Example LIC

Linearly independent set in the crazy vector space

Is the set $R=\{(1,0),(6,3)\}$ linearly independent in the crazy vector space C Example CVS 279)? We begin with a relation of linear independence and massage it to a point where we can apply the definition of equality in C. Recall the definitions of vector addition and scalar multiplication in C.

$$
\begin{array}{rlr}
& \mathbf{0}=a_{1}(1,0)+a_{2}(6,3) & \text { Definition RLD } 305 \\
(-1,-1)=\left(1 a_{1}+a_{1}-1,0 a_{1}+a_{1}-1\right)+\left(6 a_{2}+a_{2}-1,3 a_{2}+a_{2}-1\right) & & \text { Scalar mult in } C \\
=\left(2 a_{1}-1, a_{1}-1\right)+\left(7 a_{2}-1,4 a_{2}-1\right) & \\
=\left(2 a_{1}-1+7 a_{2}-1+1, a_{1}-1+4 a_{2}-1+1\right) & & \\
=\left(2 a_{1}+7 a_{2}-1, a_{1}+4 a_{2}-1\right) & \text { Addition in } C
\end{array}
$$

Equality in C then yields the two equations,

$$
\begin{aligned}
2 a_{1}+7 a_{2}-1 & =-1 \\
a_{1}+4 a_{2}-1 & =-1
\end{aligned}
$$

which becomes the homogeneous system

$$
\begin{aligned}
2 a_{1}+7 a_{2} & =0 \\
a_{1}+4 a_{2} & =0
\end{aligned}
$$

Since the coefficient matrix of this system is nonsingular (check this!) the system has only the trivial solution $a_{1}=a_{2}=0$. By Definition LI 305 the set R is linearly independent. Notice that even though the zero vector of C is not what we might first suspected, a question about linear independence still concludes with a question about a homogeneous system of equations.

Subsection SS
 Spanning Sets

In a vector space V, suppose we are given a set of vectors $S \subseteq V$. Then we can immediately construct a subspace, $\langle S\rangle$, using Definition SS 295 and then be assured by Theorem SSS 295 that the construction does provide a subspace. We now turn the situation upside-down. Suppose we are first given a subspace $W \subseteq V$. Can we find a set S so that $\langle S\rangle=W$? Typically W is infinite and we are searching for a finite set of vectors S that we can combine in linear combinations and "build" all of W.

I like to think of S as the raw materials that are sufficient for the construction of W. If you have nails, lumber, wire, copper pipe, drywall, plywood, carpet, shingles, paint (and a few other things), then you can combine them in many different ways to create a house (or infinitely many different houses for that matter). A fast-food restaurant may have beef, chicken, beans, cheese, tortillas, taco shells and hot sauce and from this small list of ingredients build a wide variety of items for sale. Or maybe a better analogy comes from Ben Cordes - the additive primary colors (red, green and blue) can be combined to create many different colors by varying the intensity of each. The intensity is like a scalar multiple, and the combination of the three intensities is like vector addition. The three individual colors, red, yellow and blue, are the elements of the spanning set.

Because we will use terms like "spanned by" and "spanning set," there is the potential for confusion with "the span." Come back and reread the first paragraph of this subsection whenever you are uncertain about the difference. Here's the working definition.

Definition TSVS

To Span a Vector Space
Suppose V is a vector space. A subset S of V is a spanning set for V if $\langle S\rangle=V$. In this case, we also say S spans V.

The definition of a spanning set requires that two sets (subspaces actually) be equal. If S is a subset of V, then $\langle S\rangle \subseteq V$, always. Thus it is usually only necessary to prove that $V \subseteq\langle S\rangle$. Now would be a good time to review Definition SE 670.

Example SSP4

Spanning set in P_{4}
In Example SP4 291 we showed that

$$
W=\left\{p(x) \mid p \in P_{4}, p(2)=0\right\}
$$

is a subspace of P_{4}, the vector space of polynomials with degree at most 4 (Example VSP 277). In this example, we will show that the set

$$
S=\left\{x-2, x^{2}-4 x+4, x^{3}-6 x^{2}+12 x-8, x^{4}-8 x^{3}+24 x^{2}-32 x+16\right\}
$$

is a spanning set for W. To do this, we require that $W=\langle S\rangle$. This is an equality of sets. We can check that every polynomial in S has $x=2$ as a root and therefore $S \subseteq W$. Since W is closed under addition and scalar multiplication, $\langle S\rangle \subseteq W$ also.

So it remains to show that $W \subseteq\langle S\rangle$ (Definition SE 670). To do this, begin by choosing an arbitrary polynomial in W, say $r(x)=a x^{4}+b x^{3}+c x^{2}+d x+e \in W$. This polynomial is not as arbitrary as it would appear, since we also know it must have $x=2$ as a root. This translates to

$$
0=a(2)^{4}+b(2)^{3}+c(2)^{2}+d(2)+e=16 a+8 b+4 c+2 d+e
$$

as a condition on r.
We wish to show that r is a polynomial in $\langle S\rangle$, that is, we want to show that r can be written as a linear combination of the vectors (polynomials) in S. So let's try.

$$
\begin{aligned}
r(x)= & a x^{4}+b x^{3}+c x^{2}+d x+e \\
= & \alpha_{1}(x-2)+\alpha_{2}\left(x^{2}-4 x+4\right)+\alpha_{3}\left(x^{3}-6 x^{2}+12 x-8\right) \\
& +\alpha_{4}\left(x^{4}-8 x^{3}+24 x^{2}-32 x+16\right) \\
= & \alpha_{4} x^{4}+\left(\alpha_{3}-8 \alpha_{4}\right) x^{3}+\left(\alpha_{2}-6 \alpha_{3}+24 \alpha_{2}\right) x^{2} \\
& +\left(\alpha_{1}-4 \alpha_{2}+12 \alpha_{3}-32 \alpha_{4}\right) x+\left(-2 \alpha_{1}+4 \alpha_{2}-8 \alpha_{3}+16 \alpha_{4}\right)
\end{aligned}
$$

Equating coefficients (vector equality in P_{4}) gives the system of five equations in four variables,

$$
\begin{aligned}
\alpha_{4} & =a \\
\alpha_{3}-8 \alpha_{4} & =b \\
\alpha_{2}-6 \alpha_{3}+24 \alpha_{2} & =c \\
\alpha_{1}-4 \alpha_{2}+12 \alpha_{3}-32 \alpha_{4} & =d \\
-2 \alpha_{1}+4 \alpha_{2}-8 \alpha_{3}+16 \alpha_{4} & =e
\end{aligned}
$$

Any solution to this system of equations will provide the linear combination we need to determine if $r \in\langle S\rangle$, but we need to be convinced there is a solution for any values of a, b, c, d, e that qualify r to be a member of W. So the question is: is this system of equations consistent? We will form the augmented matrix, and row-reduce. (We probably need to do this by hand, since the matrix is symbolic - reversing the order of the first four rows is the best way to start). We obtain a matrix in reduced row-echelon form

$$
\left[\begin{array}{ccccc}
\hline 1 & 0 & 0 & 0 & 32 a+12 b+4 c+d \\
0 & 1 & 0 & 0 & 24 a+6 b+c \\
0 & 0 & \boxed{1} & 0 & 8 a+b \\
0 & 0 & 0 & 1 & a \\
0 & 0 & 0 & 0 & 16 a+8 b+4 c+2 d+e
\end{array}\right]=\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 0 & 32 a+12 b+4 c+d \\
0 & \boxed{1} & 0 & 0 & 24 a+6 b+c \\
0 & 0 & \boxed{1} & 0 & 8 a+b \\
0 & 0 & 0 & \boxed{1} & a \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

For your results to match our first matrix, you may find it necessary to mutiply the final row of your row-reduced matrix by the appropriate scalar, and/or add multiples of this row to some of the other rows. To obtain the second version of the matrix, the last entry of the last column has been simplified to zero according to the one condition we were able to impose on an arbitrary polynomial from W. So with no leading 1's in the last column, Theorem RCLS 50 tells us this system is consistent. Therefore, any polynomial from W can be written as a linear combination of the polynomials in S, so $W \subseteq\langle S\rangle$. Therefore, $W=\langle S\rangle$ and S is a spanning set for W by Definition TSVS 310.

Notice that an alternative to row-reducing the augmented matrix by hand would be to appeal to Theorem FS 259 by expressing the column space of the coefficient matrix as a null space, and then verifying that the condition on r guarantees that r is in the column space, thus implying that the system is always consistent. Give it a try, we'll wait. This has been a complicated example, but worth studying carefully.

Given a subspace and a set of vectors, as in Example SSP4 310 it can take some work to determine that the set actually is a spanning set. An even harder problem is to be confronted with a subspace and required to construct a spanning set with no guidance. We will now work an example of this flavor, but some of the steps will be unmotivated. Fortunately, we will have some better tools for this type of problem later on.

Example SSM22

Spanning set in M_{22}
In the space of all 2×2 matrices, M_{22} consider the subspace

$$
Z=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a+3 b-c-5 d=0,-2 a-6 b+3 c+14 d=0\right\}
$$

and find a spanning set for Z.
We need to construct a limited number of matrices in Z so that every matrix in Z can be expressed as a linear combination of this limited number of matrices. Suppose that $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is a matrix in Z. Then we can form a column vector with the entries of B and write

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \in \mathcal{N}\left(\left[\begin{array}{cccc}
1 & 3 & -1 & -5 \\
-2 & -6 & 3 & 14
\end{array}\right]\right)
$$

Row-reducing this matrix and applying Theorem REMES 29 we obtain the equivalent statement,

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \in \mathcal{N}\left(\left[\begin{array}{lllc}
{\left[\begin{array}{|ccc}
1 & 3 & 0 \\
\hline 0 & 0 & \boxed{1}
\end{array}\right.} & 4
\end{array}\right]\right)
$$

We can then express the subspace Z in the following equal forms,

$$
\begin{aligned}
Z & =\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a+3 b-c-5 d=0,-2 a-6 b+3 c+14 d=0\right\} \\
& =\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a+3 b-d=0, c+4 d=0\right\} \\
& =\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a=-3 b+d, c=-4 d\right\} \\
& =\left\{\left.\left[\begin{array}{cc}
-3 b+d & b \\
-4 d & d
\end{array}\right] \right\rvert\, b, d \in \mathbb{C}\right\} \\
& =\left\{\left.\left[\begin{array}{cc}
-3 b & b \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
d & 0 \\
-4 d & d
\end{array}\right] \right\rvert\, b, d \in \mathbb{C}\right\} \\
& =\left\{\left.b\left[\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right]+d\left[\begin{array}{cc}
1 & 0 \\
-4 & 1
\end{array}\right] \right\rvert\, b, d \in \mathbb{C}\right\} \\
& =\left\langle\left\{\left[\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-4 & 1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

So the set

$$
Q=\left\{\left[\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-4 & 1
\end{array}\right]\right\}
$$

spans Z by Definition TSVS 310.

Example SSC

Spanning set in the crazy vector space

In Example LIC 309] we determined that the set $R=\{(1,0),(6,3)\}$ is linearly independent in the crazy vector space C (Example CVS 279). We now show that R is a spanning set for C.

Given an arbitrary vector $(x, y) \in C$ we desire to show that it can be written as a linear combination of the elements of R. In other words, are there scalars a_{1} and a_{2} so that

$$
(x, y)=a_{1}(1,0)+a_{2}(6,3)
$$

We will act as if this equation is true and try to determine just what a_{1} and a_{2} would be (as functions of x and y).

$$
\begin{aligned}
(x, y) & =a_{1}(1,0)+a_{2}(6,3) & & \\
& =\left(1 a_{1}+a_{1}-1,0 a_{1}+a_{1}-1\right)+\left(6 a_{2}+a_{2}-1,3 a_{2}+a_{2}-1\right) & & \text { Scalar mult in } C \\
& =\left(2 a_{1}-1, a_{1}-1\right)+\left(7 a_{2}-1,4 a_{2}-1\right) & & \\
& =\left(2 a_{1}-1+7 a_{2}-1+1, a_{1}-1+4 a_{2}-1+1\right) & & \text { Addition in } C \\
& =\left(2 a_{1}+7 a_{2}-1, a_{1}+4 a_{2}-1\right) & &
\end{aligned}
$$

Equality in C then yields the two equations,

$$
\begin{aligned}
2 a_{1}+7 a_{2}-1 & =x \\
a_{1}+4 a_{2}-1 & =y
\end{aligned}
$$

which becomes the linear system with a matrix representation

$$
\left[\begin{array}{ll}
2 & 7 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
x+1 \\
y+1
\end{array}\right]
$$

The coefficient matrix of this system is nonsingular, hence invertible (Theorem NT 223), and we can employ its inverse to find a solution Theorem TTMI 210, Theorem SNCM 223]),

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 7 \\
1 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
x+1 \\
y+1
\end{array}\right]=\left[\begin{array}{cc}
4 & -7 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x+1 \\
y+1
\end{array}\right]=\left[\begin{array}{l}
4 x-7 y-3 \\
-x+2 y+1
\end{array}\right]
$$

We could chase through the above implications backwards and take the existence of these solutions as sufficient evidence for R being a spanning set for C. Instead, let us view the above as simply scratchwork and now get serious with a simple direct proof that R is a spanning set. Ready? Suppose (x, y) is any vector from C, then compute the following linear combination using the definitions of the operations in C,

$$
\begin{aligned}
(4 x-7 y-3)(1,0)+ & (-x+2 y+1)(6,3) \\
= & (1(4 x-7 y-3)+(4 x-7 y-3)-1,0(4 x-7 y-3)+(4 x-7 y-3)-1)+ \\
& (6(-x+2 y+1)+(-x+2 y+1)-1,3(-x+2 y+1)+(-x+2 y+1)-1) \\
= & (8 x-14 y-7,4 x-7 y-4)+(-7 x+14 y+6,-4 x+8 y+3) \\
= & ((8 x-14 y-7)+(-7 x+14 y+6)+1,(4 x-7 y-4)+(-4 x+8 y+3)+1) \\
= & (x, y)
\end{aligned}
$$

This final sequence of computations in C is sufficient to demonstrate that any element of C can be written (or expressed) as a linear combination of the two vectors in R, so $C \subseteq\langle R\rangle$. Since the reverse inclusion $\langle R\rangle \subseteq C$ is trivially true, $C=\langle R\rangle$ and we say R spans C (Definition TSVS (310). Notice that this demonstration is no more or less valid if we hide from the reader our scratchwork that suggested $a_{1}=$ $4 x-7 y-3$ and $a_{2}=-x+2 y+1$.

Subsection VR
 Vector Representation

In Chapter R 513 we will take up the matter of representations fully, where Theorem VRRB 314 will be critical for Definition VR 513 . We will now motivate and prove a critical theorem that tells us how to "represent" a vector. This theorem could wait, but working with it now will provide some extra insight into the nature of linearly independent spanning sets. First an example, then the theorem.

Example AVR

A vector representation

Consider the set

$$
S=\left\{\left[\begin{array}{c}
-7 \\
5 \\
1
\end{array}\right],\left[\begin{array}{c}
-6 \\
5 \\
0
\end{array}\right],\left[\begin{array}{c}
-12 \\
7 \\
4
\end{array}\right]\right\}
$$

from the vector space \mathbb{C}^{3}. Let A be the matrix whose columns are the set S, and verify that A is nonsingular. By Theorem NMLIC 137 the elements of S form a linearly independent set. Suppose that $\mathbf{b} \in \mathbb{C}^{3}$. Then $\mathcal{L S}(A, \mathbf{b})$ has a (unique) solution Theorem NMUS 70) and hence is consistent. By Theorem SLSLC 90, $\mathbf{b} \in\langle S\rangle$. Since \mathbf{b} is arbitrary, this is enough to show that $\langle S\rangle=\mathbb{C}^{3}$, and therefore S is a spanning set for \mathbb{C}^{3} Definition TSVS 310). (This set comes from the columns of the coefficient matrix of Archetype B 694.)

Now examine the situation for a particular choice of \mathbf{b}, say $\mathbf{b}=\left[\begin{array}{c}-33 \\ 24 \\ 5\end{array}\right]$. Because S is a spanning set
for \mathbb{C}^{3}, we know we can write \mathbf{b} as a linear combination of the vectors in S,

$$
\left[\begin{array}{c}
-33 \\
24 \\
5
\end{array}\right]=(-3)\left[\begin{array}{c}
-7 \\
5 \\
1
\end{array}\right]+(5)\left[\begin{array}{c}
-6 \\
5 \\
0
\end{array}\right]+(2)\left[\begin{array}{c}
-12 \\
7 \\
4
\end{array}\right]
$$

The nonsingularity of the matrix A tells that the scalars in this linear combination are unique. More precisely, it is the linear independence of S that provides the uniqueness. We will refer to the scalars $a_{1}=-3, a_{2}=5, a_{3}=2$ as a "representation of \mathbf{b} relative to S." In other words, once we settle on S as a linearly independent set that spans \mathbb{C}^{3}, the vector \mathbf{b} is recoverable just by knowing the scalars $a_{1}=-3$, $a_{2}=5, a_{3}=2$ (use these scalars in a linear combination of the vectors in S). This is all an illustration of the following important theorem, which we prove in the setting of a general vector space.

Theorem VRRB

Vector Representation Relative to a Basis

Suppose that V is a vector space and $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ is a linearly independent set that spans V. Let \mathbf{w} be any vector in V. Then there exist unique scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ such that

$$
\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m}
$$

Proof That \mathbf{w} can be written as a linear combination of the vectors in B follows from the spanning property of the set (Definition TSVS 310). This is good, but not the meat of this theorem. We now know that for any choice of the vector \mathbf{w} there exist some scalars that will create \mathbf{w} as a linear combination of the basis vectors. The real question is: Is there more than one way to write \mathbf{w} as a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$? Are the scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ unique? (Technique U 678)

Assume there are two ways to express \mathbf{w} as a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$. In other words there exist scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{m}$ so that

$$
\begin{aligned}
& \mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m} \\
& \mathbf{w}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+b_{3} \mathbf{v}_{3}+\cdots+b_{m} \mathbf{v}_{m}
\end{aligned}
$$

Then notice that

$$
\begin{aligned}
\mathbf{0}= & \mathbf{w}+(-\mathbf{w}) & & \text { Property AI 276 } \\
= & \mathbf{w}+(-1) \mathbf{w} & & \text { Theorem AISM 283 } \\
= & \left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m}\right)+ & & \\
& (-1)\left(b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+b_{3} \mathbf{v}_{3}+\cdots+b_{m} \mathbf{v}_{m}\right) & & \\
= & \left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m}\right)+ & & \\
& \left(-b_{1} \mathbf{v}_{1}-b_{2} \mathbf{v}_{2}-b_{3} \mathbf{v}_{3}-\ldots-b_{m} \mathbf{v}_{m}\right) & & \text { Property DVA 276 } \\
= & \left(a_{1}-b_{1}\right) \mathbf{v}_{\mathbf{1}}+\left(a_{2}-b_{2}\right) \mathbf{v}_{\mathbf{2}}+\left(a_{3}-b_{3}\right) \mathbf{v}_{\mathbf{3}}+ & & \\
& \cdots+\left(a_{m}-b_{m}\right) \mathbf{v}_{\mathbf{m}} & & \text { Property C 275, Property DSA 276 }
\end{aligned}
$$

But this is a relation of linear dependence on a linearly independent set of vectors (Definition RLD 305)! Now we are using the other assumption about B, that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ is a linearly independent set. So by Definition LI 305 it must happen that the scalars are all zero. That is,

$$
\begin{array}{rrrrr}
\left(a_{1}-b_{1}\right)=0 & \left(a_{2}-b_{2}\right)=0 & \left(a_{3}-b_{3}\right)=0 & \cdots & \left(a_{m}-b_{m}\right)=0 \\
a_{1}=b_{1} & a_{2}=b_{2} & a_{3}=b_{3} & \cdots & a_{m}=b_{m}
\end{array}
$$

And so we find that the scalars are unique.
This is a very typical use of the hypothesis that a set is linearly independent - obtain a relation of linear dependence and then conclude that the scalars must all be zero. The result of this theorem tells us that we can write any vector in a vector space as a linear combination of the vectors in a linearly independent spanning set, but only just. There is only enough raw material in the spanning set to write each vector one way as a linear combination. So in this sense, we could call a linearly independent spanning set a "minimal spanning set." These sets are so important that we will give them a simpler name ("basis") and explore their properties further in the next section.

Subsection READ

Reading Questions

1. Is the set of matrices below linearly independent or linearly dependent in the vector space M_{22} ? Why or why not?

$$
\left\{\left[\begin{array}{cc}
1 & 3 \\
-2 & 4
\end{array}\right],\left[\begin{array}{cc}
-2 & 3 \\
3 & -5
\end{array}\right],\left[\begin{array}{cc}
0 & 9 \\
-1 & 3
\end{array}\right]\right\}
$$

2. Explain the difference between the following two uses of the term "span":
(a) S is a subset of the vector space V and the span of S is a subspace of V.
(b) W is subspace of the vector space Y and T spans W.
3. The set

$$
S=\left\{\left[\begin{array}{l}
6 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
8 \\
2
\end{array}\right]\right\}
$$

is linearly independent and spans \mathbb{C}^{3}. Write the vector $\mathbf{x}=\left[\begin{array}{c}-6 \\ 2 \\ 2\end{array}\right]$ a linear combination of the elements of S. Quote the relevant theorem that tells you how many ways are there to answer this question.

Subsection EXC
 Exercises
 π

C20 In the vector space of 2×2 matrices, M_{22}, determine if the set S below is linearly independent.

$$
S=\left\{\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right],\left[\begin{array}{cc}
0 & 4 \\
-1 & 2
\end{array}\right],\left[\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right]\right\}
$$

Contributed by Robert Beezer Solution 318
C21 In the crazy vector space C Example CVS 279$)$, is the set $S=\{(0,2),(2,8)\}$ linearly independent?
Contributed by Robert Beezer Solution 318
C22 In the vector space of polynomials P_{3}, determine if the set S is linearly independent or linearly dependent.

$$
S=\left\{2+x-3 x^{2}-8 x^{3}, 1+x+x^{2}+5 x^{3}, 3-4 x^{2}-7 x^{3}\right\}
$$

Contributed by Robert Beezer Solution 319
C23 Determine if the set $S=\{(3,1),(7,3)\}$ is linearly independent in the crazy vector space C Example CVS 279).
Contributed by Robert Beezer Solution 319
C30 In Example LIM32 307, find another nontrivial relation of linear dependence on the linearly dependent set of 3×2 matrices, S.
Contributed by Robert Beezer
C40 Determine if the set $T=\left\{x^{2}-x+5,4 x^{3}-x^{2}+5 x, 3 x+2\right\}$ spans the vector space of polynomials with degree 4 or less, P_{4}.
Contributed by Robert Beezer Solution 319
C41 The set W is a subspace of M_{22}, the vector space of all 2×2 matrices. Prove that S is a spanning set for W.

$$
W=\left\{\left.\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \right\rvert\, 2 a-3 b+4 c-d=0\right\} \quad S=\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
0 & -3
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 4
\end{array}\right]\right\}
$$

Contributed by Robert Beezer Solution 319
C42 Determine if the set $S=\{(3,1),(7,3)\}$ spans the crazy vector space C (Example CVS 279).
Contributed by Robert Beezer Solution 320
M10 Halfway through Example SSP4 310, we need to show that the system of equations

$$
\mathcal{L S}\left(\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & -8 \\
0 & 1 & -6 & 24 \\
1 & -4 & 12 & -32 \\
-2 & 4 & -8 & 16
\end{array}\right],\left[\begin{array}{l}
a \\
b \\
c \\
d \\
e
\end{array}\right]\right)
$$

is consistent for every choice of the vector of constants for which $16 a+8 b+4 c+2 d+e=0$.
Express the column space of the coefficient matrix of this system as a null space, using Theorem FS 259. From this use Theorem CSCS 232 to establish that the system is always consistent. Notice that
this approach removes from Example SSP4 [310] the need to row-reduce a symbolic matrix. Contributed by Robert Beezer Solution 320]

Subsection SOL
 Solutions

C20 Contributed by Robert Beezer Statement 316
Begin with a relation of linear dependence on the vectors in S and massage it according to the definitions of vector addition and scalar multiplication in M_{22},

$$
\begin{aligned}
\mathcal{O} & =a_{1}\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right]+a_{2}\left[\begin{array}{cc}
0 & 4 \\
-1 & 2
\end{array}\right]+a_{3}\left[\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] } & =\left[\begin{array}{cc}
2 a_{1}+4 a_{3} & -a_{1}+4 a_{2}+2 a_{3} \\
a_{1}-a_{2}+a_{3} & 3 a_{1}+2 a_{2}+3 a_{3}
\end{array}\right]
\end{aligned}
$$

By our definition of matrix equality (Definition ME 177) we arrive at a homogeneous system of linear equations,

$$
\begin{array}{r}
2 a_{1}+4 a_{3}=0 \\
-a_{1}+4 a_{2}+2 a_{3}=0 \\
a_{1}-a_{2}+a_{3}=0 \\
3 a_{1}+2 a_{2}+3 a_{3}=0
\end{array}
$$

The coefficient matrix of this system row-reduces to the matrix,

$$
\left[\begin{array}{ccc}
\boxed{1} & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & \boxed{1} \\
0 & 0 & 0
\end{array}\right]
$$

and from this we conclude that the only solution is $a_{1}=a_{2}=a_{3}=0$. Since the relation of linear dependence (Definition RLD 305) is trivial, the set S is linearly independent (Definition LI 305).

C21 Contributed by Robert Beezer Statement 316
We begin with a relation of linear dependence using unknown scalars a and b. We wish to know if these scalars must both be zero. Recall that the zero vector in C is $(-1,-1)$ and that the definitions of vector addition and scalar multiplication are not what we might expect.

$$
\begin{array}{rlrl}
\mathbf{0} & =(-1,-1) & \\
& =a(0,2)+b(2,8) & & \text { Definition RLD 305 } \\
& =(0 a+a-1,2 a+a-1)+(2 b+b-1,8 b+b-1) & & \text { Scalar mult., Example CVS 279] } \\
& =(a-1,3 a-1)+(3 b-1,9 b-1) & & \\
& =(a-1+3 b-1+1,3 a-1+9 b-1+1) & & \\
& =(a+3 b-1,3 a+9 b-1) & &
\end{array}
$$

From this we obtain two equalities, which can be converted to a homogeneous system of equations,

$$
\begin{array}{rr}
-1 & =a+3 b-1 \\
-1 & =3 a+9 b-1
\end{array} r a+3 b=0
$$

This homogeneous system has a singular coefficient matrix (Theorem SMZD 383]), and so has more than just the trivial solution (Definition NM 67]). Any nontrivial solution will give us a nontrivial relation of linear dependence on S. So S is linearly dependent (Definition LI 305).

C22 Contributed by Robert Beezer Statement 316
Begin with a relation of linear dependence (Definition RLD (305),

$$
a_{1}\left(2+x-3 x^{2}-8 x^{3}\right)+a_{2}\left(1+x+x^{2}+5 x^{3}\right)+a_{3}\left(3-4 x^{2}-7 x^{3}\right)=\mathbf{0}
$$

Massage according to the definitions of scalar multiplication and vector addition in the definition of P_{3} (Example VSP 277) and use the zero vector dro this vector space,

$$
\left(2 a_{1}+a_{2}+3 a_{3}\right)+\left(a_{1}+a_{2}\right) x+\left(-3 a_{1}+a_{2}-4 a_{3}\right) x^{2}+\left(-8 a_{1}+5 a_{2}-7 a_{3}\right) x^{3}=0+0 x+0 x^{2}+0 x^{3}
$$

The definition of the equality of polynomials allows us to deduce the following four equations,

$$
\begin{array}{r}
2 a_{1}+a_{2}+3 a_{3}=0 \\
a_{1}+a_{2}=0 \\
-3 a_{1}+a_{2}-4 a_{3}=0 \\
-8 a_{1}+5 a_{2}-7 a_{3}=0
\end{array}
$$

Row-reducing the coefficient matrix of this homogeneous system leads to the unique solution $a_{1}=a_{2}=$ $a_{3}=0$. So the only relation of linear dependence on S is the trivial one, and this is linear independence for S (Definition LI 305).

C23 Contributed by Robert Beezer Statement 316
Notice, or discover, that the following gives a nontrivial relation of linear dependence on S in C, so by Definition LI 305, the set S is linearly dependent.

$$
2(3,1)+(-1)(7,3)=(7,3)+(-9,-5)=(-1,-1)=\mathbf{0}
$$

C40 Contributed by Robert Beezer Statement 316
The vector space P_{4} has dimension 5 by Theorem DP [339]. Since T contains only 3 vectors, and $3<5$, Theorem G 349 tells us that T does not span P_{5}.

C41 Contributed by Robert Beezer Statement 316
We want to show that $W=\langle S\rangle$ (Definition TSVS 310), which is an equality of sets (Definition SE 670).
First, show that $\langle S\rangle \subseteq W$. Begin by checking that each of the three matrices in S is a member of the set W. Then, since W is a vector space, the closure properties (Property AC 275, Property SC 275) guarantee that every linear combination of elements of S remains in W.

Second, show that $W \subseteq\langle S\rangle$. We want to convince ourselves that an arbitrary element of W is a linear combination of elements of S. Choose

$$
\mathbf{x}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in W
$$

The values of a, b, c, d are not totally arbitary, since membership in W requires that $2 a-3 b+4 c-d=0$. Now, rewrite as follows,

$$
\begin{array}{rlr}
\mathbf{x} & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & \\
& =\left[\begin{array}{cc}
a & b \\
c & 2 a-3 b+4 c
\end{array}\right] & \\
& =\left[\begin{array}{cc}
a & 0 \\
0 & 2 a
\end{array}\right]+\left[\begin{array}{cc}
0 & b \\
0 & -3 b
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
c & 4 c
\end{array}\right] & \\
& =a\left[\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right]+b\left[\begin{array}{cc}
0 & 1 \\
0 & -3
\end{array}\right]+c\left[\begin{array}{cc}
0 & 0 \\
1 & 4
\end{array}\right] & \\
& \in\langle S\rangle & \\
\text { Definition MA } 177 \\
\hline
\end{array}
$$

C42 Contributed by Robert Beezer Statement 316
We will try to show that S spans C. Let (x, y) be an arbitrary element of C and search for scalars a_{1} and a_{2} such that

$$
\begin{aligned}
(x, y) & =a_{1}(3,1)+a_{2}(7,3) \\
& =\left(4 a_{1}-1,2 a_{1}-1\right)+\left(8 a_{2}-1,4 a_{2}-1\right) \\
& =\left(4 a_{1}+8 a_{2}-1,2 a_{1}+4 a_{2}-1\right)
\end{aligned}
$$

Equality in C leads to the system

$$
\begin{aligned}
& 4 a_{1}+8 a_{2}=x+1 \\
& 2 a_{1}+4 a_{2}=y+1
\end{aligned}
$$

This system has a singular coefficient matrix whose column space is simply $\left\langle\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\rangle$. So any choice of x and y that causes the column vector $\left[\begin{array}{l}x+1 \\ y+1\end{array}\right]$ to lie outside the column space will lead to an inconsistent system, and hence create an element (x, y) that is not in the span of S. So S does not span C.

For example, choose $x=0$ and $y=5$, and then we can see that $\left[\begin{array}{l}1 \\ 6\end{array}\right] \notin\left\langle\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\rangle$ and we know that $(0,5)$ cannot be written as a linear combination of the vectors in S. A shorter solution might begin by asserting that $(0,5)$ is not in $\langle S\rangle$ and then establishing this claim alone.
M10 Contributed by Robert Beezer Statement 316
Theorem FS 259 provides the matrix

$$
L=\left[\begin{array}{|ccccc}
1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{16}
\end{array}\right]
$$

and so if A denotes the coefficient matrix of the system, then $\mathcal{C}(A)=\mathcal{N}(L)$. The single homogeneous equation in $\mathcal{L S}(L, \mathbf{0})$ is equivalent to the condition on the vector of constants (use a, b, c, d, e as variables and then multiply by 16).

Section B
 Bases

A basis of a vector space is one of the most useful concepts in linear algebra. It often provides a finite description of an infinite vector space.

Subsection B
 Bases
 $\pi+$

We now have all the tools in place to define a basis of a vector space.

Definition B

Basis

Suppose V is a vector space. Then a subset $S \subseteq V$ is a basis of V if it is linearly independent and spans V.

So, a basis is a linearly independent spanning set for a vector space. The requirement that the set spans V insures that S has enough raw material to build V, while the linear independence requirement insures that we do not have any more raw material than we need. As we shall see soon in Section D 335, a basis is a minimal spanning set.

You may have noticed that we used the term basis for some of the titles of previous theorems (e.g. Theorem BNS 138, Theorem BCS [234, Theorem BRS 240) and if you review each of these theorems you will see that their conclusions provide linearly independent spanning sets for sets that we now recognize as subspaces of \mathbb{C}^{m}. Examples associated with these theorems include Example NSLIL 139, Example CSOCD 234 and Example IAS 241. As we will see, these three theorems will continue to be powerful tools, even in the setting of more general vector spaces.

Furthermore, the archetypes contain an abundance of bases. For each coefficient matrix of a system of equations, and for each archetype defined simply as a matrix, there is a basis for the null space, three bases for the column space, and a basis for the row space. For this reason, our subsequent examples will concentrate on bases for vector spaces other than \mathbb{C}^{m}. Notice that Definition B 321 does not preclude a vector space from having many bases, and this is the case, as hinted above by the statement that the archetypes contain three bases for the column space of a matrix. More generally, we can grab any basis for a vector space, multiply any one basis vector by a non-zero scalar and create a slightly different set that is still a basis. For "important" vector spaces, it will be convenient to have a collection of "nice" bases. When a vector space has a single particularly nice basis, it is sometimes called the standard basis though there is nothing precise enough about this term to allow us to define it formally - it is a question of style. Here are some nice bases for important vector spaces.

Theorem SUVB

Standard Unit Vectors are a Basis

The set of standard unit vectors for $\mathbb{C}^{m}($ Definition SUV 210$), B=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{m}\right\}=\left\{\mathbf{e}_{i} \mid 1 \leq i \leq m\right\}$ is a basis for the vector space \mathbb{C}^{m}.

Proof We must show that the set B is both linearly independent and a spanning set for \mathbb{C}^{m}. First, the vectors in B are, by Definition SUV 210, the columns of the identity matrix, which we know is nonsingular (since it row-reduces to the identity matrix, Theorem NMRRI 68]). And the columns of a nonsingular matrix are linearly independent by Theorem NMLIC 137.

Suppose we grab an arbitrary vector from \mathbb{C}^{m}, say

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{m}
\end{array}\right]
$$

Can we write \mathbf{v} as a linear combination of the vectors in B ? Yes, and quite simply.

$$
\begin{aligned}
{\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{m}
\end{array}\right] } & =v_{1}\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]+v_{2}\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right]+v_{3}\left[\begin{array}{c}
0 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right]+\cdots+v_{m}\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right] \\
\mathbf{v} & =v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+v_{3} \mathbf{e}_{3}+\cdots+v_{m} \mathbf{e}_{m}
\end{aligned}
$$

this shows that $\mathbb{C}^{m} \subseteq\langle B\rangle$, which is sufficient to show that B is a spanning set for \mathbb{C}^{m}.

Example BP

Bases for P_{n}
The vector space of polynomials with degree at most n, P_{n}, has the basis

$$
B=\left\{1, x, x^{2}, x^{3}, \ldots, x^{n}\right\}
$$

Another nice basis for P_{n} is

$$
C=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}, \ldots, 1+x+x^{2}+x^{3}+\cdots+x^{n}\right\}
$$

Checking that each of B and C is a linearly independent spanning set are good exercises.

Example BM

A basis for the vector space of matrices
In the vector space $M_{m n}$ of matrices (Example VSM 277) define the matrices $B_{k \ell}, 1 \leq k \leq m, 1 \leq \ell \leq n$ by

$$
\left[B_{k \ell}\right]_{i j}= \begin{cases}1 & \text { if } k=i, \ell=j \\ 0 & \text { otherwise }\end{cases}
$$

So these matrices have entries that are all zeros, with the exception of a lone entry that is one. The set of all $m n$ of them,

$$
B=\left\{B_{k \ell} \mid 1 \leq k \leq m, 1 \leq \ell \leq n\right\}
$$

forms a basis for $M_{m n}$.
The bases described above will often be convenient ones to work with. However a basis doesn't have to obviously look like a basis.

Example BSP4

A basis for a subspace of P_{4}
In Example SSP4 310 we showed that

$$
S=\left\{x-2, x^{2}-4 x+4, x^{3}-6 x^{2}+12 x-8, x^{4}-8 x^{3}+24 x^{2}-32 x+16\right\}
$$

is a spanning set for $W=\left\{p(x) \mid p \in P_{4}, p(2)=0\right\}$. We will now show that S is also linearly independent in W. Begin with a relation of linear dependence,

$$
\begin{aligned}
0+0 x+0 x^{2}+0 x^{3}+0 x^{4}= & \alpha_{1}(x-2)+\alpha_{2}\left(x^{2}-4 x+4\right) \\
& +\alpha_{3}\left(x^{3}-6 x^{2}+12 x-8\right)+\alpha_{4}\left(x^{4}-8 x^{3}+24 x^{2}-32 x+16\right) \\
= & \alpha_{4} x^{4}+\left(\alpha_{3}-8 \alpha_{4}\right) x^{3}+\left(\alpha_{2}-6 \alpha_{3}+24 \alpha_{4}\right) x^{2} \\
& +\left(\alpha_{1}-4 \alpha_{2}+12 \alpha_{3}-32 \alpha_{4}\right) x+\left(-2 \alpha_{1}+4 \alpha_{2}-8 \alpha_{3}+16 \alpha_{4}\right)
\end{aligned}
$$

Equating coefficients (vector equality in P_{4}) gives the homogeneous system of five equations in four variables,

$$
\begin{aligned}
\alpha_{4} & =0 \\
\alpha_{3}-8 \alpha_{4} & =0 \\
\alpha_{2}-6 \alpha_{3}+24 \alpha_{4} & =0 \\
\alpha_{1}-4 \alpha_{2}+12 \alpha_{3}-32 \alpha_{4} & =0 \\
-2 \alpha_{1}+4 \alpha_{2}-8 \alpha_{3}+16 \alpha_{4} & =0
\end{aligned}
$$

We form the coefficient matrix, and row-reduce to obtain a matrix in reduced row-echelon form

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

With only the trivial solution to this homogeneous system, we conclude that only scalars that will form a relation of linear dependence are the trivial ones, and therefore the set S is linearly independent Definition LI 305). Finally, S has earned the right to be called a basis for W (Definition B 321).

Example BSM22

A basis for a subspace of M_{22}
In Example SSM22 311 we discovered that

$$
Q=\left\{\left[\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-4 & 1
\end{array}\right]\right\}
$$

is a spanning set for the subspace

$$
Z=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a+3 b-c-5 d=0,-2 a-6 b+3 c+14 d=0\right\}
$$

of the vector space of all 2×2 matrices, M_{22}. If we can also determine that Q is linearly independent in Z (or in M_{22}), then it will qualify as a basis for Z. Let's begin with a relation of linear dependence.

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] } & =\alpha_{1}\left[\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right]+\alpha_{2}\left[\begin{array}{cc}
1 & 0 \\
-4 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3 \alpha_{1}+\alpha_{2} & \alpha_{1} \\
-4 \alpha_{2} & \alpha_{2}
\end{array}\right]
\end{aligned}
$$

Using our definition of matrix equality (Definition ME 177) we equate corresponding entries and get a homogeneous system of four equations in two variables,

$$
-3 \alpha_{1}+\alpha_{2}=0
$$

$$
\begin{array}{r}
\alpha_{1}=0 \\
-4 \alpha_{2}=0 \\
\alpha_{2}=0
\end{array}
$$

We could row-reduce the coefficient matrix of this homogeneous system, but it is not necessary. The second and fourth equations tell us that $\alpha_{1}=0, \alpha_{2}=0$ is the only solution to this homogeneous system. This qualifies the set Q as being linearly independent, since the only relation of linear dependence is trivial (Definition LI 305). Therefore Q is a basis for Z (Definition B 321).

Example BC

Basis for the crazy vector space

In Example LIC 309 and Example SSC 312] we determined that the set $R=\{(1,0),(6,3)\}$ from the crazy vector space, C Example CVS [279]), is linearly independent and is a spanning set for C. By Definition B 321 we see that R is a basis for C.

We have seen that several of the sets associated with a matrix are subspaces of vector spaces of column vectors. Specifically these are the null space (Theorem NSMS 293), column space Theorem CSMS 299), row space (Theorem RSMS 299) and left null space (Theorem LNSMS 300). As subspaces they are vector spaces (Definition S [289]) and it is natural to ask about bases for these vector spaces. Theorem BNS 138, Theorem BCS 234, Theorem BRS 240 each have conclusions that provide linearly independent spanning sets for (respectively) the null space, column space, and row space. Notice that each of these theorems contains the word "basis" in its title, even though we did not know the precise meaning of the word at the time. To find a basis for a left null space we can use the definition of this subspace as a null space (Definition LNS 253) and apply Theorem BNS 138. Or Theorem FS 259 tells us that the left null space can be expressed as a row space and we can then use Theorem BRS 240].

Theorem BS 154 is another early result that provides a linearly independent spanning set (i.e. a basis) as its conclusion. If a vector space of column vectors can be expressed as a span of a set of column vectors, then Theorem BS 154 can be employed in a straightforward manner to quickly yield a basis.

Subsection BSCV
 Bases for Spans of Column Vectors

We have seen several examples of bases in different vector spaces. In this subsection, and the next Subsection B.BNM 326), we will consider building bases for \mathbb{C}^{m} and its subspaces.

Suppose we have a subspace of \mathbb{C}^{m} that is expressed as the span of a set of vectors, S, and S is not necessarily linearly independent, or perhaps not very attractive. Theorem REMRS 239 says that row-equivalent matrices have identical row spaces, while Theorem BRS 240 says the nonzero rows of a matrix in reduced row-echelon form are a basis for the row space. These theorems together give us a great computational tool for quickly finding a basis for a subspace that is expressed originally as a span.

Example RSB

Row space basis

When we first defined the span of a set of column vectors, in Example SCAD 119 we looked at the set

$$
W=\left\langle\left\{\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
7 \\
-5 \\
4
\end{array}\right],\left[\begin{array}{l}
-7 \\
-6 \\
-5
\end{array}\right]\right\}\right\rangle
$$

with an eye towards realizing W as the span of a smaller set. By building relations of linear dependence (though we did not know them by that name then) we were able to remove two vectors and write W as
the span of the other two vectors. These two remaining vectors formed a linearly independent set, even though we did not know that at the time.

Now we know that W is a subspace and must have a basis. Consider the matrix, C, whose rows are the vectors in the spanning set for W,

$$
C=\left[\begin{array}{ccc}
2 & -3 & 1 \\
1 & 4 & 1 \\
7 & -5 & 4 \\
-7 & -6 & -5
\end{array}\right]
$$

Then, by Definition RSM 237, the row space of C will be $W, \mathcal{R}(C)=W$. Theorem BRS 240 tells us that if we row-reduce C, the nonzero rows of the row-equivalent matrix in reduced row-echelon form will be a basis for $\mathcal{R}(C)$, and hence a basis for W. Let's do it - C row-reduces to

$$
\left[\begin{array}{ccc}
1 & 0 & \frac{7}{11} \\
0 & \boxed{1} & \frac{1}{11} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

If we convert the two nonzero rows to column vectors then we have a basis,

$$
B=\left\{\left[\begin{array}{c}
1 \\
0 \\
\frac{7}{11}
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
\frac{1}{11}
\end{array}\right]\right\}
$$

and

$$
W=\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
\frac{7}{11}
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
\frac{1}{11}
\end{array}\right]\right\}\right\rangle
$$

For aesthetic reasons, we might wish to multiply each vector in B by 11, which will not change the spanning or linear independence properties of B as a basis. Then we can also write

$$
W=\left\langle\left\{\left[\begin{array}{c}
11 \\
0 \\
7
\end{array}\right],\left[\begin{array}{c}
0 \\
11 \\
1
\end{array}\right]\right\}\right\rangle
$$

Example IAS 241 provides another example of this flavor, though now we can notice that X is a subspace, and that the resulting set of three vectors is a basis. This is such a powerful technique that we should do one more example.

Example RS

Reducing a span

In Example RSC5 150 we began with a set of $n=4$ vectors from \mathbb{C}^{5},

$$
R=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
-7 \\
6 \\
-11 \\
-2
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
2 \\
1 \\
6
\end{array}\right]\right\}
$$

and defined $V=\langle R\rangle$. Our goal in that problem was to find a relation of linear dependence on the vectors in R, solve the resulting equation for one of the vectors, and re-express V as the span of a set of three vectors.

Here is another way to accomplish something similar. The row space of the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -1 & 3 & 2 \\
2 & 1 & 3 & 1 & 2 \\
0 & -7 & 6 & -11 & -2 \\
4 & 1 & 2 & 1 & 6
\end{array}\right]
$$

is equal to $\langle R\rangle$. By Theorem BRS 240 we can row-reduce this matrix, ignore any zero rows, and use the non-zero rows as column vectors that are a basis for the row space of A. Row-reducing A creates the matrix

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -\frac{1}{17} & \frac{30}{17} \\
0 & 1 & 0 & \frac{25}{17} & -\frac{2}{17} \\
0 & 0 & 1 & -\frac{2}{17} & -\frac{8}{17} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
-\frac{1}{17} \\
\frac{30}{17}
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
\frac{25}{17} \\
-\frac{2}{17}
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-\frac{2}{17} \\
-\frac{8}{17}
\end{array}\right]\right\}
$$

is a basis for V. Our theorem tells us this is a basis, there is no need to verify that the subspace spanned by three vectors (rather than four) is the identical subspace, and there is no need to verify that we have reached the limit in reducing the set, since the set of three vectors is guaranteed to be linearly independent.

Subsection BNM
 Bases and Nonsingular Matrices

A quick source of diverse bases for \mathbb{C}^{m} is the set of columns of a nonsingular matrix.
Theorem CNMB

Columns of Nonsingular Matrix are a Basis

Suppose that A is a square matrix of size m. Then the columns of A are a basis of \mathbb{C}^{m} if and only if A is nonsingular.
Proof (\Rightarrow) Suppose that the columns of A are a basis for \mathbb{C}^{m}. Then Definition B 321 says the set of columns is linearly independent. Theorem NMLIC 137 then says that A is nonsingular.
(\Leftarrow) Suppose that A is nonsingular. Then by Theorem NMLIC 137 this set of columns is linearly independent. Theorem CSNM [236] says that for a nonsingular matrix, $\mathcal{C}(A)=\mathbb{C}^{m}$. This is equivalent to saying that the columns of A are a spanning set for the vector space \mathbb{C}^{m}. As a linearly independent spanning set, the columns of A qualify as a basis for \mathbb{C}^{m} (Definition B 321).

Example CABAK

Columns as Basis, Archetype K
Archetype K 733 is the 5×5 matrix

$$
K=\left[\begin{array}{ccccc}
10 & 18 & 24 & 24 & -12 \\
12 & -2 & -6 & 0 & -18 \\
-30 & -21 & -23 & -30 & 39 \\
27 & 30 & 36 & 37 & -30 \\
18 & 24 & 30 & 30 & -20
\end{array}\right]
$$

which is row-equivalent to the 5×5 identity matrix I_{5}. So by Theorem NMRRI 68, K is nonsingular. Then Theorem CNMB 326 says the set

$$
\left\{\left[\begin{array}{c}
10 \\
12 \\
-30 \\
27 \\
18
\end{array}\right],\left[\begin{array}{c}
18 \\
-2 \\
-21 \\
30 \\
24
\end{array}\right],\left[\begin{array}{c}
24 \\
-6 \\
-23 \\
36 \\
30
\end{array}\right],\left[\begin{array}{c}
24 \\
0 \\
-30 \\
37 \\
30
\end{array}\right],\left[\begin{array}{c}
-12 \\
-18 \\
39 \\
-30 \\
-20
\end{array}\right]\right\}
$$

is a (novel) basis of \mathbb{C}^{5}.
Perhaps we should view the fact that the standard unit vectors are a basis (Theorem SUVB 321) as just a simple corollary of Theorem CNMB 326? (See Technique LC 682.)

With a new equivalence for a nonsingular matrix, we can update our list of equivalences.

Theorem NME5

Nonsingular Matrix Equivalences, Round 5

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{0\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.

Proof With a new equivalence for a nonsingular matrix in Theorem CNMB 326 we can expand Theorem NME4 237.

Subsection OBC
 Orthonormal Bases and Coordinates

We learned about orthogonal sets of vectors in \mathbb{C}^{m} back in Section O 163, and we also learned that orthogonal sets are automatically linearly independent (Theorem OSLI 170). When an orthogonal set also spans a subspace of \mathbb{C}^{m}, then the set is a basis. And when the set is orthonormal, then the set is an incredibly nice basis. We will back up this claim with a theorem, but first consider how you might manufacture such a set.

Suppose that W is a subspace of \mathbb{C}^{m} with basis B. Then B spans W and is a linearly independent set of nonzero vectors. We can apply the Gram-Schmidt Procedure (Theorem GSPCV 170) and obtain a linearly independent set T such that $\langle T\rangle=\langle B\rangle=W$ and T is orthogonal. In other words, T is a basis for W, and is an orthogonal set. By scaling each vector of T to norm 1 , we can convert T into an orthonormal set, without destroying the properties that make it a basis of W. In short, we can convert any basis into an orthonormal basis. Example GSTV 172, followed by Example ONTV 173, illustrates this process.

Unitary matrices (Definition UM 224) are another good source of orthonormal bases (and vice versa). Suppose that Q is a unitary matrix of size n. Then the n columns of Q form an orthonormal set Theorem CUMOS 225) that is therefore linearly independent (Theorem OSLI 170). Since Q is invertible (Theorem UMI 225]), we know Q is nonsingular (Theorem NI 223), and then the columns of Q span \mathbb{C}^{n} Theorem CSNM 236). So the columns of a unitary matrix of size n are an orthonormal basis for \mathbb{C}^{n}.

Why all the fuss about orthonormal bases? Theorem VRRB 314 told us that any vector in a vector space could be written, uniquely, as a linear combination of basis vectors. For an orthonormal basis, finding the scalars for this linear combination is extremely easy, and this is the content of the next theorem. Furthermore, with vectors written this way (as linear combinations of the elements of an orthonormal set) certain computations and analysis become much easier. Here's the promised theorem.

Theorem COB

Coordinates and Orthonormal Bases

Suppose that $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{p}\right\}$ is an orthonormal basis of the subspace W of \mathbb{C}^{m}. For any $\mathbf{w} \in W$,

$$
\mathbf{w}=\left\langle\mathbf{w}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\langle\mathbf{w}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}+\left\langle\mathbf{w}, \mathbf{v}_{3}\right\rangle \mathbf{v}_{3}+\cdots+\left\langle\mathbf{w}, \mathbf{v}_{p}\right\rangle \mathbf{v}_{p}
$$

Proof Because B is a basis of W, Theorem VRRB 314 tells us that we can write \mathbf{w} uniquely as a linear combination of the vectors in B. So it is not this aspect of the conclusion that makes this theorem interesting. What is interesting is that the particular scalars are so easy to compute. No need to solve big systems of equations - just do an inner product of \mathbf{w} with \mathbf{v}_{i} to arrive at the coefficient of \mathbf{v}_{i} in the linear combination.

So begin the proof by writing \mathbf{w} as a linear combination of the vectors in B, using unknown scalars,

$$
\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{p} \mathbf{v}_{p}
$$

and compute,

$$
\begin{aligned}
\left\langle\mathbf{w}, \mathbf{v}_{i}\right\rangle & =\left\langle\sum_{k=1}^{p} a_{k} \mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle & & \\
& =\sum_{k=1}^{p}\left\langle a_{k} \mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle & & \text { Theorem IPVA } 165 \\
& =\sum_{k=1}^{p} a_{k}\left\langle\mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle & & \text { Theorem IPSM } 165 \\
& =a_{i}\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle+\sum_{k \neq i} a_{k}\left\langle\mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle & & \text { Isolate term with } k=i \\
& =a_{i}(1)+\sum_{k \neq i} a_{k}(0) & & T \text { orthonormal } \\
& =a_{i} & &
\end{aligned}
$$

So the (unique) scalars for the linear combination are indeed the inner products advertised in the conclusion of the theorem's statement.

Example CROB4

Coordinatization relative to an orthonormal basis, \mathbb{C}^{4}

The set

$$
\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}=\left\{\left[\begin{array}{c}
1+i \\
1 \\
1-i \\
i
\end{array}\right],\left[\begin{array}{c}
1+5 i \\
6+5 i \\
-7-i \\
1-6 i
\end{array}\right],\left[\begin{array}{c}
-7+34 i \\
-8-23 i \\
-10+22 i \\
30+13 i
\end{array}\right],\left[\begin{array}{c}
-2-4 i \\
6+i \\
4+3 i \\
6-i
\end{array}\right]\right\}
$$

was proposed, and partially verified, as an orthogonal set in Example AOS 169. Let's scale each vector to norm 1, so as to form an orthonormal basis of \mathbb{C}^{4}. (Notice that by Theorem OSLI 170 the set is linearly independent. Since we know the dimension of \mathbb{C}^{4} is 4 , Theorem G 349] tells us the set is just the right size to be a basis of \mathbb{C}^{4}.) The norms of these vectors are,

$$
\left\|\mathbf{x}_{1}\right\|=\sqrt{6} \quad\left\|\mathbf{x}_{2}\right\|=\sqrt{174} \quad\left\|\mathrm{x}_{3}\right\|=\sqrt{3451} \quad\left\|\mathrm{x}_{4}\right\|=\sqrt{119}
$$

So an orthonormal basis is

$$
\begin{aligned}
B & =\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\} \\
& =\left\{\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1+i \\
1-i \\
i
\end{array}\right], \frac{1}{\sqrt{174}}\left[\begin{array}{c}
1+5 i \\
6+5 i \\
-7-i \\
1-6 i
\end{array}\right], \frac{1}{\sqrt{3451}}\left[\begin{array}{c}
-7+34 i \\
-8-23 i \\
-10+22 i \\
30+13 i
\end{array}\right], \frac{1}{\sqrt{119}}\left[\begin{array}{c}
-2-4 i \\
6+i \\
4+3 i \\
6-i
\end{array}\right]\right\}
\end{aligned}
$$

Now, choose any vector from \mathbb{C}^{4}, say $\mathbf{w}=\left[\begin{array}{c}2 \\ -3 \\ 1 \\ 4\end{array}\right]$, and compute

$$
\left\langle\mathbf{w}, \mathbf{v}_{1}\right\rangle=\frac{-5 i}{\sqrt{6}}, \quad\left\langle\mathbf{w}, \mathbf{v}_{2}\right\rangle=\frac{-19+30 i}{\sqrt{174}}, \quad\left\langle\mathbf{w}, \mathbf{v}_{3}\right\rangle=\frac{120-211 i}{\sqrt{3451}}, \quad\left\langle\mathbf{w}, \mathbf{v}_{4}\right\rangle=\frac{6+12 i}{\sqrt{119}}
$$

then Theorem COB 328 guarantees that

$$
\begin{aligned}
{\left[\begin{array}{c}
2 \\
-3 \\
1 \\
4
\end{array}\right]=} & \frac{-5 i}{\sqrt{6}}\left(\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1+i \\
1 \\
1-i \\
i
\end{array}\right]\right)+\frac{-19+30 i}{\sqrt{174}}\left(\frac{1}{\sqrt{174}}\left[\begin{array}{c}
1+5 i \\
6+5 i \\
-7-i \\
1-6 i
\end{array}\right]\right) \\
& +\frac{120-211 i}{\sqrt{3451}}\left(\frac{1}{\sqrt{3451}}\left[\begin{array}{c}
-7+34 i \\
-8-23 i \\
-10+22 i \\
30+13 i
\end{array}\right]\right)+\frac{6+12 i}{\sqrt{119}}\left(\frac{1}{\sqrt{119}}\left[\begin{array}{c}
-2-4 i \\
6+i \\
4+3 i \\
6-i
\end{array}\right]\right)
\end{aligned}
$$

as you might want to check (if you have unlimited patience).
A slightly less intimidating example follows, in three dimensions and with just real numbers.

Example CROB3

Coordinatization relative to an orthonormal basis, \mathbb{C}^{3}

The set

$$
\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right\}
$$

is a linearly independent set, which the Gram-Schmidt Process Theorem GSPCV 170) converts to an orthogonal set, and which can then be converted to the orthonormal set,

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\}
$$

which is therefore an orthonormal basis of \mathbb{C}^{3}. With three vectors in \mathbb{C}^{3}, all with real number entries, the inner product (Definition IP [164) reduces to the usual "dot product" (or scalar product) and the
orthogonal pairs of vectors can be interpreted as perpendicular pairs of directions. So the vectors in B serve as replacements for our usual 3-D axes, or the usual 3-D unit vectors \vec{i}, \vec{j} and \vec{k}. We would like to decompose arbitrary vectors into "components" in the directions of each of these basis vectors. It is Theorem COB 328 that tells us how to do this.

Suppose that we choose $\mathbf{w}=\left[\begin{array}{c}2 \\ -1 \\ 5\end{array}\right]$. Compute

$$
\left\langle\mathbf{w}, \mathbf{v}_{1}\right\rangle=\frac{5}{\sqrt{6}} \quad\left\langle\mathbf{w}, \mathbf{v}_{2}\right\rangle=\frac{3}{\sqrt{2}} \quad\left\langle\mathbf{w}, \mathbf{v}_{3}\right\rangle=\frac{8}{\sqrt{3}}
$$

then Theorem COB 328 guarantees that

$$
\left[\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right]=\frac{5}{\sqrt{6}}\left(\frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right)+\frac{3}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)+\frac{8}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right)
$$

which you should be able to check easily, even if you do not have much patience.

Subsection READ
 Reading Questions

1. The matrix below is nonsingular. What can you now say about its columns?

$$
A=\left[\begin{array}{ccc}
-3 & 0 & 1 \\
1 & 2 & 1 \\
5 & 1 & 6
\end{array}\right]
$$

2. Write the vector $\mathbf{w}=\left[\begin{array}{c}6 \\ 6 \\ 15\end{array}\right]$ as a linear combination of the columns of the matrix A above. How many ways are there to answer this question?
3. Why is an orthonormal basis desirable?

Subsection EXC
 Exercises

C40 From Example RSB 324, form an arbitrary (and nontrivial) linear combination of the four vectors in the original spanning set for W. So the result of this computation is of course an element of W. As such, this vector should be a linear combination of the basis vectors in B. Find the (unique) scalars that provide this linear combination. Repeat with another linear combination of the original four vectors. Contributed by Robert Beezer Solution 333

C80 Prove that $\{(1,2),(2,3)\}$ is a basis for the crazy vector space C (Example CVS 279).
Contributed by Robert Beezer
M20 In Example BM 322 provide the verifications (linear independence and spanning) to show that B is a basis of $M_{m n}$.
Contributed by Robert Beezer Solution 332

Subsection SOL Solutions

M20 Contributed by Robert Beezer Statement 331
We need to establish the linear independence and spanning properties of the set

$$
B=\left\{B_{k \ell} \mid 1 \leq k \leq m, 1 \leq \ell \leq n\right\}
$$

relative to the vector space $M_{m n}$.
This proof is more transparent if you write out individual matrices in the basis with lots of zeros and dots and a lone one. But we don't have room for that here, so we will use summation notation. Think carefully about each step, especially when the double summations seem to "disappear." Begin with a relation of linear dependence, using double subscripts on the scalars to align with the basis elements.

$$
\mathcal{O}=\sum_{k=1}^{m} \sum_{\ell=1}^{n} \alpha_{k \ell} B_{k \ell}
$$

Now consider the entry in row i and column j for these equal matrices,

$$
\begin{aligned}
0 & =[\mathcal{O}]_{i j} & & \text { Definition ZM 180 } \\
& =\left[\sum_{k=1}^{m} \sum_{\ell=1}^{n} \alpha_{k \ell} B_{k \ell}\right]_{i j} & & \text { Definition ME 177 } \\
& =\sum_{k=1}^{m} \sum_{\ell=1}^{n}\left[\alpha_{k \ell} B_{k \ell}\right]_{i j} & & \\
& =\sum_{k=1}^{m} \sum_{\ell=1}^{n} \alpha_{k \ell}\left[B_{k \ell}\right]_{i j} & & \text { Definition MA 177 } \\
& =\alpha_{i j}\left[B_{i j}\right]_{i j} & & \text { Definition MSM 178 } \\
& =\alpha_{i j}(1) & & {\left[B_{k \ell}\right]_{i j}=0 \text { when }(k, \ell) \neq(i, j) } \\
& =\alpha_{i j} & & {\left[B_{i j}\right]_{i j}=1 }
\end{aligned}
$$

Since i and j were arbitrary, we find that each scalar is zero and so B is linearly independent Definition LI (305).

To establish the spanning property of B we need only show that an arbitrary matrix A can be written as a linear combination of the elements of B. So suppose that A is an arbitrary $m \times n$ matrix and consider the matrix C defined as a linear combination of the elements of B by

$$
C=\sum_{k=1}^{m} \sum_{\ell=1}^{n}[A]_{k \ell} B_{k \ell}
$$

Then,

$$
\begin{aligned}
{[C]_{i j} } & =\left[\sum_{k=1}^{m} \sum_{\ell=1}^{n}[A]_{k \ell} B_{k \ell}\right]_{i j} & & \text { Definition ME 177 } \\
& =\sum_{k=1}^{m} \sum_{\ell=1}^{n}\left[[A]_{k \ell} B_{k \ell}\right]_{i j} & & \text { Definition MA 177 } \\
& =\sum_{k=1}^{m} \sum_{\ell=1}^{n}[A]_{k \ell}\left[B_{k \ell}\right]_{i j} & & \text { Definition MSM 178 }
\end{aligned}
$$

$$
\begin{array}{ll}
=[A]_{i j}\left[B_{i j}\right]_{i j} & {\left[B_{k \ell}\right]_{i j}=0 \text { when }(k, \ell) \neq(i, j)} \\
=[A]_{i j}(1) & {\left[B_{i j}\right]_{i j}=1} \\
=[A]_{i j} &
\end{array}
$$

So by Definition ME 177, $A=C$, and therefore $A \in\langle B\rangle$. By Definition B 321, the set B is a basis of the vector space $M_{m n}$.

C40 Contributed by Robert Beezer Statement 331
An arbitrary linear combination is

$$
\mathbf{y}=3\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]+(-2)\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]+1\left[\begin{array}{c}
7 \\
-5 \\
4
\end{array}\right]+(-2)\left[\begin{array}{l}
-7 \\
-6 \\
-5
\end{array}\right]=\left[\begin{array}{c}
25 \\
-10 \\
15
\end{array}\right]
$$

(You probably used a different collection of scalars.) We want to write \mathbf{y} as a linear combination of

$$
B=\left\{\left[\begin{array}{c}
1 \\
0 \\
\frac{7}{11}
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
\frac{1}{11}
\end{array}\right]\right\}
$$

We could set this up as vector equation with variables as scalars in a linear combination of the vectors in B, but since the first two slots of B have such a nice pattern of zeros and ones, we can determine the necessary scalars easily and then double-check our answer with a computation in the third slot,

$$
25\left[\begin{array}{c}
1 \\
0 \\
\frac{7}{11}
\end{array}\right]+(-10)\left[\begin{array}{c}
0 \\
1 \\
\frac{1}{11}
\end{array}\right]=\left[\begin{array}{c}
25 \\
-10 \\
(25) \frac{7}{11}+(-10) \frac{1}{11}
\end{array}\right]=\left[\begin{array}{c}
25 \\
-10 \\
15
\end{array}\right]=\mathbf{y}
$$

Notice how the uniqueness of these scalars arises. They are forced to be 25 and -10 .

Section D

Dimension

Almost every vector space we have encountered has been infinite in size (an exception is Example VSS [279]). But some are bigger and richer than others. Dimension, once suitably defined, will be a measure of the size of a vector space, and a useful tool for studying its properties. You probably already have a rough notion of what a mathematical definition of dimension might be - try to forget these imprecise ideas and go with the new ones given here.

Subsection D
 Dimension
 $\pi 1$

Definition D

Dimension

Suppose that V is a vector space and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}\right\}$ is a basis of V. Then the dimension of V is defined by $\operatorname{dim}(V)=t$. If V has no finite bases, we say V has infinite dimension.
(This definition contains Notation D.)
This is a very simple definition, which belies its power. Grab a basis, any basis, and count up the number of vectors it contains. That's the dimension. However, this simplicity causes a problem. Given a vector space, you and I could each construct different bases - remember that a vector space might have many bases. And what if your basis and my basis had different sizes? Applying Definition D 335 we would arrive at different numbers! With our current knowledge about vector spaces, we would have to say that dimension is not "well-defined." Fortunately, there is a theorem that will correct this problem.

In a strictly logical progression, the next two theorems would precede the definition of dimension. Many subsequent theorems will trace their lineage back to the following fundamental result.

Theorem SSLD

Spanning Sets and Linear Dependence

Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}\right\}$ is a finite set of vectors which spans the vector space V. Then any set of $t+1$ or more vectors from V is linearly dependent.

Proof We want to prove that any set of $t+1$ or more vectors from V is linearly dependent. So we will begin with a totally arbitrary set of vectors from $V, R=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}$, where $m>t$. We will now construct a nontrivial relation of linear dependence on R.

Each vector $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}$ can be written as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}$ since S is a spanning set of V. This means there exist scalars $a_{i j}, 1 \leq i \leq t, 1 \leq j \leq m$, so that

$$
\begin{aligned}
& \mathbf{u}_{1}=a_{11} \mathbf{v}_{1}+a_{21} \mathbf{v}_{2}+a_{31} \mathbf{v}_{3}+\cdots+a_{t 1} \mathbf{v}_{t} \\
& \mathbf{u}_{2}=a_{12} \mathbf{v}_{1}+a_{22} \mathbf{v}_{2}+a_{32} \mathbf{v}_{3}+\cdots+a_{t 2} \mathbf{v}_{t} \\
& \mathbf{u}_{3}=a_{13} \mathbf{v}_{1}+a_{23} \mathbf{v}_{2}+a_{33} \mathbf{v}_{3}+\cdots+a_{t 3} \mathbf{v}_{t} \\
& \vdots \\
& \mathbf{u}_{m}=a_{1 m} \mathbf{v}_{1}+a_{2 m} \mathbf{v}_{2}+a_{3 m} \mathbf{v}_{3}+\cdots+a_{t m} \mathbf{v}_{t}
\end{aligned}
$$

Now we form, unmotivated, the homogeneous system of t equations in the m variables, $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$, where the coefficients are the just-discovered scalars $a_{i j}$,

$$
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 m} x_{m}=0
$$

$$
\begin{gathered}
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 m} x_{m}=0 \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 m} x_{m}=0 \\
\vdots \\
a_{t 1} x_{1}+a_{t 2} x_{2}+a_{t 3} x_{3}+\cdots+a_{t m} x_{m}=0
\end{gathered}
$$

This is a homogeneous system with more variables than equations (our hypothesis is expressed as $m>t$), so by Theorem HMVEI 59 there are infinitely many solutions. Choose a nontrivial solution and denote it by $x_{1}=c_{1}, x_{2}=c_{2}, x_{3}=c_{3}, \ldots, x_{m}=c_{m}$. As a solution to the homogeneous system, we then have

$$
\begin{gathered}
a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}+\cdots+a_{1 m} c_{m}=0 \\
a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}+\cdots+a_{2 m} c_{m}=0 \\
a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}+\cdots+a_{3 m} c_{m}=0 \\
\vdots \\
a_{t 1} c_{1}+a_{t 2} c_{2}+a_{t 3} c_{3}+\cdots+a_{t m} c_{m}=0
\end{gathered}
$$

As a collection of nontrivial scalars, $c_{1}, c_{2}, c_{3}, \ldots, c_{m}$ will provide the nontrivial relation of linear dependence we desire,

$$
\begin{aligned}
& c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}+\cdots+c_{m} \mathbf{u}_{m} \\
& =c_{1}\left(a_{11} \mathbf{v}_{1}+a_{21} \mathbf{v}_{2}+a_{31} \mathbf{v}_{3}+\cdots+a_{t 1} \mathbf{v}_{t}\right) \quad S \text { spans } V \\
& +c_{2}\left(a_{12} \mathbf{v}_{1}+a_{22} \mathbf{v}_{2}+a_{32} \mathbf{v}_{3}+\cdots+a_{t 2} \mathbf{v}_{t}\right) \\
& +c_{3}\left(a_{13} \mathbf{v}_{1}+a_{23} \mathbf{v}_{2}+a_{33} \mathbf{v}_{3}+\cdots+a_{t 3} \mathbf{v}_{t}\right) \\
& \vdots \\
& +c_{m}\left(a_{1 m} \mathbf{v}_{1}+a_{2 m} \mathbf{v}_{2}+a_{3 m} \mathbf{v}_{3}+\cdots+a_{t m} \mathbf{v}_{t}\right) \\
& =c_{1} a_{11} \mathbf{v}_{1}+c_{1} a_{21} \mathbf{v}_{2}+c_{1} a_{31} \mathbf{v}_{3}+\cdots+c_{1} a_{t 1} \mathbf{v}_{t} \\
& +c_{2} a_{12} \mathbf{v}_{1}+c_{2} a_{22} \mathbf{v}_{2}+c_{2} a_{32} \mathbf{v}_{3}+\cdots+c_{2} a_{t 2} \mathbf{v}_{t} \\
& +c_{3} a_{13} \mathbf{v}_{1}+c_{3} a_{23} \mathbf{v}_{2}+c_{3} a_{33} \mathbf{v}_{3}+\cdots+c_{3} a_{t 3} \mathbf{v}_{t} \\
& \vdots \\
& +c_{m} a_{1 m} \mathbf{v}_{1}+c_{m} a_{2 m} \mathbf{v}_{2}+c_{m} a_{3 m} \mathbf{v}_{3}+\cdots+c_{m} a_{t m} \mathbf{v}_{t} \\
& =\left(c_{1} a_{11}+c_{2} a_{12}+c_{3} a_{13}+\cdots+c_{m} a_{1 m}\right) \mathbf{v}_{1} \\
& +\left(c_{1} a_{21}+c_{2} a_{22}+c_{3} a_{23}+\cdots+c_{m} a_{2 m}\right) \mathbf{v}_{2} \\
& +\left(c_{1} a_{31}+c_{2} a_{32}+c_{3} a_{33}+\cdots+c_{m} a_{3 m}\right) \mathbf{v}_{3} \\
& \vdots \\
& +\left(c_{1} a_{t 1}+c_{2} a_{t 2}+c_{3} a_{t 3}+\cdots+c_{m} a_{t m}\right) \mathbf{v}_{t} \\
& =\left(a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}+\cdots+a_{1 m} c_{m}\right) \mathbf{v}_{1} \quad \text { Commutativity in } \mathbb{C} \\
& +\left(a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}+\cdots+a_{2 m} c_{m}\right) \mathbf{v}_{2} \\
& +\left(a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}+\cdots+a_{3 m} c_{m}\right) \mathbf{v}_{3} \\
& \vdots \\
& +\left(a_{t 1} c_{1}+a_{t 2} c_{2}+a_{t 3} c_{3}+\cdots+a_{t m} c_{m}\right) \mathbf{v}_{t} \\
& =0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+0 \mathbf{v}_{3}+\cdots+0 \mathbf{v}_{t} \quad c_{j} \text { as solution }
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbf{0}+\mathbf{0}+\mathbf{0}+\cdots+\mathbf{0} \\
& =\mathbf{0}
\end{aligned}
$$

$$
\begin{aligned}
& \hline \text { Theorem ZSSM } 282 \\
& \hline \text { Property Z } 276 \\
& \hline
\end{aligned}
$$

That does it. R has been undeniably shown to be a linearly dependent set.
The proof just given has some rather monstrous expressions in it, mostly owing to the double subscripts present. Now is a great opportunity to show the value of a more compact notation. We will rewrite the key steps of the previous proof using summation notation, resulting in a more economical presentation, and even greater insight into the key aspects of the proof. So here is an alternate proof - study it carefully. Proof (Alternate Proof of Theorem SSLD) We want to prove that any set of $t+1$ or more vectors from V is linearly dependent. So we will begin with a totally arbitrary set of vectors from V, $R=\left\{\mathbf{u}_{j} \mid 1 \leq j \leq m\right\}$, where $m>t$. We will now construct a nontrivial relation of linear dependence on R.

Each vector $\mathbf{u}_{\mathbf{j}}, 1 \leq j \leq m$ can be written as a linear combination of $\mathbf{v}_{i}, 1 \leq i \leq t$ since S is a spanning set of V. This means there are scalars $a_{i j}, 1 \leq i \leq t, 1 \leq j \leq m$, so that

$$
\mathbf{u}_{j}=\sum_{i=1}^{t} a_{i j} \mathbf{v}_{\mathbf{i}} \quad 1 \leq j \leq m
$$

Now we form, unmotivated, the homogeneous system of t equations in the m variables, $x_{j}, 1 \leq j \leq m$, where the coefficients are the just-discovered scalars $a_{i j}$,

$$
\sum_{j=1}^{m} a_{i j} x_{j}=0 \quad 1 \leq i \leq t
$$

This is a homogeneous system with more variables than equations (our hypothesis is expressed as $m>t$), so by Theorem HMVEI 59 there are infinitely many solutions. Choose one of these solutions that is not trivial and denote it by $x_{j}=c_{j}, 1 \leq j \leq m$. As a solution to the homogeneous system, we then have $\sum_{j=1}^{m} a_{i j} c_{j}=0$ for $1 \leq i \leq t$. As a collection of nontrivial scalars, $c_{j}, 1 \leq j \leq m$, will provide the nontrivial relation of linear dependence we desire,

$$
\begin{align*}
\sum_{j=1}^{m} c_{j} \mathbf{u}_{j} & =\sum_{j=1}^{m} c_{j}\left(\sum_{i=1}^{t} a_{i j} \mathbf{v}_{\mathbf{i}}\right) & & S \text { spans } V \\
& =\sum_{j=1}^{m} \sum_{i=1}^{t} c_{j} a_{i j} \mathbf{v}_{i} & & \text { Property DVA 276 } \\
& =\sum_{i=1}^{t} \sum_{j=1}^{m} c_{j} a_{i j} \mathbf{v}_{i} & & \text { Commutativity in } \mathbb{C} \\
& =\sum_{i=1}^{t} \sum_{j=1}^{m} a_{i j} c_{j} \mathbf{v}_{i} & & \text { Commutativity in } \mathbb{C} \\
& =\sum_{i=1}^{t}\left(\sum_{j=1}^{m} a_{i j} c_{j}\right) \mathbf{v}_{i} & & \\
& =\sum_{i=1}^{t} 0 \mathbf{v}_{i} & & c_{j} \text { as solution } \\
& =\sum_{i=1}^{t} \mathbf{0} & & \text { Theorem ZSSM 282 }
\end{align*}
$$

$$
=\mathbf{0}
$$

Property Z 276

That does it. R has been undeniably shown to be a linearly dependent set.
Notice how the swap of the two summations is so much easier in the third step above, as opposed to all the rearranging and regrouping that takes place in the previous proof. In about half the space. And there are no ellipses (...).

Theorem SSLD 335 can be viewed as a generalization of Theorem MVSLD 136. We know that \mathbb{C}^{m} has a basis with m vectors in it (Theorem SUVB 321), so it is a set of m vectors that spans \mathbb{C}^{m}. By Theorem SSLD 335, any set of more than m vectors from \mathbb{C}^{m} will be linearly dependent. But this is exactly the conclusion we have in Theorem MVSLD 136. Maybe this is not a total shock, as the proofs of both theorems rely heavily on Theorem HMVEI 59. The beauty of Theorem SSLD 335 is that it applies in any vector space. We illustrate the generality of this theorem, and hint at its power, in the next example.

Example LDP4

Linearly dependent set in P_{4}
In Example SSP4 310 we showed that

$$
S=\left\{x-2, x^{2}-4 x+4, x^{3}-6 x^{2}+12 x-8, x^{4}-8 x^{3}+24 x^{2}-32 x+16\right\}
$$

is a spanning set for $W=\left\{p(x) \mid p \in P_{4}, p(2)=0\right\}$. So we can apply Theorem SSLD 335 to W with $t=4$. Here is a set of five vectors from W, as you may check by verifying that each is a polynomial of degree 4 or less and has $x=2$ as a root,

$$
\begin{aligned}
T & =\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\} \subseteq W \\
p_{1} & =x^{4}-2 x^{3}+2 x^{2}-8 x+8 \\
p_{2} & =-x^{3}+6 x^{2}-5 x-6 \\
p_{3} & =2 x^{4}-5 x^{3}+5 x^{2}-7 x+2 \\
p_{4} & =-x^{4}+4 x^{3}-7 x^{2}+6 x \\
p_{5} & =4 x^{3}-9 x^{2}+5 x-6
\end{aligned}
$$

By Theorem SSLD 335 we conclude that T is linearly dependent, with no further computations.
Theorem SSLD 335 is indeed powerful, but our main purpose in proving it right now was to make sure that our definition of dimension (Definition D 335) is well-defined. Here's the theorem.

Theorem BIS

Bases have Identical Sizes

Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C have the same size.
Proof Suppose that C has more vectors than B. (Allowing for the possibility that C is infinite, we can replace C by a subset that has more vectors than B.) As a basis, B is a spanning set for V Definition B (321), so Theorem SSLD 335 says that C is linearly dependent. However, this contradicts the fact that as a basis C is linearly independent (Definition B (321). So C must also be a finite set, with size less than, or equal to, that of B.

Suppose that B has more vectors than C. As a basis, C is a spanning set for V (Definition B 321), so Theorem SSLD 335 says that B is linearly dependent. However, this contradicts the fact that as a basis B is linearly independent (Definition B 321). So C cannot be strictly smaller than B.

The only possibility left for the sizes of B and C is for them to be equal.
Theorem BIS 338 tells us that if we find one finite basis in a vector space, then they all have the same size. This (finally) makes Definition D 335 unambiguous.

Subsection DVS
 Dimension of Vector Spaces

We can now collect the dimension of some common, and not so common, vector spaces.

Theorem DCM

Dimension of \mathbb{C}^{m}
The dimension of \mathbb{C}^{m} Example VSCV 277) is m.
Proof Theorem SUVB 321 provides a basis with m vectors.

Theorem DP

Dimension of P_{n}

The dimension of P_{n} (Example VSP 277) is $n+1$.
Proof Example BP 322 provides two bases with $n+1$ vectors. Take your pick.

Theorem DM

Dimension of $M_{m n}$

The dimension of $M_{m n}$ (Example VSM 277) is $m n$.
Proof Example BM 322 provides a basis with $m n$ vectors.

Example DSM22

Dimension of a subspace of M_{22}

It should now be plausible that

$$
Z=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, 2 a+b+3 c+4 d=0,-a+3 b-5 c-d=0\right\}
$$

is a subspace of the vector space M_{22} Example VSM 277). (It is.) To find the dimension of Z we must first find a basis, though any old basis will do.

First concentrate on the conditions relating a, b, c and d. They form a homogeneous system of two equations in four variables with coefficient matrix

$$
\left[\begin{array}{cccc}
2 & 1 & 3 & 4 \\
-1 & 3 & -5 & -1
\end{array}\right]
$$

We can row-reduce this matrix to obtain

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 2 & 2 \\
0 & \boxed{1} & -1 & 0
\end{array}\right]
$$

Rewrite the two equations represented by each row of this matrix, expressing the dependent variables (a and b) in terms of the free variables (c and d), and we obtain,

$$
\begin{aligned}
a & =-2 c-2 d \\
b & =c
\end{aligned}
$$

We can now write a typical entry of Z strictly in terms of c and d, and we can decompose the result,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
-2 c-2 d & c \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
-2 c & c \\
c & 0
\end{array}\right]+\left[\begin{array}{cc}
-2 d & 0 \\
0 & d
\end{array}\right]=c\left[\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]
$$

this equation says that an arbitrary matrix in Z can be written as a linear combination of the two vectors in

$$
S=\left\{\left[\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

so we know that

$$
Z=\langle S\rangle=\left\langle\left\{\left[\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]\right\}\right\rangle
$$

Are these two matrices (vectors) also linearly independent? Begin with a relation of linear dependence on S,

$$
\begin{aligned}
a_{1}\left[\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right]+a_{2}\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right] & =\mathcal{O} \\
{\left[\begin{array}{cc}
-2 a_{1}-2 a_{2} & a_{1} \\
a_{1} & a_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

From the equality of the two entries in the last row, we conclude that $a_{1}=0, a_{2}=0$. Thus the only possible relation of linear dependence is the trivial one, and therefore S is linearly independent (Definition LI 305). So S is a basis for V (Definition B 321). Finally, we can conclude that $\operatorname{dim}(Z)=2$ Definition D (335) since S has two elements.

Example DSP4

Dimension of a subspace of P_{4}
In Example BSP4 322 we showed that

$$
S=\left\{x-2, x^{2}-4 x+4, x^{3}-6 x^{2}+12 x-8, x^{4}-8 x^{3}+24 x^{2}-32 x+16\right\}
$$

is a basis for $W=\left\{p(x) \mid p \in P_{4}, p(2)=0\right\}$. Thus, the dimension of W is four, $\operatorname{dim}(W)=4$.

Example DC

Dimension of the crazy vector space

In Example BC 324 we determined that the set $R=\{(1,0),(6,3)\}$ from the crazy vector space, C Example CVS 279), is a basis for C. By Definition D 335 we see that C has dimension 2, $\operatorname{dim}(C)=2$.

It is possible for a vector space to have no finite bases, in which case we say it has infinite dimension. Many of the best examples of this are vector spaces of functions, which lead to constructions like Hilbert spaces. We will focus exclusively on finite-dimensional vector spaces. OK, one infinite-dimensional example, and then we will focus exclusively on finite-dimensional vector spaces.

Example VSPUD

Vector space of polynomials with unbounded degree

Define the set P by

$$
P=\{p \mid p(x) \text { is a polynomial in } x\}
$$

Our operations will be the same as those defined for P_{n} (Example VSP 277).
With no restrictions on the possible degrees of our polynomials, any finite set that is a candidate for spanning P will come up short. We will give a proof by contradiction (Technique CD 678). To this end, suppose that the dimension of P is finite, say $\operatorname{dim}(P)=n$.

The set $T=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a linearly independent set (check this!) containing $n+1$ polynomials from P. However, a basis of P will be a spanning set of P containing n vectors. This situation is a contradiction of Theorem SSLD 335, so our assumption that P has finite dimension is false. Thus, we say $\operatorname{dim}(P)=\infty$.

Subsection RNM
 Rank and Nullity of a Matrix

For any matrix, we have seen that we can associate several subspaces - the null space Theorem NSMS [293]), the column space (Theorem CSMS 299), row space (Theorem RSMS 299) and the left null space Theorem LNSMS (300). As vector spaces, each of these has a dimension, and for the null space and column space, they are important enough to warrant names.

Definition NOM

Nullity Of a Matrix
Suppose that A is an $m \times n$ matrix. Then the nullity of A is the dimension of the null space of A, $n(A)=\operatorname{dim}(\mathcal{N}(A))$.
(This definition contains Notation NOM.)

Definition ROM
 Rank Of a Matrix

Suppose that A is an $m \times n$ matrix. Then the rank of A is the dimension of the column space of A, $r(A)=\operatorname{dim}(\mathcal{C}(A))$.
(This definition contains Notation ROM.)

Example RNM

Rank and nullity of a matrix

Let's compute the rank and nullity of

$$
A=\left[\begin{array}{ccccccc}
2 & -4 & -1 & 3 & 2 & 1 & -4 \\
1 & -2 & 0 & 0 & 4 & 0 & 1 \\
-2 & 4 & 1 & 0 & -5 & -4 & -8 \\
1 & -2 & 1 & 1 & 6 & 1 & -3 \\
2 & -4 & -1 & 1 & 4 & -2 & -1 \\
-1 & 2 & 3 & -1 & 6 & 3 & -1
\end{array}\right]
$$

To do this, we will first row-reduce the matrix since that will help us determine bases for the null space and column space.

$$
\left[\begin{array}{ccccccc}
1 & -2 & 0 & 0 & 4 & 0 & 1 \\
0 & 0 & \boxed{1} & 0 & 3 & 0 & -2 \\
0 & 0 & 0 & \boxed{1} & -1 & 0 & -3 \\
0 & 0 & 0 & 0 & 0 & \boxed{1} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From this row-equivalent matrix in reduced row-echelon form we record $D=\{1,3,4,6\}$ and $F=\{2,5,7\}$.
For each index in D, Theorem BCS 234 creates a single basis vector. In total the basis will have 4 vectors, so the column space of A will have dimension 4 and we write $r(A)=4$.

For each index in F, Theorem BNS 138 creates a single basis vector. In total the basis will have 3 vectors, so the null space of A will have dimension 3 and we write $n(A)=3$.

There were no accidents or coincidences in the previous example - with the row-reduced version of a matrix in hand, the rank and nullity are easy to compute.

Theorem CRN

Computing Rank and Nullity

Suppose that A is an $m \times n$ matrix and B is a row-equivalent matrix in reduced row-echelon form with r
nonzero rows. Then $r(A)=r$ and $n(A)=n-r$.
Proof Theorem BCS 234 provides a basis for the column space by choosing columns of A that correspond to the dependent variables in a description of the solutions to $\mathcal{L S}(A, \mathbf{0})$. In the analysis of B, there is one dependent variable for each leading 1 , one per nonzero row, or one per pivot column. So there are r column vectors in a basis for $\mathcal{C}(A)$.

Theorem BNS 138 provide a basis for the null space by creating basis vectors of the null space of A from entries of B, one for each independent variable, one per column with out a leading 1 . So there are $n-r$ column vectors in a basis for $n(A)$.

Every archetype Appendix A 685) that involves a matrix lists its rank and nullity. You may have noticed as you studied the archetypes that the larger the column space is the smaller the null space is. A simple corollary states this trade-off succinctly. (See Technique LC 682.)

Theorem RPNC

Rank Plus Nullity is Columns

Suppose that A is an $m \times n$ matrix. Then $r(A)+n(A)=n$.
Proof Let r be the number of nonzero rows in a row-equivalent matrix in reduced row-echelon form. By Theorem CRN [341,

$$
r(A)+n(A)=r+(n-r)=n
$$

When we first introduced r as our standard notation for the number of nonzero rows in a matrix in reduced row-echelon form you might have thought r stood for "rows." Not really - it stands for "rank"!

Subsection RNNM

Rank and Nullity of a Nonsingular Matrix

Let's take a look at the rank and nullity of a square matrix.

Example RNSM

Rank and nullity of a square matrix
The matrix

$$
E=\left[\begin{array}{ccccccc}
0 & 4 & -1 & 2 & 2 & 3 & 1 \\
2 & -2 & 1 & -1 & 0 & -4 & -3 \\
-2 & -3 & 9 & -3 & 9 & -1 & 9 \\
-3 & -4 & 9 & 4 & -1 & 6 & -2 \\
-3 & -4 & 6 & -2 & 5 & 9 & -4 \\
9 & -3 & 8 & -2 & -4 & 2 & 4 \\
8 & 2 & 2 & 9 & 3 & 0 & 9
\end{array}\right]
$$

is row-equivalent to the matrix in reduced row-echelon form,

With $n=7$ columns and $r=7$ nonzero rows Theorem CRN 341 tells us the rank is $r(E)=7$ and the nullity is $n(E)=7-7=0$.

The value of either the nullity or the rank are enough to characterize a nonsingular matrix.

Theorem RNNM

Rank and Nullity of a Nonsingular Matrix
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. The rank of A is $n, r(A)=n$.
3. The nullity of A is zero, $n(A)=0$.

Proof $(1 \Rightarrow 2)$ Theorem CSNM 236 says that if A is nonsingular then $\mathcal{C}(A)=\mathbb{C}^{n}$. If $\mathcal{C}(A)=\mathbb{C}^{n}$, then the column space has dimension n by Theorem DCM [339], so the rank of A is n. $(2 \Rightarrow 3)$ Suppose $r(A)=n$. Then Theorem RPNC 342 gives

$$
\begin{aligned}
n(A) & =n-r(A) & & \text { Theorem RPNC } 342 \\
& =n-n & & \text { Hypothesis } \\
& =0 & &
\end{aligned}
$$

$(3 \Rightarrow 1)$ Suppose $n(A)=0$, so a basis for the null space of A is the empty set. This implies that $\mathcal{N}(A)=\{\mathbf{0}\}$ and Theorem NMTNS 70 says A is nonsingular.

With a new equivalence for a nonsingular matrix, we can update our list of equivalences Theorem NME5 327) which now becomes a list requiring double digits to number.

Theorem NME6

Nonsingular Matrix Equivalences, Round 6

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{\mathbf{0}\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.

Proof Building on Theorem NME5 327 we can add two of the statements from Theorem RNNM 343 .

Subsection READ

Reading Questions

1. What is the dimension of the vector space P_{6}, the set of all polynomials of degree 6 or less?
2. How are the rank and nullity of a matrix related?
3. Explain why we might say that a nonsingular matrix has "full rank."

Subsection EXC
 Exercises

C20 The archetypes listed below are matrices, or systems of equations with coefficient matrices. For each, compute the nullity and rank of the matrix. This information is listed for each archetype (along with the number of columns in the matrix, so as to illustrate Theorem RPNC (342), and notice how it could have been computed immediately after the determination of the sets D and F associated with the reduced row-echelon form of the matrix.
Archetype A 689
Archetype B 694
Archetype C 699
Archetype D 703 Archetype E 707
Archetype F 711]

| Archetype G 716 Archetype H 720 |
| :--- | :--- | :--- |

Archetype I 724
Archetype J 728
Archetype K [733
Archetype L 737
Contributed by Robert Beezer
C30 For the matrix A below, compute the dimension of the null space of $A, \operatorname{dim}(\mathcal{N}(A))$.

$$
A=\left[\begin{array}{ccccc}
2 & -1 & -3 & 11 & 9 \\
1 & 2 & 1 & -7 & -3 \\
3 & 1 & -3 & 6 & 8 \\
2 & 1 & 2 & -5 & -3
\end{array}\right]
$$

Contributed by Robert Beezer Solution 347
C31 The set W below is a subspace of \mathbb{C}^{4}. Find the dimension of W.

$$
W=\left\langle\left\{\left[\begin{array}{c}
2 \\
-3 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-4 \\
-3 \\
2 \\
5
\end{array}\right]\right\}\right\rangle
$$

Contributed by Robert Beezer Solution 347
C40 In Example LDP4 [338 we determined that the set of five polynomials, T, is linearly dependent by a simple invocation of Theorem SSLD 335. Prove that T is linearly dependent from scratch, beginning with Definition LI 305.
Contributed by Robert Beezer
M20 M_{22} is the vector space of 2×2 matrices. Let S_{22} denote the set of all 2×2 symmetric matrices. That is

$$
S_{22}=\left\{A \in M_{22} \mid A^{t}=A\right\}
$$

(a) Show that S_{22} is a subspace of M_{22}.
(b) Exhibit a basis for S_{22} and prove that it has the required properties.
(c) What is the dimension of S_{22} ?

Contributed by Robert Beezer Solution 347

M21 A 2×2 matrix B is upper triangular if $[B]_{21}=0$. Let $U T_{2}$ be the set of all 2×2 upper triangular matrices. Then $U T_{2}$ is a subspace of the vector space of all 2×2 matrices, M_{22} (you may assume this). Determine the dimension of $U T_{2}$ providing all of the necessary justifications for your answer. Contributed by Robert Beezer Solution 348

Subsection SOL
 Solutions

C30 Contributed by Robert Beezer Statement 345
Row reduce A,

$$
A \xrightarrow{\mathrm{RREF}}\left[\begin{array}{ccccc}
\hline 1 & 0 & 0 & 1 & 1 \\
0 & \boxed{1} & 0 & -3 & -1 \\
0 & 0 & \boxed{1} & -2 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So $r=3$ for this matrix. Then

$$
\begin{aligned}
\operatorname{dim}(\mathcal{N}(A)) & =n(A) \\
& =(n(A)+r(A))-r(A) \\
& =5-r(A) \\
& =5-3 \\
& =2
\end{aligned}
$$

Definition NOM 341

$$
=5-r(A) \quad \text { Theorem RPNC } 342
$$

$$
=5-3 \quad \text { Theorem CRN } 341
$$

We could also use Theorem BNS 138 and create a basis for $\mathcal{N}(A)$ with $n-r=5-3=2$ vectors (because the solutions are described with 2 free variables) and arrive at the dimension as the size of this basis.

C31 Contributed by Robert Beezer Statement 345
We will appeal to Theorem BS [154] (or you could consider this an appeal to Theorem BCS [234]). Put the three columnn vectors of this spanning set into a matrix as columns and row-reduce.

$$
\left[\begin{array}{ccc}
2 & 3 & -4 \\
-3 & 0 & -3 \\
4 & 1 & 2 \\
1 & -2 & 5
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
\hline 1 & 0 & 1 \\
0 & \boxed{1} & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The pivot columns are $D=\{1,2\}$ so we can "keep" the vectors corresponding to the pivot columns and set

$$
T=\left\{\left[\begin{array}{c}
2 \\
-3 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
1 \\
-2
\end{array}\right]\right\}
$$

and conclude that $W=\langle T\rangle$ and T is linearly independent. In other words, T is a basis with two vectors, so W has dimension 2.

M20 Contributed by Robert Beezer Statement 345
(a) We will use the three criteria of Theorem TSS 290. The zero vector of M_{22} is the zero matrix, \mathcal{O} (Definition ZM [180]), which is a symmetric matrix. So S_{22} is not empty, since $\mathcal{O} \in S_{22}$.

Suppose that A and B are two matrices in S_{22}. Then we know that $A^{t}=A$ and $B^{t}=B$. We want to know if $A+B \in S_{22}$, so test $A+B$ for membership,

$$
\begin{aligned}
(A+B)^{t} & =A^{t}+B^{t} & & \text { Theorem TMA } 181 \\
& =A+B & & A, B \in S_{22}
\end{aligned}
$$

So $A+B$ is symmetric and qualifies for membership in S_{22}.
Suppose that $A \in S_{22}$ and $\alpha \in \mathbb{C}$. Is $\alpha A \in S_{22}$? We know that $A^{t}=A$. Now check that,

$$
\alpha A^{t}=\alpha A^{t}
$$

Theorem TMSM 182

$$
=\alpha A \quad A \in S_{22}
$$

So αA is also symmetric and qualifies for membership in S_{22}.
With the three criteria of Theorem TSS 290 fulfilled, we see that S_{22} is a subspace of M_{22}.
(b) An arbitrary matrix from S_{22} can be written as $\left[\begin{array}{ll}a & b \\ b & d\end{array}\right]$. We can express this matrix as

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right] } & =\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & b \\
b & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right] \\
& =a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

this equation says that the set

$$
T=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

spans S_{22}. Is it also linearly independent?
Write a relation of linear dependence on S,

$$
\begin{aligned}
\mathcal{O} & =a_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+a_{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+a_{3}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] } & =\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{3}
\end{array}\right]
\end{aligned}
$$

The equality of these two matrices Definition ME (177) tells us that $a_{1}=a_{2}=a_{3}=0$, and the only relation of linear dependence on T is trivial. So T is linearly independent, and hence is a basis of S_{22}.
(c) The basis T found in part (b) has size 3. So by Definition D 335, $\operatorname{dim}\left(S_{22}\right)=3$.

M21 Contributed by Robert Beezer Statement 346
A typical matrix from $U T_{2}$ looks like

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]
$$

where $a, b, c \in \mathbb{C}$ are arbitrary scalars. Observing this we can then write

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

which says that

$$
R=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a spanning set for $U T_{2}$ Definition TSVS 310). Is R is linearly independent? If so, it is a basis for $U T_{2}$. So consider a relation of linear dependence on R,

$$
\alpha_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\alpha_{2}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+\alpha_{3}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\mathcal{O}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

From this equation, one rapidly arrives at the conclusion that $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. So R is a linearly independent set (Definition LI 305), and hence is a basis (Definition B 321) for $U T_{2}$. Now, we simply count up the size of the set R to see that the dimension of $U T_{2}$ is $\operatorname{dim}\left(U T_{2}\right)=3$.

Section PD
 Properties of Dimension

Once the dimension of a vector space is known, then the determination of whether or not a set of vectors is linearly independent, or if it spans the vector space, can often be much easier. In this section we will state a workhorse theorem and then apply it to the column space and row space of a matrix. It will also help us describe a super-basis for \mathbb{C}^{m}.

Subsection GT
 Goldilocks' Theorem

We begin with a useful theorem that we will need later, and in the proof of the main theorem in this subsection. This theorem says that we can extend linearly independent sets, one vector at a time, by adding vectors from outside the span of the linearly independent set, all the while preserving the linear independence of the set.

Theorem ELIS

Extending Linearly Independent Sets

Suppose V is vector space and S is a linearly independent set of vectors from V. Suppose \mathbf{w} is a vector such that $\mathbf{w} \notin\langle S\rangle$. Then the set $S^{\prime}=S \cup\{\mathbf{w}\}$ is linearly independent.

Proof Suppose $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ and begin with a relation of linear dependence on S^{\prime},

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m}+a_{m+1} \mathbf{w}=\mathbf{0} .
$$

There are two cases to consider. First suppose that $a_{m+1}=0$. Then the relation of linear dependence on S^{\prime} becomes

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m}=\mathbf{0} .
$$

and by the linear independence of the set S, we conclude that $a_{1}=a_{2}=a_{3}=\cdots=a_{m}=0$. So all of the scalars in the relation of linear dependence on S^{\prime} are zero.

In the second case, suppose that $a_{m+1} \neq 0$. Then the relation of linear dependence on S^{\prime} becomes

$$
\begin{aligned}
a_{m+1} \mathbf{w} & =-a_{1} \mathbf{v}_{1}-a_{2} \mathbf{v}_{2}-a_{3} \mathbf{v}_{3}-\cdots-a_{m} \mathbf{v}_{m} \\
\mathbf{w} & =-\frac{a_{1}}{a_{m+1}} \mathbf{v}_{1}-\frac{a_{2}}{a_{m+1}} \mathbf{v}_{2}-\frac{a_{3}}{a_{m+1}} \mathbf{v}_{3}-\cdots-\frac{a_{m}}{a_{m+1}} \mathbf{v}_{m}
\end{aligned}
$$

This equation expresses \mathbf{w} as a linear combination of the vectors in S, contrary to the assumption that $\mathbf{w} \notin\langle S\rangle$, so this case leads to a contradiction.

The first case yielded only a trivial relation of linear dependence on S^{\prime} and the second case led to a contradiction. So S^{\prime} is a linearly independent set since any relation of linear dependence is trivial.

In the story Goldilocks and the Three Bears, the young girl Goldilocks visits the empty house of the three bears while out walking in the woods. One bowl of porridge is too hot, the other too cold, the third is just right. One chair is too hard, one too soft, the third is just right. So it is with sets of vectors - some are too big (linearly dependent), some are too small (they don't span), and some are just right (bases). Here's Goldilocks' Theorem.

Theorem G

Goldilocks

Suppose that V is a vector space of dimension t. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ be a set of vectors from V. Then

1. If $m>t$, then S is linearly dependent.

2 . If $m<t$, then S does not span V.
3. If $m=t$ and S is linearly independent, then S spans V.
4. If $m=t$ and S spans V, then S is linearly independent.

Proof Let B be a basis of V. Since $\operatorname{dim}(V)=t$, Definition B 321 and Theorem BIS 338 imply that B is a linearly independent set of t vectors that spans V.

1. Suppose to the contrary that S is linearly independent. Then B is a smaller set of vectors that spans V. This contradicts Theorem SSLD 335 .
2. Suppose to the contrary that S does span V. Then B is a larger set of vectors that is linearly independent. This contradicts Theorem SSLD 335 .
3. Suppose to the contrary that S does not span V. Then we can choose a vector \mathbf{w} such that $\mathbf{w} \in V$ and $\mathbf{w} \notin\langle S\rangle$. By Theorem ELIS (349, the set $S^{\prime}=S \cup\{\mathbf{w}\}$ is again linearly independent. Then S^{\prime} is a set of $m+1=t+1$ vectors that are linearly independent, while B is a set of t vectors that span V. This contradicts Theorem SSLD 335.
4. Suppose to the contrary that S is linearly dependent. Then by Theorem DLDS 149 (which can be upgraded, with no changes in the proof, to the setting of a general vector space), there is a vector in S, say \mathbf{v}_{k} that is equal to a linear combination of the other vectors in S. Let $S^{\prime}=S \backslash\left\{\mathbf{v}_{k}\right\}$, the set of "other" vectors in S. Then it is easy to show that $V=\langle S\rangle=\left\langle S^{\prime}\right\rangle$. So S^{\prime} is a set of $m-1=t-1$ vectors that spans V, while B is a set of t linearly independent vectors in V. This contradicts Theorem SSLD 335.

There is a tension in the construction of basis. Make a set too big and you will end up with relations of linear dependence among the vectors. Make a set too small and you will not have enough raw material to span the entire vector space. Make a set just the right size (the dimension) and you only need to have linear independence or spanning, and you get the other property for free. These roughly-stated ideas are made precise by Theorem G 349.

The structure and proof of this theorem also deserve comment. The hypotheses seem innocuous. We presume we know the dimension of the vector space in hand, then we mostly just look at the size of the set S. From this we get big conclusions about spanning and linear independence. Each of the four proofs relies on ultimately contradicting Theorem SSLD 335, so in a way we could think of this entire theorem as a corollary of Theorem SSLD 335. (See Technique LC 682.) The proofs of the third and fourth parts parallel each other in style (add \mathbf{w}, toss \mathbf{v}_{k}) and then turn on Theorem ELIS 349 before contradicting Theorem SSLD 335.

Theorem G 349 is useful in both concrete examples and as a tool in other proofs. We will use it often to bypass verifying linear independence or spanning.

Example BPR

Bases for P_{n}, reprised
In Example BP 322 we claimed that

$$
\begin{aligned}
& B=\left\{1, x, x^{2}, x^{3}, \ldots, x^{n}\right\} \\
& C=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}, \ldots, 1+x+x^{2}+x^{3}+\cdots+x^{n}\right\} .
\end{aligned}
$$

were both bases for P_{n} (Example VSP 277). Suppose we had first verified that B was a basis, so we would then know that $\operatorname{dim}\left(P_{n}\right)=n+1$. The size of C is $n+1$, the right size to be a basis. We could then verify that C is linearly independent. We would not have to make any special efforts to prove that C spans P_{n}, since Theorem G 349 would allow us to conclude this property of C directly. Then we would be able to say that C is a basis of P_{n} also.

Example BDM22

Basis by dimension in M_{22}

In Example DSM22 339 we showed that

$$
B=\left\{\left[\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a basis for the subspace Z of M_{22} (Example VSM 277) given by

$$
Z=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, 2 a+b+3 c+4 d=0,-a+3 b-5 c-d=0\right\}
$$

This tells us that $\operatorname{dim}(Z)=2$. In this example we will find another basis. We can construct two new matrices in Z by forming linear combinations of the matrices in B.

$$
\begin{aligned}
2\left[\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right]+(-3)\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right] & =\left[\begin{array}{cc}
2 & 2 \\
2 & -3
\end{array}\right] \\
3\left[\begin{array}{cc}
-2 & 1 \\
1 & 0
\end{array}\right]+1\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right] & =\left[\begin{array}{cc}
-8 & 3 \\
3 & 1
\end{array}\right]
\end{aligned}
$$

Then the set

$$
C=\left\{\left[\begin{array}{cc}
2 & 2 \\
2 & -3
\end{array}\right],\left[\begin{array}{cc}
-8 & 3 \\
3 & 1
\end{array}\right]\right\}
$$

has the right size to be a basis of Z. Let's see if it is a linearly independent set. The relation of linear dependence

$$
\begin{aligned}
a_{1}\left[\begin{array}{cc}
2 & 2 \\
2 & -3
\end{array}\right]+a_{2}\left[\begin{array}{cc}
-8 & 3 \\
3 & 1
\end{array}\right] & =\mathcal{O} \\
{\left[\begin{array}{cc}
2 a_{1}-8 a_{2} & 2 a_{1}+3 a_{2} \\
2 a_{1}+3 a_{2} & -3 a_{1}+a_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

leads to the homogeneous system of equations whose coefficient matrix

$$
\left[\begin{array}{cc}
2 & -8 \\
2 & 3 \\
2 & 3 \\
-3 & 1
\end{array}\right]
$$

row-reduces to

$$
\left[\begin{array}{cc}
{[1} & 0 \\
0 & \boxed{1} \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

So with $a_{1}=a_{2}=0$ as the only solution, the set is linearly independent. Now we can apply Theorem G (349) to see that C also spans Z and therefore is a second basis for Z.

Example SVP4

Sets of vectors in P_{4}

In Example BSP4 322 we showed that

$$
B=\left\{x-2, x^{2}-4 x+4, x^{3}-6 x^{2}+12 x-8, x^{4}-8 x^{3}+24 x^{2}-32 x+16\right\}
$$

is a basis for $W=\left\{p(x) \mid p \in P_{4}, p(2)=0\right\}$. So $\operatorname{dim}(W)=4$.
The set

$$
\left\{3 x^{2}-5 x-2,2 x^{2}-7 x+6, x^{3}-2 x^{2}+x-2\right\}
$$

is a subset of W (check this) and it happens to be linearly independent (check this, too). However, by Theorem G 349 it cannot span W.

The set

$$
\left\{3 x^{2}-5 x-2,2 x^{2}-7 x+6, x^{3}-2 x^{2}+x-2,-x^{4}+2 x^{3}+5 x^{2}-10 x, x^{4}-16\right\}
$$

is another subset of W (check this) and Theorem G 349 tells us that it must be linearly dependent.
The set

$$
\left\{x-2, x^{2}-2 x, x^{3}-2 x^{2}, x^{4}-2 x^{3}\right\}
$$

is a third subset of W (check this) and is linearly independent (check this). Since it has the right size to be a basis, and is linearly independent, Theorem G 349] tells us that it also spans W, and therefore is a basis of W.

A simple consequence of Theorem G 349] is the observation that proper subspaces have strictly smaller dimensions. Hopefully this may seem intuitively obvious, but it still requires proof, and we will cite this result later.

Theorem PSSD

Proper Subspaces have Smaller Dimension

Suppose that U and V are subspaces of the vector space W, such that $U \subsetneq V$. Then $\operatorname{dim}(U)<\operatorname{dim}(V)$.

Proof Suppose that $\operatorname{dim}(U)=m$ and $\operatorname{dim}(V)=t$. Then U has a basis B of size m. If $m>t$, then by Theorem G 349, B is linearly dependent, which is a contradiction. If $m=t$, then by Theorem G 349, B spans V. Then $U=\langle B\rangle=V$, also a contradiction. All that remains is that $m<t$, which is the desired conclusion.

The final theorem of this subsection is an extremely powerful tool for establishing the equality of two sets that are subspaces. Notice that the hypotheses include the equality of two integers (dimensions) while the conclusion is the equality of two sets (subspaces). It is the extra "structure" of a vector space and its dimension that makes possible this huge leap from an integer equality to a set equality.

Theorem EDYES

Equal Dimensions Yields Equal Subspaces

Suppose that U and V are subspaces of the vector space W, such that $U \subseteq V$ and $\operatorname{dim}(U)=\operatorname{dim}(V)$. Then $U=V$.
Proof We give a proof by contradiction Technique CD 678). Suppose to the contrary that $U \neq V$. Since $U \subseteq V$, there must be a vector \mathbf{v} such that $\mathbf{v} \in V$ and $\mathbf{v} \notin U$. Let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$ be a basis for U. Then, by Theorem ELIS (349, the set $C=B \cup\{\mathbf{v}\}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}, \mathbf{v}\right\}$ is a linearly independent set of $t+1$ vectors in V. However, by hypothesis, V has the same dimension as U (namely t) and therefore Theorem G 349 says that C is too big to be linearly independent. This contradiction shows that $U=V$.

Subsection RT
 Ranks and Transposes

We now prove one of the most surprising theorems about matrices. Notice the paucity of hypotheses compared to the precision of the conclusion.

Theorem RMRT

Rank of a Matrix is the Rank of the Transpose

Suppose A is an $m \times n$ matrix. Then $r(A)=r\left(A^{t}\right)$.
Proof Suppose we row-reduce A to the matrix B in reduced row-echelon form, and B has r non-zero rows. The quantity r tells us three things about B : the number of leading 1's, the number of non-zero rows and the number of pivot columns. For this proof we will be interested in the latter two.

Theorem BRS 240 and Theorem BCS 234 each has a conclusion that provides a basis, for the row space and the column space, respectively. In each case, these bases contain r vectors. This observation makes the following go.

$$
\begin{aligned}
r(A) & =\operatorname{dim}(\mathcal{C}(A)) \\
& =r \\
& =\operatorname{dim}(\mathcal{R}(A)) \\
& =\operatorname{dim}\left(\mathcal{C}\left(A^{t}\right)\right) \\
& =r\left(A^{t}\right)
\end{aligned}
$$

Definition ROM	341
Theorem BCS	234
Theorem BRS	240
Theorem CSRST	241
Definition ROM	341

$$
=r \quad \text { Theorem BCS } 234
$$

Jacob Linenthal helped with this proof.
This says that the row space and the column space of a matrix have the same dimension, which should be very surprising. It does not say that column space and the row space are identical. Indeed, if the matrix is not square, then the sizes (number of slots) of the vectors in each space are different, so the sets are not even comparable.

It is not hard to construct by yourself examples of matrices that illustrate Theorem RMRT 353, since it applies equally well to any matrix. Grab a matrix, row-reduce it, count the nonzero rows or the leading 1's. That's the rank. Transpose the matrix, row-reduce that, count the nonzero rows or the leading 1's. That's the rank of the transpose. The theorem says the two will be equal. Here's an example anyway.

Example RRTI

Rank, rank of transpose, Archetype I
Archetype I 724 has a 4×7 coefficient matrix which row-reduces to

$$
\left[\begin{array}{ccccccc}
\boxed{1} & 4 & 0 & 0 & 2 & 1 & -3 \\
0 & 0 & 1 & 0 & 1 & -3 & 5 \\
0 & 0 & 0 & \boxed{1} & 2 & -6 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so the rank is 3 . Row-reducing the transpose yields

$$
\left[\begin{array}{cccc}
\hline 1 & 0 & 0 & -\frac{31}{7} \\
0 & \boxed{1} & 0 & \frac{12}{7} \\
0 & 0 & 1 & \frac{13}{7} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

demonstrating that the rank of the transpose is also 3 .

Subsection DFS
 Dimension of Four Subspaces

That the rank of a matrix equals the rank of its transpose is a fundamental and surprising result. However, applying Theorem FS [259] we can easily determine the dimension of all four fundamental subspaces associated with a matrix.

Theorem DFS

Dimensions of Four Subspaces

Suppose that A is an $m \times n$ matrix, and B is a row-equivalent matrix in reduced row-echelon form with r nonzero rows. Then

1. $\operatorname{dim}(\mathcal{N}(A))=n-r$
2. $\operatorname{dim}(\mathcal{C}(A))=r$
3. $\operatorname{dim}(\mathcal{R}(A))=r$
4. $\operatorname{dim}(\mathcal{L}(A))=m-r$

Proof If A row-reduces to a matrix in reduced row-echelon form with r nonzero rows, then the matrix C of extended echelon form (Definition EEF [257) will be an $r \times n$ matrix in reduced row-echelon form with no zero rows and r pivot columns (Theorem PEEF [258). Similarly, the matrix L of extended echelon form (Definition EEF 257) will be an $m-r \times m$ matrix in reduced row-echelon form with no zero rows and $m-r$ pivot columns (Theorem PEEF 258).

$$
\begin{aligned}
\operatorname{dim}(\mathcal{N}(A)) & =\operatorname{dim}(\mathcal{N}(C)) & & \text { Theorem FS 259] } \\
& =n-r & & \text { Theorem BNS 138 } \\
\operatorname{dim}(\mathcal{C}(A)) & =\operatorname{dim}(\mathcal{N}(L)) & & \\
& =m-(m-r) & & \text { Theorem FS 259 } \\
& =r & & \text { Theorem BNS 138 } \\
& & & \\
\operatorname{dim}(\mathcal{R}(A)) & =\operatorname{dim}(\mathcal{R}(C)) & & \text { Theorem FS 259 } \\
& =r & & \text { Theorem BRS 240 } \\
\operatorname{dim}(\mathcal{L}(A)) & =\operatorname{dim}(\mathcal{R}(L)) & & \\
& =m-r & & \text { Theorem FS 259 } \\
& & & \text { Theorem BRS 240 }
\end{aligned}
$$

There are many different ways to state and prove this result, and indeed, the equality of the dimensions of the column space and row space is just a slight expansion of Theorem RMRT 353. However, we have restricted our techniques to applying Theorem FS [259] and then determining dimensions with bases provided by Theorem BNS (138] and Theorem BRS 240. This provides an appealing symmetry to the results and the proof.

Subsection DS
 Direct Sums

Some of the more advanced ideas in linear algebra are closely related to decomposing (Technique DC 680) vector spaces into direct sums of subspaces. With our previous results about bases and dimension, now is the right time to state and collect a few results about direct sums, though we will only mention these results in passing until we get to Section NLT 597, where they will get a heavy workout.

A direct sum is a short-hand way to describe the relationship between a vector space and two, or more, of its subspaces. As we will use it, it is not a way to construct new vector spaces from others.

Definition DS

Direct Sum

Suppose that V is a vector space with two subspaces U and W such that for every $\mathbf{v} \in V$,

1. There exists vectors $\mathbf{u} \in U, \mathbf{w} \in W$ such that $\mathbf{v}=\mathbf{u}+\mathbf{w}$
2. If $\mathbf{v}=\mathbf{u}_{1}+\mathbf{w}_{1}$ and $\mathbf{v}=\mathbf{u}_{2}+\mathbf{w}_{2}$ where $\mathbf{u}_{1}, \mathbf{u}_{2} \in U, \mathbf{w}_{1}, \mathbf{w}_{2} \in W$ then $\mathbf{u}_{1}=\mathbf{u}_{2}$ and $\mathbf{w}_{1}=\mathbf{w}_{2}$.

Then V is the direct sum of U and W and we write $V=U \oplus W$. (This definition contains Notation DS.)

Informally, when we say V is the direct sum of the subspaces U and W, we are saying that each vector of V can always be expressed as the sum of a vector from U and a vector from W, and this expression can only be accomplished in one way (i.e. uniquely). This statement should begin to feel something like our definitions of nonsingular matrices (Definition NM 67) and linear independence (Definition LI 305). It should not be hard to imagine the natural extension of this definition to the case of more than two subspaces. Could you provide a careful definition of $V=U_{1} \oplus U_{2} \oplus U_{3} \oplus \ldots \oplus U_{m}$ (Exercise PD.M50 360)?

Example SDS

Simple direct sum

In \mathbb{C}^{3}, define

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
3 \\
2 \\
5
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]
$$

Then $\mathbb{C}^{3}=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle \oplus\left\langle\left\{\mathbf{v}_{3}\right\}\right\rangle$. This statement derives from the fact that $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is basis for \mathbb{C}^{3}. The spanning property of B yields the decomposition of any vector into a sum of vectors from the two subspaces, and the linear independence of B yields the uniqueness of the decomposition. We will illustrate these claims with a numerical example.

$$
\begin{aligned}
& \text { Choose } \mathbf{v}=\left[\begin{array}{c}
10 \\
1 \\
6
\end{array}\right] \text {. Then } \\
& \qquad \mathbf{v}=2 \mathbf{v}_{1}+(-2) \mathbf{v}_{2}+1 \mathbf{v}_{3}=\left(2 \mathbf{v}_{1}+(-2) \mathbf{v}_{2}\right)+\left(1 \mathbf{v}_{3}\right)
\end{aligned}
$$

where we have added parentheses for emphasis. Obviously $1 \mathbf{v}_{\mathbf{3}} \in\left\langle\left\{\mathbf{v}_{3}\right\}\right\rangle$, while $2 \mathbf{v}_{1}+(-2) \mathbf{v}_{2} \in\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle$. Theorem VRRB 314 provides the uniqueness of the scalars in these linear combinations.

Example SDS 355 is easy to generalize into a theorem.

Theorem DSFB

Direct Sum From a Basis

Suppose that V is a vector space with a basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$. Define

$$
U=\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}\right\rangle \quad W=\left\langle\left\{\mathbf{v}_{m+1}, \mathbf{v}_{m+2}, \mathbf{v}_{m+3}, \ldots, \mathbf{v}_{n}\right\}\right\rangle
$$

Then $V=U \oplus W$.
Proof Choose any vector $\mathbf{v} \in V$. Then by Theorem VRRB 314 there are unique scalars, $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ such that

$$
\begin{aligned}
\mathbf{v}= & a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{n} \mathbf{v}_{n} \\
= & \left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{m} \mathbf{v}_{m}\right)+ \\
& \quad\left(a_{m+1} \mathbf{v}_{m+1}+a_{m+2} \mathbf{v}_{m+2}+a_{m+3} \mathbf{v}_{m+3}+\cdots+a_{n} \mathbf{v}_{n}\right) \\
= & \mathbf{u}+\mathbf{w}
\end{aligned}
$$

where we have implicitly defined \mathbf{u} and \mathbf{w} in the last line. It should be clear that $\mathbf{u} \in U$, and similarly, $\mathbf{w} \in W$ (and not simply by the choice of their names).

Suppose we had another decomposition of \mathbf{v}, say $\mathbf{v}=\mathbf{u}^{*}+\mathbf{w}^{*}$. Then we could write \mathbf{u}^{*} as a linear combination of \mathbf{v}_{1} through \mathbf{v}_{m}, say using scalars $b_{1}, b_{2}, b_{3}, \ldots, b_{m}$. And we could write \mathbf{w}^{*} as a linear combination of \mathbf{v}_{m+1} through \mathbf{v}_{n}, say using scalars $c_{1}, c_{2}, c_{3}, \ldots, c_{n-m}$. These two collections of scalars would then together give a linear combination of \mathbf{v}_{1} through \mathbf{v}_{n} that equals \mathbf{v}. By the uniqueness of $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, a_{i}=b_{i}$ for $1 \leq i \leq m$ and $a_{m+i}=c_{i}$ for $1 \leq i \leq n-m$. From the equality of these scalars we conclude that $\mathbf{u}=\mathbf{u}^{*}$ and $\mathbf{w}=\mathbf{w}^{*}$. So with both conditions of Definition DS 355 fulfilled we see that $V=U \oplus W$.

Given one subspace of a vector space, we can always find another subspace that will pair with the first to form a direct sum. The main idea of this theorem, and its proof, is the idea of extending a linearly independent subset into a basis with repeated applications of Theorem ELIS (349.

Theorem DSFOS

Direct Sum From One Subspace

Suppose that U is a subspace of the vector space V. Then there exists a subspace W of V such that $V=U \oplus W$.

Proof If $U=V$, then choose $W=\{\mathbf{0}\}$. Otherwise, choose a basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ for U. Then since B is a linearly independent set, Theorem ELIS 349 tells us there is a vector \mathbf{v}_{m+1} in V, but not in U, such that $B \cup\left\{\mathbf{v}_{m+1}\right\}$ is linearly independent. Define the subspace $U_{1}=\left\langle B \cup\left\{\mathbf{v}_{m+1}\right\}\right\rangle$.

We can repeat this procedure, in the case were $U_{1} \neq V$, creating a new vector \mathbf{v}_{m+2} in V, but not in U_{1}, and a new subspace $U_{2}=\left\langle B \cup\left\{\mathbf{v}_{m+1}, \mathbf{v}_{m+2}\right\}\right\rangle$. If we continue repeating this procedure, eventually, $U_{k}=V$ for some k, and we can no longer apply Theorem ELIS 349. No matter, in this case $B \cup\left\{\mathbf{v}_{m+1}, \mathbf{v}_{m+2}, \ldots, \mathbf{v}_{m+k}\right\}$ is a linearly independent set that spans V, i.e. a basis for V.

Define $W=\left\langle\left\{\mathbf{v}_{m+1}, \mathbf{v}_{m+2}, \ldots, \mathbf{v}_{m+k}\right\}\right\rangle$. We now are exactly in position to apply Theorem DSFB 355 and see that $V=U \oplus W$.

There are several different ways to define a direct sum. Our next two theorems give equivalences (Technique E 676) for direct sums, and therefore could have been employed as definitions. The first should further cement the notion that a direct sum has some connection with linear independence.

Theorem DSZV

Direct Sums and Zero Vectors

Suppose U and W are subspaces of the vector space V. Then $V=U \oplus W$ if and only if

1. For every $\mathbf{v} \in V$, there exists vectors $\mathbf{u} \in U, \mathbf{w} \in W$ such that $\mathbf{v}=\mathbf{u}+\mathbf{w}$.
2. Whenever $\mathbf{0}=\mathbf{u}+\mathbf{w}$ with $\mathbf{u} \in U, \mathbf{w} \in W$ then $\mathbf{u}=\mathbf{w}=\mathbf{0}$.

Proof The first condition is identical in the definition and the theorem, so we only need to establish the equivalence of the second conditions.
(\Rightarrow) Assume that $V=U \oplus W$, according to Definition DS 355. By Property Z 276, $\mathbf{0} \in V$ and $\mathbf{0}=\mathbf{0}+\mathbf{0}$. If we also assume that $\mathbf{0}=\mathbf{u}+\mathbf{w}$, then the uniqueness of the decomposition gives $\mathbf{u}=\mathbf{0}$ and $\mathrm{w}=\mathbf{0}$.
(\Leftarrow) Suppose that $\mathbf{v} \in V, \mathbf{v}=\mathbf{u}_{1}+\mathbf{w}_{1}$ and $\mathbf{v}=\mathbf{u}_{2}+\mathbf{w}_{2}$ where $\mathbf{u}_{1}, \mathbf{u}_{2} \in U, \mathbf{w}_{1}, \mathbf{w}_{2} \in W$. Then

$$
\begin{aligned}
\mathbf{0} & =\mathbf{v}-\mathbf{v} & & \text { Property AI 276 } \\
& =\left(\mathbf{u}_{1}+\mathbf{w}_{1}\right)-\left(\mathbf{u}_{2}+\mathbf{w}_{2}\right) & & \\
& =\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right)+\left(\mathbf{w}_{1}-\mathbf{w}_{2}\right) & & \text { Property AA } 275
\end{aligned}
$$

By Property AC 275, $\mathbf{u}_{1}-\mathbf{u}_{2} \in U$ and $\mathbf{w}_{1}-\mathbf{w}_{2} \in W$. We can now apply our hypothesis, the second statement of the theorem, to conclude that

$$
\begin{aligned}
\mathbf{u}_{1}-\mathbf{u}_{2} & =\mathbf{0} & \mathbf{w}_{1}-\mathbf{w}_{2} & =\mathbf{0} \\
\mathbf{u}_{1} & =\mathbf{u}_{2} & \mathbf{w}_{1} & =\mathbf{w}_{2}
\end{aligned}
$$

which establishes the uniqueness needed for the second condition of the definition.
Our second equivalence lends further credence to calling a direct sum a decomposition. The two subspaces of a direct sum have no (nontrivial) elements in common.

Theorem DSZI

Direct Sums and Zero Intersection

Suppose U and W are subspaces of the vector space V. Then $V=U \oplus W$ if and only if

1. For every $\mathbf{v} \in V$, there exists vectors $\mathbf{u} \in U, \mathbf{w} \in W$ such that $\mathbf{v}=\mathbf{u}+\mathbf{w}$.
2. $U \cap W=\{\mathbf{0}\}$.

Proof The first condition is identical in the definition and the theorem, so we only need to establish the equivalence of the second conditions.
(\Rightarrow) Assume that $V=U \oplus W$, according to Definition DS 355. By Property Z 276 and Definition SI 671, $\{0\} \subseteq U \cap W$. To establish the opposite inclusion, suppose that $\mathbf{x} \in U \cap W$. Then, since \mathbf{x} is an element of both U and W, we can write two decompositions of \mathbf{x} as a vector from U plus a vector from W,

$$
\mathrm{x}=\mathrm{x}+\mathbf{0} \quad \mathrm{x}=\mathbf{0}+\mathrm{x}
$$

By the uniqeness of the decomposition, we see (twice) that $\mathbf{x}=\mathbf{0}$ and $U \cap W \subseteq\{\mathbf{0}\}$. Applying Definition SE (670), we have $U \cap W=\{\mathbf{0}\}$.
(\Leftarrow) Assume that $U \cap W=\{\mathbf{0}\}$. And assume further that $\mathbf{v} \in V$ is such that $\mathbf{v}=\mathbf{u}_{1}+\mathbf{w}_{1}$ and $\mathbf{v}=\mathbf{u}_{2}+\mathbf{w}_{2}$ where $\mathbf{u}_{1}, \mathbf{u}_{2} \in U, \mathbf{w}_{1}, \mathbf{w}_{2} \in W$. Define $\mathbf{x}=\mathbf{u}_{1}-\mathbf{u}_{2}$. then by Property AC 275, $\mathbf{x} \in U$. Also

$$
\begin{aligned}
\mathbf{x} & =\mathbf{u}_{1}-\mathbf{u}_{2} \\
& =\left(\mathbf{v}-\mathbf{w}_{1}\right)-\left(\mathbf{v}-\mathbf{w}_{2}\right) \\
& =(\mathbf{v}-\mathbf{v})-\left(\mathbf{w}_{1}-\mathbf{w}_{2}\right) \\
& =\mathbf{w}_{2}-\mathbf{w}_{1}
\end{aligned}
$$

So $\mathbf{x} \in W$ by Property AC 275. Thus, $\mathbf{x} \in U \cap W=\{\mathbf{0}\}$ Definition SI 671). So $\mathbf{x}=\mathbf{0}$ and

$$
\begin{aligned}
\mathbf{u}_{1}-\mathbf{u}_{2} & =\mathbf{0} \\
\mathbf{u}_{1} & =\mathbf{u}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{w}_{2}-\mathbf{w}_{1}=\mathbf{0} \\
& \mathbf{w}_{2}=\mathbf{w}_{1}
\end{aligned}
$$

yielding the desired uniqueness of the second condition of the definition.
If the statement of Theorem DSZV 356 did not remind you of linear independence, the next theorem should establish the connection.

Theorem DSLI

Direct Sums and Linear Independence

Suppose U and W are subspaces of the vector space V with $V=U \oplus W$. Suppose that R is a linearly independent subset of U and S is a linearly independent subset of W. Then $R \cup S$ is a linearly independent subset of V.

Proof Let $R=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}$ and $S=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \ldots, \mathbf{w}_{\ell}\right\}$. Begin with a relation of linear dependence (Definition RLD 305) on the set $R \cup S$ using scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{\ell}$. Then,

$$
\begin{aligned}
\mathbf{0} & =a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{k} \mathbf{u}_{k}+b_{1} \mathbf{w}_{1}+b_{2} \mathbf{w}_{2}+b_{3} \mathbf{w}_{3}+\cdots+b_{\ell} \mathbf{w}_{\ell} \\
& =\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{k} \mathbf{u}_{k}\right)+\left(b_{1} \mathbf{w}_{1}+b_{2} \mathbf{w}_{2}+b_{3} \mathbf{w}_{3}+\cdots+b_{\ell} \mathbf{w}_{\ell}\right) \\
& =\mathbf{u}+\mathbf{w}
\end{aligned}
$$

where we have made an implicit definition of the vectors $\mathbf{u} \in U, \mathbf{w} \in W$. Applying Theorem DSZV 356 we conclude that

$$
\begin{aligned}
\mathbf{u} & =a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{k} \mathbf{u}_{k}=\mathbf{0} \\
\mathbf{w} & =b_{1} \mathbf{w}_{1}+b_{2} \mathbf{w}_{2}+b_{3} \mathbf{w}_{3}+\cdots+b_{\ell} \mathbf{w}_{\ell}=\mathbf{0}
\end{aligned}
$$

Now the linear independence of R and S (individually) yields

$$
a_{1}=a_{2}=a_{3}=\cdots=a_{k}=0 \quad b_{1}=b_{2}=b_{3}=\cdots=b_{\ell}=0
$$

Forced to acknowledge that only a trivial linear combination yields the zero vector, Definition LI 305 says the set $R \cup S$ is linearly independent in V.

Our last theorem in this collection will go some ways towards explaining the word "sum" in the moniker "direct sum," while also partially explaining why these results appear in a section devoted to a discussion of dimension.

Theorem DSD

Direct Sums and Dimension

Suppose U and W are subspaces of the vector space V with $V=U \oplus W$. Then $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}(W)$.

Proof We will establish this equality of positive integers with two inequalities. We will need a basis of U (call it B) and a basis of W (call it C).

First, note that B and C have sizes equal to the dimensions of the respective subspaces. The union of these two linearly independent sets, $B \cup C$ will be linearly independent in V by Theorem DSLI 358 . Further, the two bases have no vectors in common by Theorem DSZI [357], since $B \cap C \subseteq\{\mathbf{0}\}$ and the zero vector is never an element of a linearly independent set (Exercise LI.T10 [143). So the size of the union is exactly the sum of the dimensions of U and W. By Theorem $\mathrm{G}[349$ the size of $B \cup C$ cannot exceed the dimension of V without being linearly dependent. These observations give us $\operatorname{dim}(U)+\operatorname{dim}(W) \leq \operatorname{dim}(V)$.

Grab any vector $\mathbf{v} \in V$. Then by Theorem DSZI 357 we can write $\mathbf{v}=\mathbf{u}+\mathbf{w}$ with $\mathbf{u} \in U$ and $\mathbf{w} \in W$. Individually, we can write \mathbf{u} as a linear combination of the basis elements in B, and similarly, we can write w as a linear combination of the basis elements in C, since the bases are spanning sets for their respective subspaces. These two sets of scalars will provide a linear combination of all of the vectors in $B \cup C$ which
will equal \mathbf{v}. The upshot of this is that $B \cup C$ is a spanning set for V. By Theorem G 349, the size of $B \cup C$ cannot be smaller than the dimension of V without failing to span V. These observations give us $\operatorname{dim}(U)+\operatorname{dim}(W) \geq \operatorname{dim}(V)$.

There is a certain appealling symmetry in the previous proof, where both linear independence and spanning properties of the bases are used, both of the first two conclusions of Theorem G 349 are employed, and we have quoted both of the two conditions of Theorem DSZI 357.

One final theorem tells us that we can successively decompose direct sums into sums of smaller and smaller subspaces.

Theorem RDS

Repeated Direct Sums

Suppose V is a vector space with subspaces U and W with $V=U \oplus W$. Suppose that X and Y are subspaces of W with $W=X \oplus Y$. Then $V=U \oplus X \oplus Y$.
Proof Suppose that $\mathbf{v} \in V$. Then due to $V=U \oplus W$, there exist vectors $\mathbf{u} \in U$ and $\mathbf{w} \in W$ such that $\mathbf{v}=\mathbf{u}+\mathbf{w}$. Due to $W=X \oplus Y$, there exist vectors $\mathbf{x} \in X$ and $\mathbf{y} \in Y$ such that $\mathbf{w}=\mathbf{x}+\mathbf{y}$. All together,

$$
\mathbf{v}=\mathbf{u}+\mathbf{w}=\mathbf{u}+\mathbf{x}+\mathbf{y}
$$

which would be the first condition of a definition of a 3 -way direct product. Now consider the uniqueness. Suppose that

$$
\mathbf{v}=\mathbf{u}_{1}+\mathbf{x}_{1}+\mathbf{y}_{1} \quad \mathbf{v}=\mathbf{u}_{2}+\mathbf{x}_{2}+\mathbf{y}_{2}
$$

Because $\mathbf{x}_{1}+\mathbf{y}_{1} \in W, \mathbf{x}_{2}+\mathbf{y}_{2} \in W$, and $V=U \oplus W$, we conclude that

$$
\mathbf{u}_{1}=\mathbf{u}_{2} \quad \mathbf{x}_{1}+\mathbf{y}_{1}=\mathbf{x}_{2}+\mathbf{y}_{2}
$$

From the second equality, an application of $W=X \oplus Y$ yields the conclusions $\mathbf{x}_{1}=\mathbf{x}_{2}$ and $\mathbf{y}_{1}=\mathbf{y}_{2}$. This establishes the uniqueness of the decomposition of \mathbf{v} into a sum of vectors from U, X and Y.

Remember that when we write $V=U \oplus W$ there always needs to be a "superspace," in this case V. The statement $U \oplus W$ is meaningless. Writing $V=U \oplus W$ is simply a shorthand for a somewhat complicated relationship between V, U and W, as described in the two conditions of Definition DS 355, or Theorem DSZV [356, or Theorem DSZI [357. Theorem DSFB [355] and Theorem DSFOS [356 gives us sure-fire ways to build direct sums, while Theorem DSLI 358, Theorem DSD 358 and Theorem RDS 359 tell us interesting properties of direct sums. This subsection has been long on theorems and short on examples. If we were to use the term "lemma" we might have chosen to label some of these results as such, since they will be important tools in other proofs, but may not have much interest on their own (see Technique LC (682). We will be referencing these results heavily in later sections, and will remind you then to come back for a second look.

Subsection READ
 Reading Questions

1. Why does Theorem G 349 have the title it does?
2. What is so surprising about Theorem RMRT 353?
3. Row-reduce the matrix A to reduced row-echelon form. Without any further computations, compute the dimensions of the four subspaces, $\mathcal{N}(A), \mathcal{C}(A), \mathcal{R}(A)$ and $\mathcal{L}(A)$.

$$
A=\left[\begin{array}{ccccc}
1 & -1 & 2 & 8 & 5 \\
1 & 1 & 1 & 4 & -1 \\
0 & 2 & -3 & -8 & -6 \\
2 & 0 & 1 & 8 & 4
\end{array}\right]
$$

Subsection EXC
 Exercises

C10 Example SVP4 351 leaves several details for the reader to check. Verify these five claims.
Contributed by Robert Beezer
M50 Mimic Definition DS 355 and construct a reasonable definition of $V=U_{1} \oplus U_{2} \oplus U_{3} \oplus \ldots \oplus U_{m}$.
Contributed by Robert Beezer
T05 Trivially, if U and V are two subspaces of W, then $\operatorname{dim}(U)=\operatorname{dim}(V)$. Combine this fact, Theorem PSSD 352, and Theorem EDYES 352 all into one grand combined theorem. You might look to Theorem PIP 168 stylistic inspiration. (Notice this problem does not ask you to prove anything. It just asks you to roll up three theorems into one compact, logically equivalent statement.)
Contributed by Robert Beezer
T10 Prove the following theorem, which could be viewed as a reformulation of parts (3) and (4) of Theorem G 349, or more appropriately as a corollary of Theorem G 349 (Technique LC 682).

Suppose V is a vector space and S is a subset of V such that the number of vectors in S equals the dimendion of V. Then S is linearly independent if and only if S spans V.
Contributed by Robert Beezer
T15 Suppose that A is an $m \times n$ matrix and let $\min (m, n)$ denote the minimum of m and n. Prove that $r(A) \leq \min (m, n)$.
Contributed by Robert Beezer
T20 Suppose that A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{C}^{m}$. Prove that the linear system $\mathcal{L S}(A, \mathbf{b})$ is consistent if and only if $r(A)=r([A \mid \mathbf{b}])$.
Contributed by Robert Beezer Solution 361
T25 Suppose that V is a vector space with finite dimension. Let W be any subspace of V. Prove that W has finite dimension.
Contributed by Robert Beezer
T60 Suppose that W is a vector space with dimension 5, and U and V are subspaces of W, each of dimension 3. Prove that $U \cap V$ contains a non-zero vector. State a more general result.
Contributed by Joe Riegsecker Solution 361

Subsection SOL
 Solutions
 ■ㄷ

T20 Contributed by Robert Beezer Statement 360
(\Rightarrow) Suppose first that $\mathcal{L S}(A, \mathbf{b})$ is consistent. Then by Theorem CSCS $232, \mathbf{b} \in \mathcal{C}(A)$. This means that $\mathcal{C}(A)=\mathcal{C}([A \mid \mathbf{b}])$ and so it follows that $r(A)=r([A \mid \mathbf{b}])$.
(\Leftarrow) Adding a column to a matrix will only increase the size of its column space, so in all cases, $\mathcal{C}(A) \subseteq \mathcal{C}([A \mid \mathbf{b}])$. However, if we assume that $r(A)=r([A \mid \mathbf{b}])$, then by Theorem EDYES 352] we conclude that $\mathcal{C}(A)=\mathcal{C}([A \mid \mathbf{b}])$. Then $\mathbf{b} \in \mathcal{C}([A \mid \mathbf{b}])=\mathcal{C}(A)$ so by Theorem CSCS 232, $\mathcal{L S}(A, \mathbf{b})$ is consistent.

T60 Contributed by Robert Beezer Statement 360
Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be bases for U and V (respectively). Then, the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent, since Theorem G 349 says we cannot have 6 linearly independent vectors in a vector space of dimension 5 . So we can assert that there is a non-trivial relation of linear dependence,

$$
a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+b_{3} \mathbf{v}_{3}=\mathbf{0}
$$

where a_{1}, a_{2}, a_{3} and b_{1}, b_{2}, b_{3} are not all zero.
We can rearrange this equation as

$$
a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}=-b_{1} \mathbf{v}_{1}-b_{2} \mathbf{v}_{2}-b_{3} \mathbf{v}_{3}
$$

This is an equality of two vectors, so we can give this common vector a name, say \mathbf{w},

$$
\mathbf{w}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}=-b_{1} \mathbf{v}_{1}-b_{2} \mathbf{v}_{2}-b_{3} \mathbf{v}_{3}
$$

This is the desired non-zero vector, as we will now show.
First, since $\mathbf{w}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}$, we can see that $\mathbf{w} \in U$. Similarly, $\mathbf{w}=-b_{1} \mathbf{v}_{1}-b_{2} \mathbf{v}_{2}-b_{3} \mathbf{v}_{3}$, so $\mathbf{w} \in V$. This establishes that $\mathbf{w} \in U \cap V$ (Definition SI 671).

Is $\mathbf{w} \neq \mathbf{0}$? Suppose not, in other words, suppose $\mathbf{w}=\mathbf{0}$. Then

$$
\mathbf{0}=\mathbf{w}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}
$$

Because $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis for U, it is a linearly independent set and the relation of linear dependence above means we must conclude that $a_{1}=a_{2}=a_{3}=0$. By a similar process, we would conclude that $b_{1}=b_{2}=b_{3}=0$. But this is a contradiction since $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ were chosen so that some were nonzero. So $\mathbf{w} \neq \mathbf{0}$.

How does this generalize? All we really needed was the original relation of linear dependence that resulted because we had "too many" vectors in W. A more general statement would be: Suppose that W is a vector space with dimension n, U is a subspace of dimension p and V is a subspace of dimension q. If $p+q>n$, then $U \cap V$ contains a non-zero vector.

Chapter D Determinants

The determinant is a function that takes a square matrix as an input and produces a scalar as an output. So unlike a vector space, it is not an algebraic structure. However, it has many beneficial properties for studying vector spaces, matrices and systems of equations, so it is hard to ignore (though some have tried). While the properties of a determinant can be very useful, they are also complicated to prove.

Section DM
 Determinant of a Matrix

First, a slight detour, as we introduce elementary matrices, which will bring us back to the beginning of the course and our old friend, row operations.

Subsection EM
 Elementary Matrices

Elementary matrices are very simple, as you might have suspected from their name. Their purpose is to effect row operations (Definition RO 28) on a matrix through matrix multiplication (Definition MM (192). Their definitions look more complicated than they really are, so be sure to read ahead after you read the definition for some explanations and an example.

Definition ELEM Elementary Matrices

1. $E_{i, j}$ is the square matrix of size n with

$$
\left[E_{i, j}\right]_{k \ell}= \begin{cases}0 & k \neq i, k \neq j, \ell \neq k \\ 1 & k \neq i, k \neq j, \ell=k \\ 0 & k=i, \ell \neq j \\ 1 & k=i, \ell=j \\ 0 & k=j, \ell \neq i \\ 1 & k=j, \ell=i\end{cases}
$$

2. $E_{i}(\alpha)$, for $\alpha \neq 0$, is the square matrix of size n with

$$
\left[E_{i}(\alpha)\right]_{k \ell}= \begin{cases}0 & k \neq i, \ell \neq k \\ 1 & k \neq i, \ell=k \\ \alpha & k=i, \ell=i\end{cases}
$$

3. $E_{i, j}(\alpha)$ is the square matrix of size n with

$$
\left[E_{i, j}(\alpha)\right]_{k \ell}= \begin{cases}0 & k \neq j, \ell \neq k \\ 1 & k \neq j, \ell=k \\ 0 & k=j, \ell \neq i, \ell \neq j \\ 1 & k=j, \ell=j \\ \alpha & k=j, \ell=i\end{cases}
$$

(This definition contains Notation ELEM.)

Again, these matrices are not as complicated as they appear, since they are mostly pertubations of the $n \times n$ identity matrix (Definition IM 68]). $E_{i, j}$ is the identity matrix with rows (or columns) i and j trading places, $E_{i}(\alpha)$ is the identity matrix where the diagonal entry in row i and column i has been replaced by α, and $E_{i, j}(\alpha)$ is the identity matrix where the entry in row j and column i has been replaced by α. (Yes, those subscripts look backwards in the description of $E_{i, j}(\alpha)$). Notice that our notation makes no reference to the size of the elementary matrix, since this will always be apparent from the context, or unimportant.

The raison d'être for elementary matrices is to "do" row operations on matrices with matrix multiplication. So here is an example where we will both see some elementary matrices and see how they can accomplish row operations.

Example EMRO

Elementary matrices and row operations

We will perform a sequence of row operations Definition RO [28) on the 3×4 matrix A, while also multiplying the matrix on the left by the appropriate 3×3 elementary matrix.

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
2 & 1 & 3 & 1 \\
1 & 3 & 2 & 4 \\
5 & 0 & 3 & 1
\end{array}\right] \\
& R_{1} \leftrightarrow R_{3}:\left[\begin{array}{cccc}
5 & 0 & 3 & 1 \\
1 & 3 & 2 & 4 \\
2 & 1 & 3 & 1
\end{array}\right] \quad E_{1,3}:\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
2 & 1 & 3 & 1 \\
1 & 3 & 2 & 4 \\
5 & 0 & 3 & 1
\end{array}\right]=\left[\begin{array}{cccc}
5 & 0 & 3 & 1 \\
1 & 3 & 2 & 4 \\
2 & 1 & 3 & 1
\end{array}\right] \\
& 2 R_{2}:\left[\begin{array}{cccc}
5 & 0 & 3 & 1 \\
2 & 6 & 4 & 8 \\
2 & 1 & 3 & 1
\end{array}\right] \\
& E_{2}(2):\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
5 & 0 & 3 & 1 \\
1 & 3 & 2 & 4 \\
2 & 1 & 3 & 1
\end{array}\right]=\left[\begin{array}{llll}
5 & 0 & 3 & 1 \\
2 & 6 & 4 & 8 \\
2 & 1 & 3 & 1
\end{array}\right] \\
& 2 R_{3}+R_{1}:\left[\begin{array}{llll}
9 & 2 & 9 & 3 \\
2 & 6 & 4 & 8 \\
2 & 1 & 3 & 1
\end{array}\right] \\
& E_{3,1}(2):\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
5 & 0 & 3 & 1 \\
2 & 6 & 4 & 8 \\
2 & 1 & 3 & 1
\end{array}\right]=\left[\begin{array}{llll}
9 & 2 & 9 & 3 \\
2 & 6 & 4 & 8 \\
2 & 1 & 3 & 1
\end{array}\right]
\end{aligned}
$$

The next three theorems establish that each elementary matrix effects a row operation via matrix multiplication.

Theorem EMDRO

Elementary Matrices Do Row Operations

Suppose that A is a matrix, and B is a matrix of the same size that is obtained from A by a single row operation Definition RO 28).

1. If the row operation swaps rows i and j, then $B=E_{i, j} A$.
2. If the row operation multiplies row i by α, then $B=E_{i}(\alpha) A$.
3. If the row operation multiplies row i by α and adds the result to row j, then $B=E_{i, j}(\alpha) A$.

Proof In each of the three conclusions, performing the row operation on A will create the matrix B where only one or two rows will have changed. So we will establish the equality of the matrix entries row by row, first for the unchanged rows, then for the changed rows, showing in each case that the result of the matrix product is the same as the result of the row operation. Here we go.

Row k of the product $E_{i, j} A$, where $k \neq i, k \neq j$, is unchanged from A,

$$
\begin{align*}
{\left[E_{i, j} A\right]_{k \ell} } & =\sum_{p=1}^{n}\left[E_{i, j}\right]_{k p}[A]_{p \ell} \\
& =\left[E_{i, j}\right]_{k k}[A]_{k \ell}+\sum_{p=1, p \neq k}^{n}\left[E_{i, j}\right]_{k p}[A]_{p \ell} \\
& =1[A]_{k \ell}+\sum_{p=1, p \neq k}^{n} 0[A]_{p \ell} \\
& =[A]_{k \ell}
\end{align*}
$$

Row i of the product $E_{i, j} A$ is row j of A,

$$
\begin{align*}
{\left[E_{i, j} A\right]_{i \ell} } & =\sum_{p=1}^{n}\left[E_{i, j}\right]_{i p}[A]_{p \ell} \\
& =\left[E_{i, j}\right]_{i j}[A]_{j \ell}+\sum_{p=1, p \neq j}^{n}\left[E_{i, j}\right]_{i p}[A]_{p \ell} \\
& =1[A]_{j \ell}+\sum_{p=1, p \neq j}^{n} 0[A]_{p \ell} \\
& =[A]_{j \ell}
\end{align*}
$$

Definition ELEM 363

Row j of the product $E_{i, j} A$ is row i of A,

$$
\begin{aligned}
{\left[E_{i, j} A\right]_{j \ell} } & =\sum_{p=1}^{n}\left[E_{i, j}\right]_{j p}[A]_{p \ell} \\
& =\left[E_{i, j}\right]_{j i}[A]_{i \ell}+\sum_{p=1, p \neq i}^{n}\left[E_{i, j}\right]_{j p}[A]_{p \ell} \\
& =1[A]_{i \ell}+\sum_{p=1, p \neq i}^{n} 0[A]_{p \ell} \\
& =[A]_{i \ell}
\end{aligned}
$$

Theorem EMP 193

Definition ELEM 363

So the matrix product $E_{i, j} A$ is the same as the row operation that swaps rows i and j.
Row k of the product $E_{i}(\alpha) A$, where $k \neq i$, is unchanged from A,

$$
\begin{aligned}
{\left[E_{i}(\alpha) A\right]_{k \ell} } & =\sum_{p=1}^{n}\left[E_{i}(\alpha)\right]_{k p}[A]_{p \ell} \\
& =\left[E_{i}(\alpha)\right]_{k k}[A]_{k \ell}+\sum_{p=1, p \neq k}^{n}\left[E_{i}(\alpha)\right]_{k p}[A]_{p \ell} \\
& =1[A]_{k \ell}+\sum_{p=1, p \neq k}^{n} 0[A]_{p \ell} \\
& =[A]_{k \ell}
\end{aligned}
$$

Theorem EMP 193

Definition ELEM 363

Row i of the product $E_{i}(\alpha) A$ is α times row i of A,

$$
\begin{align*}
{\left[E_{i}(\alpha) A\right]_{i \ell} } & =\sum_{p=1}^{n}\left[E_{i}(\alpha)\right]_{i p}[A]_{p \ell} \\
& =\left[E_{i}(\alpha)\right]_{i i}[A]_{i \ell}+\sum_{p=1, p \neq i}^{n}\left[E_{i}(\alpha)\right]_{i p}[A]_{p \ell} \\
& =\alpha[A]_{i \ell}+\sum_{p=1, p \neq i}^{n} 0[A]_{p \ell} \\
& =\alpha[A]_{i \ell}
\end{align*}
$$

Definition ELEM 363

So the matrix product $E_{i}(\alpha) A$ is the same as the row operation that swaps multiplies row i by α.
Row k of the product $E_{i, j}(\alpha) A$, where $k \neq j$, is unchanged from A,

$$
\begin{align*}
{\left[E_{i, j}(\alpha) A\right]_{k \ell} } & =\sum_{p=1}^{n}\left[E_{i, j}(\alpha)\right]_{k p}[A]_{p \ell} \tag{tabular}\\
& =\left[E_{i, j}(\alpha)\right]_{k k}[A]_{k \ell}+\sum_{p=1, p \neq k}^{n}\left[E_{i, j}(\alpha)\right]_{k p}[A]_{p \ell} \\
& =1[A]_{k \ell}+\sum_{p=1, p \neq k}^{n} 0[A]_{p \ell} \\
& =[A]_{k \ell}
\end{align*}
$$

Definition ELEM 363

Row j of the product $E_{i, j}(\alpha) A$, is α times row i of A and then added to row j of A,

$$
\begin{align*}
{\left[E_{i, j}(\alpha) A\right]_{j \ell}=} & \sum_{p=1}^{n}\left[E_{i, j}(\alpha)\right]_{j p}[A]_{p \ell} \\
= & {\left[E_{i, j}(\alpha)\right]_{j j}[A]_{j \ell}+} \\
& {\left[E_{i, j}(\alpha)\right]_{j i}[A]_{i \ell}+\sum_{p=1, p \neq j, i}^{n}\left[E_{i, j}(\alpha)\right]_{j p}[A]_{p \ell} } \\
= & 1[A]_{j \ell}+\alpha[A]_{i \ell}+\sum_{p=1, p \neq j, i}^{n} 0[A]_{p \ell} \\
= & {[A]_{j \ell}+\alpha[A]_{i \ell} }
\end{align*}
$$

Definition ELEM 363

So the matrix product $E_{i, j}(\alpha) A$ is the same as the row operation that multiplies row i by α and adds the result to row j.

Later in this section we will need two facts about elementary matrices.

Theorem EMN

Elementary Matrices are Nonsingular

If E is an elementary matrix, then E is nonsingular.
Proof We can row-reduce each elementary matrix to the identity matrix. Given an elementary matrix of the form $E_{i, j}$, perform the row operation that swaps row j with row i. Given an elementary matrix of the form $E_{i}(\alpha)$, with $\alpha \neq 0$, perform the row operation that multiplies row i by $1 / \alpha$. Given an elementary matrix of the form $E_{i, j}(\alpha)$, with $\alpha \neq 0$, perform the row operation that multiplies row i by $-\alpha$ and adds it to row j. In each case, the result of the single row operation is the identity matrix. So each elementary matrix is row-equivalent to the identity matrix, and by Theorem NMRRI 68 is nonsingular.

Notice that we have now made use of the nonzero restriction on α in the definition of $E_{i}(\alpha)$. One more key property of elementary matrices.

Theorem NMPEM

Nonsingular Matrices are Products of Elementary Matrices

Suppose that A is a nonsingular matrix. Then there exists elementary matrices $E_{1}, E_{2}, E_{3}, \ldots, E_{t}$ so that $A=E_{1} E_{2} E_{3} \ldots E_{t}$.
Proof Since A is nonsingular, it is row-equivalent to the identity matrix by Theorem NMRRI 68, so there is a sequence of t row operations that converts I to A. For each of these row operations, form the associated elementary matrix from Theorem EMDRO 365 and denote these matrices by $E_{1}, E_{2}, E_{3}, \ldots, E_{t}$. Applying the first row operation to I yields the matrix $E_{1} I$. The second row operation yields $E_{2}\left(E_{1} I\right)$, and the third row operation creates $E_{3} E_{2} E_{1} I$. The result of the full sequence of t row operations will yield A, so

$$
A=E_{t} \ldots E_{3} E_{2} E_{1} I=E_{t} \ldots E_{3} E_{2} E_{1}
$$

Other than the cosmetic matter of re-indexing these elementary matrices in the opposite order, this is the desired result.

Subsection DD
 Definition of the Determinant

We'll now turn to the definition of a determinant and do some sample computations. The definition of the determinant function is recursive, that is, the determinant of a large matrix is defined in terms of the determinant of smaller matrices. To this end, we will make a few definitions.

Definition SM

SubMatrix

Suppose that A is an $m \times n$ matrix. Then the submatrix $A(i \mid j)$ is the $(m-1) \times(n-1)$ matrix obtained from A by removing row i and column j.
(This definition contains Notation SM.)

Example SS

Some submatrices

For the matrix

$$
A=\left[\begin{array}{cccc}
1 & -2 & 3 & 9 \\
4 & -2 & 0 & 1 \\
3 & 5 & 2 & 1
\end{array}\right]
$$

we have the submatrices

$$
A(2 \mid 3)=\left[\begin{array}{ccc}
1 & -2 & 9 \\
3 & 5 & 1
\end{array}\right] \quad A(3 \mid 1)=\left[\begin{array}{ccc}
-2 & 3 & 9 \\
-2 & 0 & 1
\end{array}\right]
$$

Definition DM

Determinant of a Matrix
Suppose A is a square matrix. Then its determinant, $\operatorname{det}(A)=|A|$, is an element of \mathbb{C} defined recursively by:
If A is a 1×1 matrix, then $\operatorname{det}(A)=[A]_{11}$.
If A is a matrix of size n with $n \geq 2$, then

$$
\begin{aligned}
\operatorname{det}(A)= & {[A]_{11} \operatorname{det}(A(1 \mid 1))-[A]_{12} \operatorname{det}(A(1 \mid 2))+[A]_{13} \operatorname{det}(A(1 \mid 3))-} \\
& {[A]_{14} \operatorname{det}(A(1 \mid 4))+\cdots+(-1)^{n+1}[A]_{1 n} \operatorname{det}(A(1 \mid n)) }
\end{aligned}
$$

(This definition contains Notation DM.)
So to compute the determinant of a 5×5 matrix we must build 5 submatrices, each of size 4 . To compute the determinants of each the 4×4 matrices we need to create 4 submatrices each, these now of size 3 and so on. To compute the determinant of a 10×10 matrix would require computing the determinant of 10 ! $=10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2=3,628,8001 \times 1$ matrices. Fortunately there are better ways. However this does suggest an excellent computer programming exercise to write a recursive procedure to compute a determinant.

Let's compute the determinant of a reasonable sized matrix by hand.

Example D33M

Determinant of a 3×3 matrix
Suppose that we have the 3×3 matrix

$$
A=\left[\begin{array}{ccc}
3 & 2 & -1 \\
4 & 1 & 6 \\
-3 & -1 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
\operatorname{det}(A)=|A| & =\left|\begin{array}{ccc}
3 & 2 & -1 \\
4 & 1 & 6 \\
-3 & -1 & 2
\end{array}\right| \\
& =3\left|\begin{array}{cc}
1 & 6 \\
-1 & 2
\end{array}\right|-2\left|\begin{array}{cc}
4 & 6 \\
-3 & 2
\end{array}\right|+(-1)\left|\begin{array}{cc}
4 & 1 \\
-3 & -1
\end{array}\right| \\
& =3(1|2|-6|-1|)-2(4|2|-6|-3|)-(4|-1|-1|-3|) \\
& =3(1(2)-6(-1))-2(4(2)-6(-3))-(4(-1)-1(-3)) \\
& =24-52+1 \\
& =-27
\end{aligned}
$$

In practice it is a bit silly to decompose a 2×2 matrix down into a couple of 1×1 matrices and then compute the exceedingly easy determinant of these puny matrices. So here is a simple theorem.

Theorem DMST

Determinant of Matrices of Size Two

Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $\operatorname{det}(A)=a d-b c$
Proof Applying Definition DM 368,

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a|d|-b|c|=a d-b c
$$

Do you recall seeing the expression $a d-b c$ before? (Hint: Theorem TTMI 210)

Subsection CD
 Computing Determinants

There are a variety of ways to compute the determinant. We will establish first that we can choose to mimic our definition of the determinant, but by using matrix entries and submatrices based on a row other than the first one.

Theorem DER

Determinant Expansion about Rows

Suppose that A is a square matrix of size n. Then

$$
\begin{aligned}
\operatorname{det}(A)= & (-1)^{i+1}[A]_{i 1} \operatorname{det}(A(i \mid 1))+(-1)^{i+2}[A]_{i 2} \operatorname{det}(A(i \mid 2)) & \\
& +(-1)^{i+3}[A]_{i 3} \operatorname{det}(A(i \mid 3))+\cdots+(-1)^{i+n}[A]_{i n} \operatorname{det}(A(i \mid n)) & 1 \leq i \leq n
\end{aligned}
$$

which is known as expansion about row i.
Proof Given the recursive definition of the determinant, it should be no surprise that we will use induction for this proof (Technique I 680). When $n=1$, there is nothing to prove since there is but one row. When $n=2$, we just examine expansion about the second row,

$$
\begin{aligned}
(-1)^{2+1}[A]_{21} & \operatorname{det}(A(2 \mid 1))+(-1)^{2+2}[A]_{22} \operatorname{det}(A(2 \mid 2)) & & \\
& =-[A]_{21}[A]_{12}+[A]_{22}[A]_{11} & & \text { Definition DM 368 } \\
& =[A]_{11}[A]_{22}-[A]_{12}[A]_{21} & & \text { Theorem DMST 369 } \\
& =\operatorname{det}(A) & & \text { The }
\end{aligned}
$$

So the theorem is true for matrices of size $n=1$ and $n=2$. Now assume the result is true for all matrices of size $n-1$ as we derive an expression for expansion about row i for a matrix of size n. We will abuse our notation for a submatrix slightly, so $A\left(i_{1}, i_{2} \mid j_{1}, j_{2}\right)$ will denote the matrix formed by removing rows i_{1} and i_{2}, along with removing columns j_{1} and j_{2}. Also, as we take a determinant of a submatrix, we will need to "jump up" the index of summation partway through as we "skip over" a missing column. To do this smoothly we will set

$$
\epsilon_{\ell j}= \begin{cases}0 & \ell<j \\ 1 & \ell>j\end{cases}
$$

Now,

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{1+j}[A]_{1 j} \operatorname{det}(A(1 \mid j))
$$

$$
\begin{array}{ll}
=\sum_{j=1}^{n}(-1)^{1+j}[A]_{1 j} \sum_{\substack{1 \leq \ell \leq n \\
\ell \neq j}}(-1)^{i-1+\ell-\epsilon_{\ell j}}[A]_{i \ell} \operatorname{det}(A(1, i \mid j, \ell)) & \text { Induction, row } i \\
=\sum_{\substack{1 \leq j \leq n \\
1 \leq \ell \leq n \\
j \neq \ell}}(-1)^{j+i+\ell-\epsilon_{\ell j}}[A]_{1 j}[A]_{i \ell} \operatorname{det}(A(1, i \mid j, \ell)) & \\
=\sum_{\ell=1}^{n}(-1)^{i+\ell}[A]_{i \ell} \sum_{\substack{1 \leq j \leq n \\
j \neq \ell}}(-1)^{j-\epsilon_{\ell j}}[A]_{1 j} \operatorname{det}(A(1, i \mid j, \ell)) & \\
=\sum_{\ell=1}^{n}(-1)^{i+\ell}[A]_{i \ell} \sum_{\substack{1 \leq j \leq n \\
j \neq \ell}}(-1)^{\epsilon_{\ell j}+j}[A]_{1 j} \operatorname{det}(A(i, 1 \mid \ell, j)) & 2 \epsilon_{\ell j} \text { is even } \\
=\sum_{\ell=1}^{n}(-1)^{i+\ell}[A]_{i \ell} \operatorname{det}(A(i \mid \ell)) & \\
\end{array}
$$

We can also obtain a formula that computes a determinant by expansion about a column, but this will be simpler if we first prove a result about the interplay of determinants and transposes. Notice how the following proof makes use of the ability to compute a determinant by expanding about any row.

Theorem DT

Determinant of the Transpose

Suppose that A is a square matrix. Then $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.
Proof As before, with a recursive definition, a proof by induction will be natural (Technique I 680). For the base case, a square matrix of size 1 is symmetric, so $A=A^{t}$, and the determinants will be equal. Now assume the theorem is true for all square matrices of size $n-1$ and consider the determinant of a matrix of size n.

$$
\begin{array}{rlrl}
\operatorname{det}\left(A^{t}\right) & =\frac{1}{n} \sum_{i=1}^{n} \operatorname{det}\left(A^{t}\right) & \\
& =\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n}(-1)^{i+j}\left[A^{t}\right]_{i j} \operatorname{det}\left(A^{t}(i \mid j)\right) & & \text { Theorem DER 369 } \\
& =\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n}(-1)^{i+j}[A]_{j i} \operatorname{det}(A(j \mid i)) & & \text { Definition TM 180 } \\
& =\frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{n}(-1)^{j+i}[A]_{j i} \operatorname{det}(A(j \mid i)) & & \text { Switch order of summation } \\
& =\frac{1}{n} \sum_{j=1}^{n} \operatorname{det}(A) & & \text { Theorem DER 369 } \\
& =\operatorname{det}(A) &
\end{array}
$$

Now we can easily get the result that a determinant can be computed by expansion about any column as well.

Theorem DEC

Determinant Expansion about Columns

Suppose that A is a square matrix of size n. Then

$$
\begin{aligned}
\operatorname{det}(A)= & (-1)^{1+j}[A]_{1 j} \operatorname{det}(A(1 \mid j))+(-1)^{2+j}[A]_{2 j} \operatorname{det}(A(2 \mid j)) & \\
& +(-1)^{3+j}[A]_{3 j} \operatorname{det}(A(3 \mid j))+\cdots+(-1)^{n+j}[A]_{n j} \operatorname{det}(A(n \mid j)) & 1 \leq j \leq n
\end{aligned}
$$

which is known as expansion about column j.

Proof

$$
\begin{array}{rlrl}
\operatorname{det}(A) & =\operatorname{det}\left(A^{t}\right) & & \text { Theorem DT 370 } \\
& =\sum_{j=1}^{n}\left[A^{t}\right]_{j i} \operatorname{det}\left(A^{t}(j \mid i)\right) & & \text { Theorem DER 369 } \\
& =\sum_{j=1}^{n}[A]_{i j} \operatorname{det}(A(i \mid j)) & & \\
\hline
\end{array}
$$

That the determinant of an $n \times n$ matrix can be computed in $2 n$ different (albeit similar) ways is nothing short of remarkable. For the doubters among us, we will do an example, computing a 4×4 matrix in two different ways.

Example TCSD

Two computations, same determinant

Let

$$
A=\left[\begin{array}{cccc}
-2 & 3 & 0 & 1 \\
9 & -2 & 0 & 1 \\
1 & 3 & -2 & -1 \\
4 & 1 & 2 & 6
\end{array}\right]
$$

Then expanding about the fourth row (Theorem DER 369 with $i=4$) yields,

$$
\begin{aligned}
|A|= & (4)(-1)^{4+1}\left|\begin{array}{ccc}
3 & 0 & 1 \\
-2 & 0 & 1 \\
3 & -2 & -1
\end{array}\right|+(1)(-1)^{4+2}\left|\begin{array}{ccc}
-2 & 0 & 1 \\
9 & 0 & 1 \\
1 & -2 & -1
\end{array}\right| \\
& +(2)(-1)^{4+3}\left|\begin{array}{ccc}
-2 & 3 & 1 \\
9 & -2 & 1 \\
1 & 3 & -1
\end{array}\right|+(6)(-1)^{4+4}\left|\begin{array}{ccc}
-2 & 3 & 0 \\
9 & -2 & 0 \\
1 & 3 & -2
\end{array}\right| \\
= & (-4)(10)+(1)(-22)+(-2)(61)+6(46)=92
\end{aligned}
$$

while expanding about column 3 Theorem DEC 370 with $j=3$) gives

$$
\begin{aligned}
|A|= & (0)(-1)^{1+3}\left|\begin{array}{ccc}
9 & -2 & 1 \\
1 & 3 & -1 \\
4 & 1 & 6
\end{array}\right|+(0)(-1)^{2+3}\left|\begin{array}{ccc}
-2 & 3 & 1 \\
1 & 3 & -1 \\
4 & 1 & 6
\end{array}\right|+ \\
& (-2)(-1)^{3+3}\left|\begin{array}{ccc}
-2 & 3 & 1 \\
9 & -2 & 1 \\
4 & 1 & 6
\end{array}\right|+(2)(-1)^{4+3}\left|\begin{array}{ccc}
-2 & 3 & 1 \\
9 & -2 & 1 \\
1 & 3 & -1
\end{array}\right| \\
= & 0+0+(-2)(-107)+(-2)(61)=92
\end{aligned}
$$

Notice how much easier the second computation was. By choosing to expand about the third column, we have two entries that are zero, so two 3×3 determinants need not be computed at all!

When a matrix has all zeros above (or below) the diagonal, exploiting the zeros by expanding about the proper row or column makes computing a determinant insanely easy.

Example DUTM

Determinant of an upper triangular matrix

Suppose that

$$
T=\left[\begin{array}{ccccc}
2 & 3 & -1 & 3 & 3 \\
0 & -1 & 5 & 2 & -1 \\
0 & 0 & 3 & 9 & 2 \\
0 & 0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0 & 5
\end{array}\right]
$$

We will compute the determinant of this 5×5 matrix by consistently expanding about the first column for each submatrix that arises and does not have a zero entry multiplying it.

$$
\begin{aligned}
\operatorname{det}(T) & =\left|\begin{array}{ccccc}
2 & 3 & -1 & 3 & 3 \\
0 & -1 & 5 & 2 & -1 \\
0 & 0 & 3 & 9 & 2 \\
0 & 0 & 0 & -1 & 3 \\
0 & 0 & 0 & 0 & 5
\end{array}\right| \\
& =2(-1)^{1+1}\left|\begin{array}{cccc}
-1 & 5 & 2 & -1 \\
0 & 3 & 9 & 2 \\
0 & 0 & -1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right| \\
& =2(-1)(-1)^{1+1}\left|\begin{array}{ccc}
3 & 9 & 2 \\
0 & -1 & 3 \\
0 & 0 & 5
\end{array}\right| \\
& =2(-1)(3)(-1)^{1+1}\left|\begin{array}{cc}
-1 & 3 \\
0 & 5
\end{array}\right| \\
& =2(-1)(3)(-1)(-1)^{1+1}|5| \\
& =2(-1)(3)(-1)(5)=30
\end{aligned}
$$

If you consult other texts in your study of determinants, you may run into the terms "minor" and "cofactor," especially in a discussion centered on expansion about rows and columns. We've chosen not to make these definitions formally since we've been able to get along without them. However, informally, a minor is a determinant of a submatrix, specifically $\operatorname{det}(A(i \mid j))$ and is usually referenced as the minor of $[A]_{i j}$. A cofactor is a signed minor, specifically the cofactor of $[A]_{i j}$ is $(-1)^{i+j} \operatorname{det}(A(i \mid j))$.

Subsection READ
 Reading Questions

1. Construct the elementary matrix that will effect the row operation $-6 R_{2}+R_{3}$ on a 4×7 matrix.
2. Compute the determinant of the matrix

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
3 & 8 & 2 \\
4 & -1 & -3
\end{array}\right]
$$

3. Compute the determinant of the matrix

$$
\left[\begin{array}{ccccc}
3 & 9 & -2 & 4 & 2 \\
0 & 1 & 4 & -2 & 7 \\
0 & 0 & -2 & 5 & 2 \\
0 & 0 & 0 & -1 & 6 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

Subsection EXC

Exercises

C24 Doing the computations by hand, find the determinant of the matrix below.

$$
\left[\begin{array}{ccc}
-2 & 3 & -2 \\
-4 & -2 & 1 \\
2 & 4 & 2
\end{array}\right]
$$

Contributed by Robert Beezer Solution 375
C25 Doing the computations by hand, find the determinant of the matrix below.

$$
\left[\begin{array}{ccc}
3 & -1 & 4 \\
2 & 5 & 1 \\
2 & 0 & 6
\end{array}\right]
$$

Contributed by Robert Beezer Solution 375
C26 Doing the computations by hand, find the determinant of the matrix A.

$$
A=\left[\begin{array}{llll}
2 & 0 & 3 & 2 \\
5 & 1 & 2 & 4 \\
3 & 0 & 1 & 2 \\
5 & 3 & 2 & 1
\end{array}\right]
$$

Contributed by Robert Beezer Solution 375

Subsection SOL
 Solutions

■ா

C24 Contributed by Robert Beezer Statement 374
We'll expand about the first row since there are no zeros to exploit,

$$
\begin{aligned}
\left|\begin{array}{ccc}
-2 & 3 & -2 \\
-4 & -2 & 1 \\
2 & 4 & 2
\end{array}\right| & =(-2)\left|\begin{array}{cc}
-2 & 1 \\
4 & 2
\end{array}\right|+(-1)(3)\left|\begin{array}{cc}
-4 & 1 \\
2 & 2
\end{array}\right|+(-2)\left|\begin{array}{cc}
-4 & -2 \\
2 & 4
\end{array}\right| \\
& =(-2)((-2)(2)-1(4))+(-3)((-4)(2)-1(2))+(-2)((-4)(4)-(-2)(2)) \\
& =(-2)(-8)+(-3)(-10)+(-2)(-12)=70
\end{aligned}
$$

C25 Contributed by Robert Beezer Statement 374
We can expand about any row or column, so the zero entry in the middle of the last row is attractive. Let's expand about column 2. By Theorem DER 369] and Theorem DEC [370] you will get the same result by expanding about a different row or column. We will use Theorem DMST 369 twice.

$$
\begin{aligned}
\left|\begin{array}{ccc}
3 & -1 & 4 \\
2 & 5 & 1 \\
2 & 0 & 6
\end{array}\right| & =(-1)(-1)^{1+2}\left|\begin{array}{ll}
2 & 1 \\
2 & 6
\end{array}\right|+(5)(-1)^{2+2}\left|\begin{array}{ll}
3 & 4 \\
2 & 6
\end{array}\right|+(0)(-1)^{3+2}\left|\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right| \\
& =(1)(10)+(5)(10)+0=60
\end{aligned}
$$

C26 Contributed by Robert Beezer Statement 374
With two zeros in column 2, we choose to expand about that column (Theorem DEC 370),

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{llll}
2 & 0 & 3 & 2 \\
5 & 1 & 2 & 4 \\
3 & 0 & 1 & 2 \\
5 & 3 & 2 & 1
\end{array}\right| \\
& =0(-1)\left|\begin{array}{lll}
5 & 2 & 4 \\
3 & 1 & 2 \\
5 & 2 & 1
\end{array}\right|+1(1)\left|\begin{array}{lll}
2 & 3 & 2 \\
3 & 1 & 2 \\
5 & 2 & 1
\end{array}\right|+0(-1)\left|\begin{array}{lll}
2 & 3 & 2 \\
5 & 2 & 4 \\
5 & 2 & 1
\end{array}\right|+3(1)\left|\begin{array}{lll}
2 & 3 & 2 \\
5 & 2 & 4 \\
3 & 1 & 2
\end{array}\right| \\
& =(1)(2(1(1)-2(2))-3(3(1)-5(2))+2(3(2)-5(1)))+ \\
& (3)(2(2(2)-4(1))-3(5(2)-4(3))+2(5(1)-3(2))) \\
& =(-6+21+2)+(3)(0+6-2)=29
\end{aligned}
$$

Section PDM
 Properties of Determinants of Matrices

We have seen how to compute the determinant of a matrix, and the incredible fact that we can perform expansion about any row or column to make this computation. In this largely theoretical section, we will state and prove several more intriguing properties about determinants. Our main goal will be the two results in Theorem SMZD 383 and Theorem DRMM 385, but more specifically, we will see how the value of a determinant will allow us to gain insight into the various properties of a square matrix.

Subsection DRO

Determinants and Row Operations

π

We start easy with a straightforward theorem whose proof presages the style of subsequent proofs in this subsection.

Theorem DZRC

Determinant with Zero Row or Column

Suppose that A is a square matrix with a row where every entry is zero, or a column where every entry is zero. Then $\operatorname{det}(A)=0$.

Proof Suppose that A is a square matrix of size n and row i has every entry equal to zero. We compute $\operatorname{det}(A)$ via expansion about row i.

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{j=1}^{n}(-1)^{i+j}[A]_{i j} \operatorname{det}(A(i \mid j)) \\
& =\sum_{j=1}^{n}(-1)^{i+j} 0 \operatorname{det}(A(i \mid j)) \\
& =\sum_{j=1}^{n} 0=0
\end{aligned}
$$

Theorem DER 369

Row i is zeros

$$
=\sum_{j=1}^{n}(-1)^{i+j} 0 \operatorname{det}(A(i \mid j)) \quad \text { Row } i \text { is zeros }
$$

The proof for the case of a zero column is entirely similar, or could be derived from an application of Theorem DT 370 employing the transpose of the matrix.

Theorem DRCS

Determinant for Row or Column Swap

Suppose that A is a square matrix. Let B be the square matrix obtained from A by interchanging the location of two rows, or interchanging the location of two columns. Then $\operatorname{det}(B)=-\operatorname{det}(A)$.
Proof Begin with the special case where A is a square matrix of size n and we form B by swapping adjacent rows i and $i+1$ for some $1 \leq i \leq n-1$. Notice that the assumption about swapping adjacent rows means that $B(i+1 \mid j)=A(i \mid j)$ for all $1 \leq j \leq n$, and $[B]_{i+1, j}=[A]_{i j}$ for all $1 \leq j \leq n$. We compute $\operatorname{det}(B)$ via expansion about row $i+1$.

$$
\begin{align*}
\operatorname{det}(B) & =\sum_{j=1}^{n}(-1)^{(i+1)+j}[B]_{i+1, j} \operatorname{det}(B(i+1 \mid j)) & & \text { Theorem D1 } \\
& =\sum_{j=1}^{n}(-1)^{(i+1)+j}[A]_{i j} \operatorname{det}(A(i \mid j)) & & \text { Hypothesis }
\end{align*}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n}(-1)^{1}(-1)^{i+j}[A]_{i j} \operatorname{det}(A(i \mid j)) \\
& =(-1) \sum_{j=1}^{n}(-1)^{i+j}[A]_{i j} \operatorname{det}(A(i \mid j)) \\
& =-\operatorname{det}(A)
\end{aligned}
$$

$$
\begin{array}{|l|l|}
\hline \text { Theorem DER } 369 \\
\hline
\end{array}
$$

So the result holds for the special case where we swap adjacent rows of the matrix. As any computer scientist knows, we can accomplish any rearrangement of an ordered list by swapping adjacent elements. This principle can be demonstrated by naïve sorting algorithms such as "bubble sort." In any event, we don't need to discuss every possible reordering, we just need to consider a swap of two rows, say rows s and t with $1 \leq s<t \leq n$.

Begin with row s, and repeatedly swap it with each row just below it, including row t and stopping there. This will total $t-s$ swaps. Now swap the former row t, which currently lives in row $t-1$, with each row above it, stopping when it becomes row s. This will total another $t-s-1$ swaps. In this way, we create B through a sequence of $2(t-s)-1$ swaps of adjacent rows, each of which adjusts $\operatorname{det}(A)$ by a multiplicative factor of -1 . So

$$
\operatorname{det}(B)=(-1)^{2(t-s)-1} \operatorname{det}(A)=\left((-1)^{2}\right)^{t-s}(-1)^{-1} \operatorname{det}(A)=-\operatorname{det}(A)
$$

as desired.
The proof for the case of swapping two columns is entirely similar, or could be derived from an application of Theorem DT 370 employing the transpose of the matrix.

So Theorem DRCS 377 tells us the effect of the first row operation Definition RO 28) on the determinant of a matrix. Here's the effect of the second row operation.

Theorem DRCM

Determinant for Row or Column Multiples

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a single row by the scalar α, or by multiplying a single column by the scalar α. Then $\operatorname{det}(B)=\alpha \operatorname{det}(A)$.
Proof Suppose that A is a square matrix of size n and we form the square matrix B by multiplying each entry of row i of A by α. Notice that the other rows of A and B are equal, so $A(i \mid j)=B(i \mid j)$, for all $1 \leq j \leq n$. We compute $\operatorname{det}(B)$ via expansion about row i.

$$
\begin{aligned}
\operatorname{det}(B) & =\sum_{j=1}^{n}(-1)^{i+j}[B]_{i j} \operatorname{det}(B(i \mid j)) & & \text { Theorem DER 369 } \\
& =\sum_{j=1}^{n}(-1)^{i+j}[B]_{i j} \operatorname{det}(A(i \mid j)) & & \text { Hypothesis } \\
& =\sum_{j=1}^{n}(-1)^{i+j} \alpha[A]_{i j} \operatorname{det}(A(i \mid j)) & & \text { Hypothesis } \\
& =\alpha \sum_{j=1}^{n}(-1)^{i+j}[A]_{i j} \operatorname{det}(A(i \mid j)) & & \\
& =\alpha \operatorname{det}(A) & & \text { Theorem DER 369 }
\end{aligned}
$$

The proof for the case of a multiple of a column is entirely similar, or could be derived from an application of Theorem DT 370 employing the transpose of the matrix.

Let's go for understanding the effect of all three row operations. But first we need an intermediate result, but it is an easy one.

Theorem DERC

Determinant with Equal Rows or Columns

Suppose that A is a square matrix with two equal rows, or two equal columns. Then $\operatorname{det}(A)=0$.
Proof Suppose that A is a square matrix of size n where the two rows s and t are equal. Form the matrix B by swapping rows r and s. Notice that as a consequence of our hypothesis, $A=B$. Then

$$
\begin{array}{rlrl}
\operatorname{det}(A) & =\frac{1}{2}(\operatorname{det}(A)+\operatorname{det}(A)) & \\
& =\frac{1}{2}(\operatorname{det}(A)-\operatorname{det}(B)) & & \text { Theorem DRCS } 377 \\
& =\frac{1}{2}(\operatorname{det}(A)-\operatorname{det}(A)) & & \text { Hypothesis, } A=B \\
& =\frac{1}{2}(0)=0 & &
\end{array}
$$

The proof for the case of two equal columns is entirely similar, or could be derived from an application of Theorem DT 370 employing the transpose of the matrix.

Now explain the third row operation. Here we go.

Theorem DRCMA

Determinant for Row or Column Multiples and Addition

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying a row by the scalar α and then adding it to another row, or by multiplying a column by the scalar α and then adding it to another column. Then $\operatorname{det}(B)=\operatorname{det}(A)$.

Proof Suppose that A is a square matrix of size n. Form the matrix B by multiplying row s by α and adding it to row t. Let C be the auxiliary matrix where we replace row t of A by row s of A. Notice that $A(t \mid j)=B(t \mid j)=C(t \mid j)$ for all $1 \leq j \leq n$. We compute the determinant of B by expansion about row t.

$$
\begin{array}{rlr}
\operatorname{det}(B)= & \sum_{j=1}^{n}(-1)^{t+j}[B]_{t j} \operatorname{det}(B(t \mid j)) & \text { Theorem DER 369 } \\
= & \sum_{j=1}^{n}(-1)^{t+j}\left(\alpha[A]_{s j}+[A]_{t j}\right) \operatorname{det}(B(s \mid j)) & \text { Hypothesis } \\
= & \sum_{j=1}^{n}(-1)^{t+j} \alpha[A]_{s j} \operatorname{det}(B(t \mid j)) & \\
& +\sum_{j=1}^{n}(-1)^{t+j}[A]_{t j} \operatorname{det}(B(t \mid j)) & \\
= & \alpha \sum_{j=1}^{n}(-1)^{t+j}[A]_{s j} \operatorname{det}(B(t \mid j)) & \\
& +\sum_{j=1}^{n}(-1)^{t+j}[A]_{t j} \operatorname{det}(B(t \mid j)) & \\
= & \sum_{j=1}^{n}(-1)^{t+j}[C]_{t j} \operatorname{det}(C(t \mid j)) & \\
& +\sum_{j=1}^{n}(-1)^{t+j}[A]_{t j} \operatorname{det}(A(t \mid j)) & \alpha \operatorname{det}(C)+\operatorname{det}(A)
\end{array}
$$

$$
=\alpha 0+\operatorname{det}(A)=\operatorname{det}(A)
$$

$$
\text { Theorem DERC } 379
$$

The proof for the case of adding a multiple of a column is entirely similar, or could be derived from an application of Theorem DT 370 employing the transpose of the matrix.

Is this what you expected? We could argue that the third row operation is the most popular, and yet it has no effect whatsoever on the determinant of a matrix! We can exploit this, along with our understanding of the other two row operations, to provide another approach to computing a determinant. We'll explain this in the context of an example.

Example DRO

Determinant by row operations

Suppose we desire the determinant of the 4×4 matrix

$$
A=\left[\begin{array}{cccc}
2 & 0 & 2 & 3 \\
1 & 3 & -1 & 1 \\
-1 & 1 & -1 & 2 \\
3 & 5 & 4 & 0
\end{array}\right]
$$

We will perform a sequence of row operations on this matrix, shooting for an upper triangular matrix, whose determinant will be simply the product of its diagonal entries. For each row operation, we will track the effect on the determinant via Theorem DRCS 377, Theorem DRCM 378, Theorem DRCMA 379.

$$
\begin{aligned}
& \xrightarrow{R_{1} \leftrightarrow R_{2}} A_{1}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
2 & 0 & 2 & 3 \\
-1 & 1 & -1 & 2 \\
3 & 5 & 4 & 0
\end{array}\right] \quad \operatorname{det}(A)=-\operatorname{det}\left(A_{1}\right) \\
& =-\operatorname{det}\left(A_{2}\right) \\
& \text { Theorem DRCMA } 379 \\
& \xrightarrow{1 R_{1}+R_{3}} A_{3}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -6 & 4 & 1 \\
0 & 4 & -2 & 3 \\
3 & 5 & 4 & 0
\end{array}\right] \\
& =-\operatorname{det}\left(A_{3}\right) \\
& \xrightarrow{-3 R_{1}+R_{4}} A_{4}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -6 & 4 & 1 \\
0 & 4 & -2 & 3 \\
0 & -4 & 7 & -3
\end{array}\right] \\
& \xrightarrow{1 R_{3}+R_{2}} A_{5}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -2 & 2 & 4 \\
0 & 4 & -2 & 3 \\
0 & -4 & 7 & -3
\end{array}\right] \\
& \xrightarrow{-\frac{1}{2} R_{2}} A_{6}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 4 & -2 & 3 \\
0 & -4 & 7 & -3
\end{array}\right] \\
& \xrightarrow{{ }^{-4 R_{2}+R_{3}}} A_{7}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 2 & 11 \\
0 & -4 & 7 & -3
\end{array}\right] \quad=2 \operatorname{det}\left(A_{7}\right) \\
& \text { Theorem DRCS } 377 \\
& \text { Theorem DRCMA } 379 \\
& \text { Theorem DRCMA } 379 \\
& \text { Theorem DRCMA } 379 \\
& \text { Theorem DRCM } 378 \\
& \text { Theorem DRCMA } 379
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{4 R_{2}+R_{4}} A_{8}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 2 & 11 \\
0 & 0 & 3 & -11
\end{array}\right] \\
& \xrightarrow{-1 R_{3}+R_{4}} A_{9}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 2 & 11 \\
0 & 0 & 1 & -22
\end{array}\right] \\
& \xrightarrow{-2 R_{4}+R_{3}} A_{10}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 55 \\
0 & 0 & 1 & -22
\end{array}\right] \\
& \xrightarrow{R_{3} \leftrightarrow R_{4}} A_{11}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & -22 \\
0 & 0 & 0 & 55
\end{array}\right] \\
& \xrightarrow{\frac{1}{55} R_{4}} A_{12}=\left[\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 1 & -22 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =2 \operatorname{det}\left(A_{8}\right) \quad \text { Theorem DRCMA 379 } \\
& =2 \operatorname{det}\left(A_{9}\right) \\
& \text { Theorem DRCMA } 379 \\
& =2 \operatorname{det}\left(A_{10}\right) \\
& \text { Theorem DRCMA } 379 \\
& =-2 \operatorname{det}\left(A_{11}\right) \quad \text { Theorem DRCS } 3 \\
& =-110 \operatorname{det}\left(A_{12}\right) \quad \text { Theorem DRCM } 378
\end{aligned}
$$

The matrix A_{12} is upper triangular, so expansion about the first column (repeatedly) will result in $\operatorname{det}\left(A_{12}\right)=(1)(1)(1)(1)=1$ (see Example DUTM 372) and thus, $\operatorname{det}(A)=-110(1)=-110$.

Notice that our sequence of row operations was somewhat $a d$ hoc, such as the transformation to A_{5}. We could have been even more methodical, and strictly followed the process that converts a matrix to reduced row-echelon form (Theorem REMEF 31), eventually achieving the same numerical result with a final matrix that equaled the 4×4 identity matrix. Notice too that we could have stopped with A_{8}, since at this point we could compute det $\left(A_{8}\right)$ by two expansions about first columns, followed by a simple determinant of a 2×2 matrix (Theorem DMST 369).

The beauty of this approach is that computationally we should already have written a procedure to convert matrices to reduced-row echelon form, so all we need to do is track the multiplicative changes to the determinant as the algorithm procedes. Further, for a square matrix of size n this approach requires on the order of n^{3} multiplications, while a recursive application of expansion about a row or column Theorem DER 369, Theorem DEC (370) will require in the vicinity of $(n-1)(n!)$ multiplications. So even for very small matrices, a computational approach utilizing row operations will have superior run-time. Tracking, and controlling, the effects of round-off errors is another story, best saved for a numerical linear algebra course.

Subsection DROEM
 Determinants, Row Operations, Elementary Matrices

As a final preparation for our two most important theorems about determinants, we prove a handful of facts about the interplay of row operations and matrix multiplication with elementary matrices with regard to the determinant. But first, a simple, but crucial, fact about the identity matrix.

Theorem DIM
 Determinant of the Identity Matrix

For every $n \geq 1$, $\operatorname{det}\left(I_{n}\right)=1$.
Proof It may be overkill, but this is a good situation to run through a proof by induction on n Technique 1 (680). Is the result true when $n=1$? Yes,

$$
\begin{aligned}
\operatorname{det}\left(I_{1}\right) & =\left[I_{1}\right]_{11} & & \text { Definition DM } 368 \\
& =1 & & \text { Definition IM } 68
\end{aligned}
$$

Now assume the theorem is true for the identity matrix of size $n-1$ and investigate the determinant of the identity matrix of size n with expansion about row 1 ,

$$
\begin{array}{rlrl}
\operatorname{det}\left(I_{n}\right)= & \sum_{j=1}^{n}(-1)^{1+j}\left[I_{n}\right]_{1 j} \operatorname{det}\left(I_{n}(1 \mid j)\right) & & \text { Definition DM } 368 \\
= & (-1)^{1+1}\left[I_{n}\right]_{11} \operatorname{det}\left(I_{n}(1 \mid 1)\right) & & \\
& +\sum_{j=2}^{n}(-1)^{1+j}\left[I_{n}\right]_{1 j} \operatorname{det}\left(I_{n}(1 \mid j)\right) & & \\
=1 \operatorname{det}\left(I_{n-1}\right)+\sum_{j=2}^{n}(-1)^{1+j} 0 \operatorname{det}\left(I_{n}(1 \mid j)\right) & & \text { Definition IM 68 } \\
= & 1(1)+\sum_{j=2}^{n} 0=1 & & \text { Induction Hypothesis }
\end{array}
$$

Theorem DEM

Determinants of Elementary Matrices

For the three possible versions of an elementary matrix (Definition ELEM (363) we have the determinants,

1. $\operatorname{det}\left(E_{i, j}\right)=-1$
2. $\operatorname{det}\left(E_{i}(\alpha)\right)=\alpha$
3. $\operatorname{det}\left(E_{i, j}(\alpha)\right)=1$

Proof Swapping rows i and j of the identity matrix will create $E_{i, j}$ (Definition ELEM 363), so

$$
\begin{aligned}
\operatorname{det}\left(E_{i, j}\right) & =-\operatorname{det}\left(I_{n}\right) & & \text { Theorem DRCS } 377 \\
& =-1 & & \text { Theorem DIM } 381
\end{aligned}
$$

Multiplying row i of the identity matrix by α will create $E_{i}(\alpha)$ Definition ELEM 363), so

$$
\begin{aligned}
\operatorname{det}\left(E_{i}(\alpha)\right) & =\alpha \operatorname{det}\left(I_{n}\right) \\
& =\alpha(1)=\alpha
\end{aligned}
$$

$$
\text { Theorem DRCM } 378
$$

Theorem DIM 381

Multiplying row i of the identity matrix by α and adding to row j will create $E_{i}(\alpha) j$ (Definition ELEM) [363), so

$$
\operatorname{det}\left(E_{i}(\alpha) j\right)=\operatorname{det}\left(I_{n}\right)
$$

$$
\text { Theorem DRCMA } 379
$$

$$
=1 \quad \text { Theorem DIM } 381
$$

Theorem DEMMM

Determinants, Elementary Matrices, Matrix Multiplication

Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

$$
\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)
$$

Proof The proof procedes in three parts, one for each type of elementary matrix, with each part very similar to the other two. First, let B be the matrix obtained from A by swapping rows i and j,

$$
\begin{aligned}
\operatorname{det}\left(E_{i, j} A\right) & =\operatorname{det}(B) & & \text { Theorem EMDRO } 365 \\
& =-\operatorname{det}(A) & & \text { Theorem DRCS } 377 \\
& =\operatorname{det}\left(E_{i, j}\right) \operatorname{det}(A) & & \text { Theorem DEM } 382
\end{aligned}
$$

Second, let B be the matrix obtained from A by multiplying row i by α,

$$
\begin{aligned}
\operatorname{det}\left(E_{i}(\alpha) A\right) & =\operatorname{det}(B) & & \text { Theorem EMDRO 365 } \\
& =\alpha \operatorname{det}(A) & & \text { Theorem DRCM 378 } \\
& =\operatorname{det}\left(E_{i}(\alpha)\right) \operatorname{det}(A) & & \text { Theorem DEM 382 }
\end{aligned}
$$

Third, let B be the matrix obtained from A by multiplying row i by α and adding to row j,

$$
\begin{aligned}
\operatorname{det}\left(E_{i, j}(\alpha) A\right) & =\operatorname{det}(B) \\
& =\operatorname{det}(A) \\
& =\operatorname{det}\left(E_{i, j}(\alpha)\right) \operatorname{det}(A)
\end{aligned}
$$

Theorem EMDRO	365
Theorem DRCMA	379
Theorem DEM 382	

Since the desired result holds for each variety of elementary matrix individually, we are done.

Subsection DNMMM
 Determinants, Nonsingular Matrices, Matrix Multiplication

If you asked someone with substantial experience working with matrices about the value of the determinant, they'd be likely to quote the following theorem as the first thing to come to mind.
Theorem SMZD

Singular Matrices have Zero Determinants

Let A be a square matrix. Then A is singular if and only if $\operatorname{det}(A)=0$.
Proof (\Rightarrow) Suppose that A is a singular matrix of size n. Then A is row-equivalent to a square matrix B in reduced row-echelon form (Theorem REMEF 31). Since A is singular, the matrix B is not the identity matrix (Theorem NMRRI 68]). Therefore, the number of pivot columns is strictly less than n, i.e. $r<n$, and so B has at least one row of all zeros.

There is a sequence of row operations $R_{1}, R_{2}, R_{3}, \ldots, R_{s}$ that will convert B into A. For each of these row operations, there is an elementary matrix E_{i} which effects the row operation by matrix multiplication (Theorem EMDRO 365). Repeated applications of Theorem EMDRO 365 allow us to write

$$
A=E_{s} E_{s-1} \ldots E_{2} E_{1} B
$$

Then

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(E_{s} E_{s-1} \ldots E_{2} E_{1} B\right) \\
& =\operatorname{det}\left(E_{s}\right) \operatorname{det}\left(E_{s-1}\right) \ldots \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right) \operatorname{det}(B) \\
& =\operatorname{det}\left(E_{s}\right) \operatorname{det}\left(E_{s-1}\right) \ldots \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right) 0 \\
& =0
\end{aligned}
$$

Theorem DEMMM 383
Theorem DZRC 377
(\Leftarrow) We will establish the contrapositive of this implication. So begin by assuming that A is nonsingular. Then A is row-equivalent to the identity matrix by Theorem NMRRI 68. As above, there is a sequence of row operations that will convert I_{n} to A, which can be effected by matrix multiplication by elementary matrices and Theorem DEMMM 383 allows us to "distribute" the determinant through this product. Mimicking the first half of the proof, we would arrive at

$$
\operatorname{det}(A)=\operatorname{det}\left(E_{s}\right) \operatorname{det}\left(E_{s-1}\right) \ldots \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(E_{1}\right) \operatorname{det}\left(I_{n}\right)
$$

We know that $\operatorname{det}\left(I_{n}\right)=1 \neq 0$. From Theorem DEM 382] we can infer that the determinant of an elementary matrix is never zero (note the ban on $\alpha=0$ for $E_{i}(\alpha)$ in Definition ELEM 363]). So the product on the right is composed of nonzero scalars, and so is also nonzero. This is the result we needed.

For the case of 2×2 matrices you might compare the application of Theorem SMZD 383 with the combination of the results stated in Theorem DMST 369 and Theorem TTMI 210.

Example ZNDAB

Zero and nonzero determinant, Archetypes A and B

The coefficient matrix in Archetype A 689] has a zero determinant (check this!) while the coefficient matrix Archetype B 694 has a nonzero determinant (check this, too). These matrices are singular and nonsingular, respectively. This is exactly what Theorem SMZD 383 says, and continues our list of contrasts between these two archetypes.

Since Theorem SMZD (383) is an equivalence (Technique E (676]) we can expand on our growing list of equivalences about nonsingular matrices. The addition of the condition $\operatorname{det}(A) \neq 0$ is one of the best motivations for learning about determinants.

Theorem NME7

Nonsingular Matrix Equivalences, Round 7

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{0\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.

Proof Theorem SMZD 383 says A is singular if and only if $\operatorname{det}(A)=0$. If we negate each of these statements, we arrive at two contrapositives that we can combine as the equivalence, A is nonsingular if and only if $\operatorname{det}(A) \neq 0$. This allows us to add a new statement to the list found in Theorem NME6 343.

Computationally, row-reducing a matrix is the most efficient way to determine if a matrix is nonsingular, though the effect of using division in a computer can lead to round-off errors that confuse small quantities with critical zero quantities. Conceptually, the determinant may seem the most efficient way to determine if a matrix is nonsingular. The definition of a determinant uses just addition, subtraction and multiplication, so division is never a problem. And the final test is easy: is the determinant zero or not? However, the number of operations involved in computing a determinant by the definition very quickly becomes so excessive as to be impractical.

Now for the coup de grâce. We will generalize Theorem DEMMM 383 to the case of any two square matrices. You may recall thinking that matrix multiplication was defined in a needlessly complicated manner. For sure, the definition of a determinant seems even stranger. (Though Theorem SMZD 383 might be forcing you to reconsider.) Read the statement of the next theorem and contemplate how nicely matrix multiplication and determinants play with each other.

Theorem DRMM

Determinant Respects Matrix Multiplication

Suppose that A and B are square matrices of the same size. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
Proof Suppose that A or B is singular. Then either $\operatorname{det}(A)=0$ or $\operatorname{det}(B)=0$ by Theorem SMZD 383. In either case, $\operatorname{det}(A) \operatorname{det}(B)=0$. By the contrapositive of Theorem NPNT 221, we know $A B$ is singular as well. So by Theorem SMZD 383 , $\operatorname{det}(A B)=0$. So in this case, we have the desired equality.

Now assume that A and B are both nonsingular. By Theorem NMPEM 367 there are elementary matrices $E_{1}, E_{2}, E_{3} \ldots, E s$ and $E_{s+1}, E_{s+2}, E_{s+3} \ldots, E_{s+t}$ such that

$$
A=E_{1} E_{2} E_{3} \ldots E_{s} \quad B=E_{s+1} E_{s+2} E_{s+3} \ldots E_{s+t}
$$

Then

$$
\begin{array}{rlrl}
\operatorname{det}(A B) & =\operatorname{det}\left(E_{1} E_{2} \ldots E_{s} E_{s+1} E_{s+2} \ldots E_{s+t}\right) & \\
& =\operatorname{det}\left(E_{1}\right) \operatorname{det}\left(E_{2}\right) \ldots \operatorname{det}\left(E_{s}\right) \operatorname{det}\left(E_{s+1} E_{s+2} \ldots E_{s+t}\right) & & \text { Theorem DEMMM } 383 \\
& =\operatorname{det}\left(E_{1} E_{2} \ldots E_{s}\right) \operatorname{det}\left(E_{s+1} E_{s+2} \ldots E_{s+t}\right) & & \text { Theorem DEMMM } 383 \\
& =\operatorname{det}(A) \operatorname{det}(B) & &
\end{array}
$$

It's an amazing thing that matrix multiplication and the determinant interact this way. Might it also be true that $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$? (See Exercise PDM.M30 387.)

Subsection READ

Reading Questions

1. Condiser the two matrices below, and suppose you already have computed $\operatorname{det}(A)=-120$. What is $\operatorname{det}(B)$? Why?

$$
A=\left[\begin{array}{cccc}
0 & 8 & 3 & -4 \\
-1 & 2 & -2 & 5 \\
-2 & 8 & 4 & 3 \\
0 & -4 & 2 & -3
\end{array}\right]
$$

$$
B=\left[\begin{array}{cccc}
0 & 8 & 3 & -4 \\
0 & -4 & 2 & -3 \\
-2 & 8 & 4 & 3 \\
-1 & 2 & -2 & 5
\end{array}\right]
$$

2. State the theorem that allows us to make yet another extension to our NMEx series of theorems.
3. What is amazing about the interaction between matrix multiplication and the determinant?

Subsection EXC
 Exercises

C30 Each of the archetypes below is a system of equations with a square coefficient matrix, or is a square matrix itself. Compute the determinant of each matrix, noting how Theorem SMZD 383 indicates when the matrix is singular or nonsingular.
Archetype A 689
Archetype B 694
Archetype F 711
Archetype K 733
Archetype L 737
Contributed by Robert Beezer
M20 Construct a 3×3 nonsingular matrix and call it A. Then, for each entry of the matrix, compute the corresponding cofactor, and create a new 3×3 matrix full of these cofactors by placing the cofactor of an entry in the same location as the entry it was based on. Once complete, call this matrix C. Compute $A C^{t}$. Any observations? Repeat with a new matrix, or perhaps with a 4×4 matrix.
Contributed by Robert Beezer Solution 388
M30 Construct an example to show that the following statement is not true for all square matrices A and B of the same size: $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
Contributed by Robert Beezer
T10 Theorem NPNT 221 says that if the product of square matrices $A B$ is nonsingular, then the individual matrices A and B are nonsingular also. Construct a new proof of this result making use of theorems about determinants of matrices.
Contributed by Robert Beezer
T15 Use Theorem DRCM 378 to prove Theorem DZRC 377 as a corollary. (See Technique LC 682 .) Contributed by Robert Beezer

T20 Suppose that A is a square matrix of size n and $\alpha \in \mathbb{C}$ is a scalar. Prove that $\operatorname{det}(\alpha A)=\alpha^{n} \operatorname{det}(A)$. Contributed by Robert Beezer

T25 Employ Theorem DT 370 to construct the second half of the proof of Theorem DRCM 378] (the portion about a multiple of a column).
Contributed by Robert Beezer

Subsection SOL Solutions

M20 Contributed by Robert Beezer Statement 387
The result of these computations should be a matrix with the value of $\operatorname{det}(A)$ in the diagonal entries and zeros elsewhere. The suggestion of using a nonsingular matrix was partially so that it was obvious that the value of the determinant appears on the diagonal.

This result (which is true in general) provides a method for computing the inverse of a nonsingular matrix. Since $A C^{t}=\operatorname{det}(A) I_{n}$, we can multiply by the reciprocal of the determinant (which is nonzero!) and the inverse of A (it exists!) to arrive at an expression for the matrix inverse:

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} C^{t}
$$

Chapter E
 Eigenvalues

When we have a square matrix of size n, A, and we multiply it by a vector \mathbf{x} from \mathbb{C}^{n} to form the matrixvector product Definition MVP 189), the result is another vector in \mathbb{C}^{n}. So we can adopt a functional view of this computation - the act of multiplying by a square matrix is a function that converts one vector (\mathbf{x}) into another one $(A \mathbf{x})$ of the same size. For some vectors, this seemingly complicated computation is really no more complicated than scalar multiplication. The vectors vary according to the choice of A, so the question is to determine, for an individual choice of A, if there are any such vectors, and if so, which ones. It happens in a variety of situations that these vectors (and the scalars that go along with them) are of special interest.

We will be solving polynomial equations in this chapter, which raises the specter of roots that are complex numbers. This distinct possibility is our main reason for entertaining the complex numbers throughout the course. You might be moved to revisit Section CNO 665 and Section O 163 .

Section EE
 Eigenvalues and Eigenvectors
 ■■

We start with the principal definition for this chapter.

Subsection EEM
 Eigenvalues and Eigenvectors of a Matrix

Definition EEM

Eigenvalues and Eigenvectors of a Matrix

Suppose that A is a square matrix of size $n, \mathbf{x} \neq \mathbf{0}$ is a vector in \mathbb{C}^{n}, and λ is a scalar in \mathbb{C}. Then we say \mathbf{x} is an eigenvector of A with eigenvalue λ if

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Before going any further, perhaps we should convince you that such things ever happen at all. Understand the next example, but do not concern yourself with where the pieces come from. We will have methods soon enough to be able to discover these eigenvectors ourselves.

Example SEE
 Some eigenvalues and eigenvectors

Consider the matrix

$$
A=\left[\begin{array}{cccc}
204 & 98 & -26 & -10 \\
-280 & -134 & 36 & 14 \\
716 & 348 & -90 & -36 \\
-472 & -232 & 60 & 28
\end{array}\right]
$$

and the vectors

$$
\mathbf{x}=\left[\begin{array}{c}
1 \\
-1 \\
2 \\
5
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
-3 \\
4 \\
-10 \\
4
\end{array}\right] \quad \mathbf{z}=\left[\begin{array}{c}
-3 \\
7 \\
0 \\
8
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{c}
1 \\
-1 \\
4 \\
0
\end{array}\right]
$$

Then

$$
A \mathbf{x}=\left[\begin{array}{cccc}
204 & 98 & -26 & -10 \\
-280 & -134 & 36 & 14 \\
716 & 348 & -90 & -36 \\
-472 & -232 & 60 & 28
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
2 \\
5
\end{array}\right]=\left[\begin{array}{c}
4 \\
-4 \\
8 \\
20
\end{array}\right]=4\left[\begin{array}{c}
1 \\
-1 \\
2 \\
5
\end{array}\right]=4 \mathbf{x}
$$

so \mathbf{x} is an eigenvector of A with eigenvalue $\lambda=4$. Also,

$$
A \mathbf{y}=\left[\begin{array}{cccc}
204 & 98 & -26 & -10 \\
-280 & -134 & 36 & 14 \\
716 & 348 & -90 & -36 \\
-472 & -232 & 60 & 28
\end{array}\right]\left[\begin{array}{c}
-3 \\
4 \\
-10 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]=0\left[\begin{array}{c}
-3 \\
4 \\
-10 \\
4
\end{array}\right]=0 \mathbf{y}
$$

so \mathbf{y} is an eigenvector of A with eigenvalue $\lambda=0$. Also,

$$
A \mathbf{z}=\left[\begin{array}{cccc}
204 & 98 & -26 & -10 \\
-280 & -134 & 36 & 14 \\
716 & 348 & -90 & -36 \\
-472 & -232 & 60 & 28
\end{array}\right]\left[\begin{array}{c}
-3 \\
7 \\
0 \\
8
\end{array}\right]=\left[\begin{array}{c}
-6 \\
14 \\
0 \\
16
\end{array}\right]=2\left[\begin{array}{c}
-3 \\
7 \\
0 \\
8
\end{array}\right]=2 \mathbf{z}
$$

so \mathbf{z} is an eigenvector of A with eigenvalue $\lambda=2$. Also,

$$
A \mathbf{w}=\left[\begin{array}{cccc}
204 & 98 & -26 & -10 \\
-280 & -134 & 36 & 14 \\
716 & 348 & -90 & -36 \\
-472 & -232 & 60 & 28
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
4 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
8 \\
0
\end{array}\right]=2\left[\begin{array}{c}
1 \\
-1 \\
4 \\
0
\end{array}\right]=2 \mathbf{w}
$$

so \mathbf{w} is an eigenvector of A with eigenvalue $\lambda=2$.
So we have demonstrated four eigenvectors of A. Are there more? Yes, any nonzero scalar multiple of an eigenvector is again an eigenvector. In this example, set $\mathbf{u}=30 \mathbf{x}$. Then

$$
\begin{array}{rlr}
A \mathbf{u} & =A(30 \mathbf{x}) & \\
& =30 A \mathbf{x} & \\
& =30(4 \mathbf{x}) & \\
& =4(30 \mathbf{x}) & \\
& \mathbf{x} \text { an eigenvector of } A \\
& =4 \mathbf{u} &
\end{array}
$$

so that \mathbf{u} is also an eigenvector of A for the same eigenvalue, $\lambda=4$.
The vectors \mathbf{z} and \mathbf{w} are both eigenvectors of A for the same eigenvalue $\lambda=2$, yet this is not as simple as the two vectors just being scalar multiples of each other (they aren't). Look what happens when we add them together, to form $\mathbf{v}=\mathbf{z}+\mathbf{w}$, and multiply by A,

$$
A \mathbf{v}=A(\mathbf{z}+\mathbf{w})
$$

$$
\begin{aligned}
& =A \mathbf{z}+A \mathbf{w} \\
& =2 \mathbf{z}+2 \mathbf{w} \\
& =2(\mathbf{z}+\mathbf{w}) \\
& =2 \mathbf{v}
\end{aligned}
$$

$$
\begin{aligned}
& \hline \text { Theorem MMDAA } 196 \\
& \mathbf{z}, \mathbf{w} \text { eigenvectors of } A \\
& \text { Property DVAC } 83
\end{aligned}
$$

so that \mathbf{v} is also an eigenvector of A for the eigenvalue $\lambda=2$. So it would appear that the set of eigenvectors that are associated with a fixed eigenvalue is closed under the vector space operations of \mathbb{C}^{n}. Hmmm.

The vector \mathbf{y} is an eigenvector of A for the eigenvalue $\lambda=0$, so we can use Theorem ZSSM 282 to write $A \mathbf{y}=0 \mathbf{y}=\mathbf{0}$. But this also means that $\mathbf{y} \in \mathcal{N}(A)$. There would appear to be a connection here also.

Example SEE 389 hints at a number of intriguing properties, and there are many more. We will explore the general properties of eigenvalues and eigenvectors in Section PEE 413, but in this section we will concern ourselves with the question of actually computing eigenvalues and eigenvectors. First we need a bit of background material on polynomials and matrices.

Subsection PM
 Polynomials and Matrices

A polynomial is a combination of powers, multiplication by scalar coefficients, and addition (with subtraction just being the inverse of addition). We never have occasion to divide when computing the value of a polynomial. So it is with matrices. We can add and subtract matrices, we can multiply matrices by scalars, and we can form powers of square matrices by repeated applications of matrix multiplication. We do not normally divide matrices (though sometimes we can multiply by an inverse). If a matrix is square, all the operations constituting a polynomial will preserve the size of the matrix. So it is natural to consider evaluating a polynomial with a matrix, effectively replacing the variable of the polynomial by a matrix. We'll demonstrate with an example,

Example PM

Polynomial of a matrix

Let

$$
p(x)=14+19 x-3 x^{2}-7 x^{3}+x^{4} \quad D=\left[\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 0 & -2 \\
-3 & 1 & 1
\end{array}\right]
$$

and we will compute $p(D)$. First, the necessary powers of D. Notice that D^{0} is defined to be the multiplicative identity, I_{3}, as will be the case in general.

$$
\begin{aligned}
& D^{0}=I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& D^{1}=D=\left[\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 0 & -2 \\
-3 & 1 & 1
\end{array}\right] \\
& D^{2}=D D^{1}=\left[\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 0 & -2 \\
-3 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 0 & -2 \\
-3 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -1 & -6 \\
5 & 1 & 0 \\
1 & -8 & -7
\end{array}\right] \\
& D^{3}=D D^{2}=\left[\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 0 & -2 \\
-3 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-2 & -1 & -6 \\
5 & 1 & 0 \\
1 & -8 & -7
\end{array}\right]=\left[\begin{array}{ccc}
19 & -12 & -8 \\
-4 & 15 & 8 \\
12 & -4 & 11
\end{array}\right]
\end{aligned}
$$

$$
D^{4}=D D^{3}=\left[\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 0 & -2 \\
-3 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
19 & -12 & -8 \\
-4 & 15 & 8 \\
12 & -4 & 11
\end{array}\right]=\left[\begin{array}{ccc}
-7 & 49 & 54 \\
-5 & -4 & -30 \\
-49 & 47 & 43
\end{array}\right]
$$

Then

$$
\begin{aligned}
p(D)= & 14+19 D-3 D^{2}-7 D^{3}+D^{4} \\
= & 14\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+19\left[\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 0 & -2 \\
-3 & 1 & 1
\end{array}\right]-3\left[\begin{array}{ccc}
-2 & -1 & -6 \\
5 & 1 & 0 \\
1 & -8 & -7
\end{array}\right] \\
& -7\left[\begin{array}{ccc}
19 & -12 & -8 \\
-4 & 15 & 8 \\
12 & -4 & 11
\end{array}\right]+\left[\begin{array}{ccc}
-7 & 49 & 54 \\
-5 & -4 & -30 \\
-49 & 47 & 43
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-139 & 193 & 166 \\
27 & -98 & -124 \\
-193 & 118 & 20
\end{array}\right]
\end{aligned}
$$

Notice that $p(x)$ factors as

$$
p(x)=14+19 x-3 x^{2}-7 x^{3}+x^{4}=(x-2)(x-7)(x+1)^{2}
$$

Because D commutes with itself $(D D=D D)$, we can use distributivity of matrix multiplication across matrix addition Theorem MMDAA 196) without being careful with any of the matrix products, and just as easily evaluate $p(D)$ using the factored form of $p(x)$,

$$
\begin{aligned}
p(D) & =14+19 D-3 D^{2}-7 D^{3}+D^{4}=\left(D-2 I_{3}\right)\left(D-7 I_{3}\right)\left(D+I_{3}\right)^{2} \\
& =\left[\begin{array}{ccc}
-3 & 3 & 2 \\
1 & -2 & -2 \\
-3 & 1 & -1
\end{array}\right]\left[\begin{array}{ccc}
-8 & 3 & 2 \\
1 & -7 & -2 \\
-3 & 1 & -6
\end{array}\right]\left[\begin{array}{ccc}
0 & 3 & 2 \\
1 & 1 & -2 \\
-3 & 1 & 2
\end{array}\right]^{2} \\
& =\left[\begin{array}{ccc}
-139 & 193 & 166 \\
27 & -98 & -124 \\
-193 & 118 & 20
\end{array}\right]
\end{aligned}
$$

This example is not meant to be too profound. It is meant to show you that it is natural to evaluate a polynomial with a matrix, and that the factored form of the polynomial is as good as (or maybe better than) the expanded form. And do not forget that constant terms in polynomials are really multiples of the identity matrix when we are evaluating the polynomial with a matrix.

Subsection EEE
 Existence of Eigenvalues and Eigenvectors

Before we embark on computing eigenvalues and eigenvectors, we will prove that every matrix has at least one eigenvalue (and an eigenvector to go with it). Later, in Theorem MNEM 421, we will determine the maximum number of eigenvalues a matrix may have.

The determinant (Definition D 335) will be a powerful tool in Subsection EE.CEE 396 when it comes time to compute eigenvalues. However, it is possible, with some more advanced machinery, to compute eigenvalues without ever making use of the determinant. Sheldon Axler does just that in his book, Linear

Algebra Done Right. Here and now, we give Axler's "determinant-free" proof that every matrix has an eigenvalue. The result is not too startling, but the proof is most enjoyable.

Theorem EMHE

Every Matrix Has an Eigenvalue

Suppose A is a square matrix. Then A has at least one eigenvalue.
Proof Suppose that A has size n, and choose \mathbf{x} as any nonzero vector from \mathbb{C}^{n}. (Notice how much latitude we have in our choice of \mathbf{x}. Only the zero vector is off-limits.) Consider the set

$$
S=\left\{\mathbf{x}, A \mathbf{x}, A^{2} \mathbf{x}, A^{3} \mathbf{x}, \ldots, A^{n} \mathbf{x}\right\}
$$

This is a set of $n+1$ vectors from \mathbb{C}^{n}, so by Theorem MVSLD 136, S is linearly dependent. Let $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ be a collection of $n+1$ scalars from \mathbb{C}, not all zero, that provide a relation of linear dependence on S. In other words,

$$
a_{0} \mathbf{x}+a_{1} A \mathbf{x}+a_{2} A^{2} \mathbf{x}+a_{3} A^{3} \mathbf{x}+\cdots+a_{n} A^{n} \mathbf{x}=\mathbf{0}
$$

Some of the a_{i} are nonzero. Suppose that just $a_{0} \neq 0$, and $a_{1}=a_{2}=a_{3}=\cdots=a_{n}=0$. Then $a_{0} \mathbf{x}=\mathbf{0}$ and by Theorem SMEZV 284, either $a_{0}=0$ or $\mathbf{x}=\mathbf{0}$, which are both contradictions. So $a_{i} \neq 0$ for some $i \geq 1$. Let m be the largest integer such that $a_{m} \neq 0$. From this discussion we know that $m \geq 1$. We can also assume that $a_{m}=1$, for if not, replace each a_{i} by a_{i} / a_{m} to obtain scalars that serve equally well in providing a relation of linear dependence on S.

Define the polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{m} x^{m}
$$

Because we have consistently used \mathbb{C} as our set of scalars (rather than \mathbb{R}), we know that we can factor $p(x)$ into linear factors of the form $\left(x-b_{i}\right)$, where $b_{i} \in \mathbb{C}$. So there are scalars, $b_{1}, b_{2}, b_{3}, \ldots, b_{m}$, from \mathbb{C} so that,

$$
p(x)=\left(x-b_{m}\right)\left(x-b_{m-1}\right) \cdots\left(x-b_{3}\right)\left(x-b_{2}\right)\left(x-b_{1}\right)
$$

Put it all together and

$$
\begin{aligned}
\mathbf{0} & =a_{0} \mathbf{x}+a_{1} A \mathbf{x}+a_{2} A^{2} \mathbf{x}+a_{3} A^{3} \mathbf{x}+\cdots+a_{n} A^{n} \mathbf{x} & & \\
& =a_{0} \mathbf{x}+a_{1} A \mathbf{x}+a_{2} A^{2} \mathbf{x}+a_{3} A^{3} \mathbf{x}+\cdots+a_{m} A^{m} \mathbf{x} & & a_{i}=0 \text { for } i>m \\
& =\left(a_{0} I_{n}+a_{1} A+a_{2} A^{2}+a_{3} A^{3}+\cdots+a_{m} A^{m}\right) \mathbf{x} & & \text { Theorem MMDAA } 196 \\
& =p(A) \mathbf{x} & & \text { Definition of } p(x)
\end{aligned}
$$

$$
=\left(A-b_{m} I_{n}\right)\left(A-b_{m-1} I_{n}\right) \cdots\left(A-b_{3} I_{n}\right)\left(A-b_{2} I_{n}\right)\left(A-b_{1} I_{n}\right) \mathbf{x}
$$

Let k be the smallest integer such that

$$
\left(A-b_{k} I_{n}\right)\left(A-b_{k-1} I_{n}\right) \cdots\left(A-b_{3} I_{n}\right)\left(A-b_{2} I_{n}\right)\left(A-b_{1} I_{n}\right) \mathbf{x}=\mathbf{0} .
$$

From the preceding equation, we know that $k \leq m$. Define the vector z by

$$
\mathbf{z}=\left(A-b_{k-1} I_{n}\right) \cdots\left(A-b_{3} I_{n}\right)\left(A-b_{2} I_{n}\right)\left(A-b_{1} I_{n}\right) \mathbf{x}
$$

Notice that by the definition of k, the vector \mathbf{z} must be nonzero. In the case where $k=1$, we understand that \mathbf{z} is defined by $\mathbf{z}=\mathbf{x}$, and \mathbf{z} is still nonzero. Now

$$
\left(A-b_{k} I_{n}\right) \mathbf{z}=\left(A-b_{k} I_{n}\right)\left(A-b_{k-1} I_{n}\right) \cdots\left(A-b_{3} I_{n}\right)\left(A-b_{2} I_{n}\right)\left(A-b_{1} I_{n}\right) \mathbf{x}=\mathbf{0}
$$

which allows us to write

$$
A \mathbf{z}=(A+\mathcal{O}) \mathbf{z}
$$

$$
\begin{aligned}
& =\left(A-b_{k} I_{n}+b_{k} I_{n}\right) \mathbf{z} \\
& =\left(A-b_{k} I_{n}\right) \mathbf{z}+b_{k} I_{n} \mathbf{z} \\
& =\mathbf{0}+b_{k} I_{n} \mathbf{z} \\
& =b_{k} I_{n} \mathbf{z} \\
& =b_{k} \mathbf{z}
\end{aligned}
$$

Property AIM 179
Theorem MMDAA
Defining property of \mathbf{z}
Property ZM 179
Theorem MMIM 195

Since $\mathbf{z} \neq \mathbf{0}$, this equation says that \mathbf{z} is an eigenvector of A for the eigenvalue $\lambda=b_{k}$ (Definition EEM [389), so we have shown that any square matrix A does have at least one eigenvalue.

The proof of Theorem EMHE 393 is constructive (it contains an unambiguous procedure that leads to an eigenvalue), but it is not meant to be practical. We will illustrate the theorem with an example, the purpose being to provide a companion for studying the proof and not to suggest this is the best procedure for computing an eigenvalue.

Example CAEHW

Computing an eigenvalue the hard way

This example illustrates the proof of Theorem EMHE 393, so will employ the same notation as the proof - look there for full explanations. It is not meant to be an example of a reasonable computational approach to finding eigenvalues and eigenvectors. OK, warnings in place, here we go.

Let

$$
A=\left[\begin{array}{ccccc}
-7 & -1 & 11 & 0 & -4 \\
4 & 1 & 0 & 2 & 0 \\
-10 & -1 & 14 & 0 & -4 \\
8 & 2 & -15 & -1 & 5 \\
-10 & -1 & 16 & 0 & -6
\end{array}\right]
$$

and choose

$$
\mathbf{x}=\left[\begin{array}{c}
3 \\
0 \\
3 \\
-5 \\
4
\end{array}\right]
$$

It is important to notice that the choice of \mathbf{x} could be anything, so long as it is not the zero vector. We have not chosen \mathbf{x} totally at random, but so as to make our illustration of the theorem as general as possible. You could replicate this example with your own choice and the computations are guaranteed to be reasonable, provided you have a computational tool that will factor a fifth degree polynomial for you.

The set

$$
\begin{aligned}
S & =\left\{\mathbf{x}, A \mathbf{x}, A^{2} \mathbf{x}, A^{3} \mathbf{x}, A^{4} \mathbf{x}, A^{5} \mathbf{x}\right\} \\
& =\left\{\left[\begin{array}{c}
3 \\
0 \\
3 \\
-5 \\
4
\end{array}\right],\left[\begin{array}{c}
-4 \\
2 \\
-4 \\
4 \\
-6
\end{array}\right],\left[\begin{array}{c}
6 \\
-6 \\
6 \\
-2 \\
10
\end{array}\right],\left[\begin{array}{c}
-10 \\
14 \\
-10 \\
-2 \\
-18
\end{array}\right],\left[\begin{array}{c}
18 \\
-30 \\
18 \\
10 \\
34
\end{array}\right],\left[\begin{array}{c}
-34 \\
62 \\
-34 \\
-26 \\
-66
\end{array}\right]\right\}
\end{aligned}
$$

is guaranteed to be linearly dependent, as it has six vectors from \mathbb{C}^{5} (Theorem MVSLD (136). We will search for a non-trivial relation of linear dependence by solving a homogeneous system of equations whose coefficient matrix has the vectors of S as columns through row operations,

$$
\left[\begin{array}{cccccc}
3 & -4 & 6 & -10 & 18 & -34 \\
0 & 2 & -6 & 14 & -30 & 62 \\
3 & -4 & 6 & -10 & 18 & -34 \\
-5 & 4 & -2 & -2 & 10 & -26 \\
4 & -6 & 10 & -18 & 34 & -66
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
\hline 1 & 0 & -2 & 6 & -14 & 30 \\
0 & \boxed{1} & -3 & 7 & -15 & 31 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

There are four free variables for describing solutions to this homogeneous system, so we have our pick of solutions. The most expedient choice would be to set $x_{3}=1$ and $x_{4}=x_{5}=x_{6}=0$. However, we will again opt to maximize the generality of our illustration of Theorem EMHE 393 and choose $x_{3}=-8, x_{4}=-3$, $x_{5}=1$ and $x_{6}=0$. The leads to a solution with $x_{1}=16$ and $x_{2}=12$.

This relation of linear dependence then says that

$$
\begin{aligned}
& \mathbf{0}=16 \mathbf{x}+12 A \mathbf{x}-8 A^{2} \mathbf{x}-3 A^{3} \mathbf{x}+A^{4} \mathbf{x}+0 A^{5} \mathbf{x} \\
& \mathbf{0}=\left(16+12 A-8 A^{2}-3 A^{3}+A^{4}\right) \mathbf{x}
\end{aligned}
$$

So we define $p(x)=16+12 x-8 x^{2}-3 x^{3}+x^{4}$, and as advertised in the proof of Theorem EMHE 393, we have a polynomial of degree $m=4>1$ such that $p(A) \mathbf{x}=\mathbf{0}$. Now we need to factor $p(x)$ over \mathbb{C}. If you made your own choice of \mathbf{x} at the start, this is where you might have a fifth degree polynomial, and where you might need to use a computational tool to find roots and factors. We have

$$
p(x)=16+12 x-8 x^{2}-3 x^{3}+x^{4}=(x-4)(x+2)(x-2)(x+1)
$$

So we know that

$$
\mathbf{0}=p(A) \mathbf{x}=\left(A-4 I_{5}\right)\left(A+2 I_{5}\right)\left(A-2 I_{5}\right)\left(A+1 I_{5}\right) \mathbf{x}
$$

We apply one factor at a time, until we get the zero vector, so as to determine the value of k described in the proof of Theorem EMHE 393,

$$
\begin{aligned}
\left(A+1 I_{5}\right) \mathbf{x} & =\left[\begin{array}{ccccc}
-6 & -1 & 11 & 0 & -4 \\
4 & 2 & 0 & 2 & 0 \\
-10 & -1 & 15 & 0 & -4 \\
8 & 2 & -15 & 0 & 5 \\
-10 & -1 & 16 & 0 & -5
\end{array}\right]\left[\begin{array}{c}
3 \\
0 \\
3 \\
-5 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
-1 \\
-1 \\
-2
\end{array}\right] \\
\left(A-2 I_{5}\right)\left(A+1 I_{5}\right) \mathbf{x} & =\left[\begin{array}{ccccc}
-9 & -1 & 11 & 0 & -4 \\
4 & -1 & 0 & 2 & 0 \\
-10 & -1 & 12 & 0 & -4 \\
8 & 2 & -15 & -3 & 5 \\
-10 & -1 & 16 & 0 & -8
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
-1 \\
-1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
4 \\
-8 \\
4 \\
4 \\
8
\end{array}\right] \\
\left(A+2 I_{5}\right)\left(A-2 I_{5}\right)\left(A+1 I_{5}\right) \mathbf{x} & =\left[\begin{array}{ccccc}
-5 & -1 & 11 & 0 & -4 \\
4 & 3 & 0 & 2 & 0 \\
-10 & -1 & 16 & 0 & -4 \\
8 & 2 & -15 & 1 & 5 \\
-10 & -1 & 16 & 0 & -4
\end{array}\right]\left[\begin{array}{c}
4 \\
-8 \\
4 \\
4 \\
8
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

So $k=3$ and

$$
\mathbf{z}=\left(A-2 I_{5}\right)\left(A+1 I_{5}\right) \mathbf{x}=\left[\begin{array}{c}
4 \\
-8 \\
4 \\
4 \\
8
\end{array}\right]
$$

is an eigenvector of A for the eigenvalue $\lambda=-2$, as you can check by doing the computation $A \mathbf{z}$. If you work through this example with your own choice of the vector \mathbf{x} (strongly recommended) then the eigenvalue you will find may be different, but will be in the set $\{3,0,1,-1,-2\}$. See Exercise EE.M60 407 for a suggested starting vector.

Subsection CEE
 Computing Eigenvalues and Eigenvectors

Fortunately, we need not rely on the procedure of Theorem EMHE 393 each time we need an eigenvalue. It is the determinant, and specifically Theorem SMZD [383], that provides the main tool for computing eigenvalues. Here is an informal sequence of equivalences that is the key to determining the eigenvalues and eigenvectors of a matrix,

$$
A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow A \mathbf{x}-\lambda I_{n} \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}
$$

So, for an eigenvalue λ and associated eigenvector $\mathbf{x} \neq \mathbf{0}$, the vector \mathbf{x} will be a nonzero element of the null space of $A-\lambda I_{n}$, while the matrix $A-\lambda I_{n}$ will be singular and therefore have zero determinant. These ideas are made precise in Theorem EMRCP 397 and Theorem EMNS 398, but for now this brief discussion should suffice as motivation for the following definition and example.

Definition CP

Characteristic Polynomial

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the polynomial $p_{A}(x)$ defined by

$$
p_{A}(x)=\operatorname{det}\left(A-x I_{n}\right)
$$

Example CPMS3

Characteristic polynomial of a matrix, size 3
Consider

$$
F=\left[\begin{array}{ccc}
-13 & -8 & -4 \\
12 & 7 & 4 \\
24 & 16 & 7
\end{array}\right]
$$

Then

$$
\begin{array}{rlr}
p_{F}(x)= & \operatorname{det}\left(F-x I_{3}\right) & \\
= & \left|\begin{array}{ccc}
-13-x & -8 & -4 \\
12 & 7-x & 4 \\
24 & 16 & 7-x
\end{array}\right| & \\
= & (-13-x)\left|\begin{array}{cc}
7-x & 4 \\
16 & 7-x
\end{array}\right|+(-8)(-1)\left|\begin{array}{cc}
12 & 4 \\
24 & 7-x
\end{array}\right| & \\
& \quad+(-4)\left|\begin{array}{cc}
12 & 7-x \\
24 & 16
\end{array}\right| & \text { Definition CP 396 } \\
= & (-13-x)((7-x)(7-x)-4(16)) & \\
& \quad+(-8)(-1)(12(7-x)-4(24)) & \\
& \quad+(-4)(12(16)-(7-x)(24)) & \\
= & 3+5 x+x^{2}-x^{3} & \text { Theorem DMST 36 } \\
= & -(x-3)(x+1)^{2} &
\end{array}
$$

The characteristic polynomial is our main computational tool for finding eigenvalues, and will sometimes be used to aid us in determining the properties of eigenvalues.

Theorem EMRCP

Eigenvalues of a Matrix are Roots of Characteristic Polynomials

Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if $p_{A}(\lambda)=0$.
Proof Suppose A has size n.

$$
\begin{array}{ll}
\lambda \text { is an eigenvalue of } A & \\
\Longleftrightarrow \text { there exists } \mathbf{x} \neq \mathbf{0} \text { so that } A \mathbf{x}=\lambda \mathbf{x} & \text { Definition EEM 389 } \\
\Longleftrightarrow \text { there exists } \mathbf{x} \neq \mathbf{0} \text { so that } A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0} & \\
\Longleftrightarrow \text { there exists } \mathbf{x} \neq \mathbf{0} \text { so that } A \mathbf{x}-\lambda I_{n} \mathbf{x}=\mathbf{0} & \text { Theorem MMIM 195 } \\
\Longleftrightarrow \text { there exists } \mathbf{x} \neq \mathbf{0} \text { so that }\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0} & \text { Theorem MMDAA 196 } \\
\Longleftrightarrow A-\lambda I_{n} \text { is singular } & \text { Definition NM 67 } \\
\Longleftrightarrow \operatorname{det}\left(A-\lambda I_{n}\right)=0 & \text { Theorem SMZD 383 } \\
\Longleftrightarrow p_{A}(\lambda)=0 & \text { Definition CP 396 }
\end{array}
$$

Example EMS3

Eigenvalues of a matrix, size 3

In Example CPMS3 396 we found the characteristic polynomial of

$$
F=\left[\begin{array}{ccc}
-13 & -8 & -4 \\
12 & 7 & 4 \\
24 & 16 & 7
\end{array}\right]
$$

to be $p_{F}(x)=-(x-3)(x+1)^{2}$. Factored, we can find all of its roots easily, they are $x=3$ and $x=-1$. By Theorem EMRCP 397, $\lambda=3$ and $\lambda=-1$ are both eigenvalues of F, and these are the only eigenvalues of F. We've found them all.

Let us now turn our attention to the computation of eigenvectors.

Definition EM

Eigenspace of a Matrix

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace of A for $\lambda, \mathcal{E}_{A}(\lambda)$, is the set of all the eigenvectors of A for λ, together with the inclusion of the zero vector.

Example SEE 389 hinted that the set of eigenvectors for a single eigenvalue might have some closure properties, and with the addition of the non-eigenvector, $\mathbf{0}$, we indeed get a whole subspace.

Theorem EMS

Eigenspace for a Matrix is a Subspace

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace $\mathcal{E}_{A}(\lambda)$ is a subspace of the vector space \mathbb{C}^{n}.
Proof We will check the three conditions of Theorem TSS 290. First, Definition EM 397 explicitly includes the zero vector in $\mathcal{E}_{A}(\lambda)$, so the set is non-empty.

Suppose that $\mathbf{x}, \mathbf{y} \in \mathcal{E}_{A}(\lambda)$, that is, \mathbf{x} and \mathbf{y} are two eigenvectors of A for λ. Then

$$
\begin{aligned}
A(\mathbf{x}+\mathbf{y}) & =A \mathbf{x}+A \mathbf{y} & & \text { Theorem MMDAA } 196 \\
& =\lambda \mathbf{x}+\lambda \mathbf{y} & & \mathbf{x}, \mathbf{y} \text { eigenvectors of } A \\
& =\lambda(\mathbf{x}+\mathbf{y}) & & \text { Property DVAC } 83
\end{aligned}
$$

So either $\mathbf{x}+\mathbf{y}=\mathbf{0}$, or $\mathbf{x}+\mathbf{y}$ is an eigenvector of A for λ (Definition EEM 389). So, in either event, $\mathbf{x}+\mathbf{y} \in \mathcal{E}_{A}(\lambda)$, and we have additive closure.

Suppose that $\alpha \in \mathbb{C}$, and that $\mathbf{x} \in \mathcal{E}_{A}(\lambda)$, that is, \mathbf{x} is an eigenvector of A for λ. Then

$$
\begin{aligned}
A(\alpha \mathbf{x}) & =\alpha(A \mathbf{x}) & & \text { Theorem MMSMM } 196 \\
& =\alpha \lambda \mathbf{x} & & \mathbf{x} \text { an eigenvector of } A \\
& =\lambda(\alpha \mathbf{x}) & & \text { Property SMAC } 82
\end{aligned}
$$

So either $\alpha \mathbf{x}=\mathbf{0}$, or $\alpha \mathbf{x}$ is an eigenvector of A for λ (Definition EEM 389]). So, in either event, $\alpha \mathbf{x} \in \mathcal{E}_{A}(\lambda)$, and we have scalar closure.

With the three conditions of Theorem TSS 290 met, we know $\mathcal{E}_{A}(\lambda)$ is a subspace.
Theorem EMS 397 tells us that an eigenspace is a subspace (and hence a vector space in its own right). Our next theorem tells us how to quickly construct this subspace.

Theorem EMNS

Eigenspace of a Matrix is a Null Space

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

$$
\mathcal{E}_{A}(\lambda)=\mathcal{N}\left(A-\lambda I_{n}\right)
$$

Proof The conclusion of this theorem is an equality of sets, so normally we would follow the advice of Definition SE 670. However, in this case we can construct a sequence of equivalences which will together provide the two subset inclusions we need. First, notice that $\mathbf{0} \in \mathcal{E}_{A}(\lambda)$ by Definition EM 397] and $\mathbf{0} \in \mathcal{N}\left(A-\lambda I_{n}\right)$ by Theorem HSC 57. Now consider any nonzero vector $\mathbf{x} \in \mathbb{C}^{n}$,

$$
\begin{aligned}
\mathbf{x} \in \mathcal{E}_{A}(\lambda) & \Longleftrightarrow A \mathbf{x}=\lambda \mathbf{x} & & \text { Definition EM 397 } \\
& \Longleftrightarrow A \mathbf{x}-\lambda \mathbf{x}=\mathbf{0} & & \\
& \Longleftrightarrow A \mathbf{x}-\lambda I_{n} \mathbf{x}=\mathbf{0} & & \text { Theorem MMIM 195 } \\
& \Longleftrightarrow\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0} & & \text { Theorem MMDAA 196 } \\
& \Longleftrightarrow \mathbf{x} \in \mathcal{N}\left(A-\lambda I_{n}\right) & & \text { Definition NSM 59 }
\end{aligned}
$$

You might notice the close parallels (and differences) between the proofs of Theorem EMRCP 397 and Theorem EMNS 398. Since Theorem EMNS 398 describes the set of all the eigenvectors of A as a null space we can use techniques such as Theorem BNS 138 to provide concise descriptions of eigenspaces.

Example ESMS3

Eigenspaces of a matrix, size 3

Example CPMS3 396 and Example EMS3 397 describe the characteristic polynomial and eigenvalues of the 3×3 matrix

$$
F=\left[\begin{array}{ccc}
-13 & -8 & -4 \\
12 & 7 & 4 \\
24 & 16 & 7
\end{array}\right]
$$

We will now take the each eigenvalue in turn and compute its eigenspace. To do this, we row-reduce the matrix $F-\lambda I_{3}$ in order to determine solutions to the homogeneous system $\mathcal{L S}\left(F-\lambda I_{3}, \mathbf{0}\right)$ and then express the eigenspace as the null space of $F-\lambda I_{3}$ (Theorem EMNS 398). Theorem BNS 138 then tells us how to write the null space as the span of a basis.

$$
\lambda=3 \quad F-3 I_{3}=\left[\begin{array}{ccc}
-16 & -8 & -4 \\
12 & 4 & 4 \\
24 & 16 & 4
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
1 & 0 & \frac{1}{2} \\
0 & \begin{array}{c}
1 \\
0
\end{array} & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right]
$$

$$
\left.\left.\begin{array}{rl}
\mathcal{E}_{F}(3) & =\mathcal{N}\left(F-3 I_{3}\right)=\left\langle\left\{\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right\}\right\rangle \\
\lambda=-1 & F+1 I_{3}
\end{array}=\left[\begin{array}{ccc}
-12 & -8 & -4 \\
12 & 8 & 4 \\
24 & 16 & 8
\end{array}\right] \xrightarrow{\mathrm{RREF}}\left[\begin{array}{lll}
1 & \frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left\{\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{1}{3} \\
0 \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right]\right\}\right\rangle
$$

Eigenspaces in hand, we can easily compute eigenvectors by forming nontrivial linear combinations of the basis vectors describing each eigenspace. In particular, notice that we can "pretty up" our basis vectors by using scalar multiples to clear out fractions.

Subsection ECEE
 Examples of Computing Eigenvalues and Eigenvectors
 π

No theorems in this section, just a selection of examples meant to illustrate the range of possibilities for the eigenvalues and eigenvectors of a matrix. These examples can all be done by hand, though the computation of the characteristic polynomial would be very time-consuming and error-prone. It can also be difficult to factor an arbitrary polynomial, though if we were to suggest that most of our eigenvalues are going to be integers, then it can be easier to hunt for roots. These examples are meant to look similar to a concatenation of Example CPMS3 396, Example EMS3 397] and Example ESMS3 398. First, we will sneak in a pair of definitions so we can illustrate them throughout this sequence of examples.

Definition AME

Algebraic Multiplicity of an Eigenvalue

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multiplicity of λ, $\alpha_{A}(\lambda)$, is the highest power of $(x-\lambda)$ that divides the characteristic polynomial, $p_{A}(x)$.

Since an eigenvalue λ is a root of the characteristic polynomial, there is always a factor of $(x-\lambda)$, and the algebraic multiplicity is just the power of this factor in a factorization of $p_{A}(x)$. So in particular, $\alpha_{A}(\lambda) \geq 1$. Compare the definition of algebraic multiplicity with the next definition.

Definition GME

Geometric Multiplicity of an Eigenvalue

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric multiplicity of λ, $\gamma_{A}(\lambda)$, is the dimension of the eigenspace $\mathcal{E}_{A}(\lambda)$.

Since every eigenvalue must have at least one eigenvector, the associated eigenspace cannot be trivial, and so $\gamma_{A}(\lambda) \geq 1$.

Example EMMS4

Eigenvalue multiplicities, matrix of size 4

Consider the matrix

$$
B=\left[\begin{array}{cccc}
-2 & 1 & -2 & -4 \\
12 & 1 & 4 & 9 \\
6 & 5 & -2 & -4 \\
3 & -4 & 5 & 10
\end{array}\right]
$$

then

$$
p_{B}(x)=8-20 x+18 x^{2}-7 x^{3}+x^{4}=(x-1)(x-2)^{3}
$$

So the eigenvalues are $\lambda=1,2$ with algebraic multiplicities $\alpha_{B}(1)=1$ and $\alpha_{B}(2)=3$.
Computing eigenvectors,

$$
\begin{array}{cc}
\lambda=1 & B-1 I_{4}=\left[\begin{array}{cccc}
-3 & 1 & -2 & -4 \\
12 & 0 & 4 & 9 \\
6 & 5 & -3 & -4 \\
3 & -4 & 5 & 9
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & \frac{1}{3} & 0 \\
0 & {[1} & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\left.\mathcal{E}_{B}(1)=\mathcal{N}\left(B-1 I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
1 \\
0
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\begin{array}{c}
-1 \\
3 \\
3 \\
0
\end{array}\right]\right\}\right\rangle \\
\lambda=2 & B-2 I_{4}=\left[\begin{array}{cccc}
-4 & 1 & -2 & -4 \\
12 & -1 & 4 & 9 \\
6 & 5 & -4 & -4 \\
3 & -4 & 5 & 8
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 / 2 \\
0 & {[1} & 0 & -1 \\
0 & 0 & 1 & 1 / 2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\left.\mathcal{E}_{B}(2)=\mathcal{N}\left(B-2 I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\begin{array}{c}
-1 \\
2 \\
-1 \\
2
\end{array}\right]\right\}\right\rangle
\end{array}
$$

So each eigenspace has dimension 1 and so $\gamma_{B}(1)=1$ and $\gamma_{B}(2)=1$. This example is of interest because of the discrepancy between the two multiplicities for $\lambda=2$. In many of our examples the algebraic and geometric multiplicities will be equal for all of the eigenvalues (as it was for $\lambda=1$ in this example), so keep this example in mind. We will have some explanations for this phenomenon later (see Example NDMS4 433).

Example ESMS4

Eigenvalues, symmetric matrix of size 4

Consider the matrix

$$
C=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

then

$$
p_{C}(x)=-3+4 x+2 x^{2}-4 x^{3}+x^{4}=(x-3)(x-1)^{2}(x+1)
$$

So the eigenvalues are $\lambda=3,1,-1$ with algebraic multiplicities $\alpha_{C}(3)=1, \alpha_{C}(1)=2$ and $\alpha_{C}(-1)=1$. Computing eigenvectors,

$$
\begin{array}{cc}
\lambda=3 \quad C-3 I_{4} & =\left[\begin{array}{cccc}
-2 & 0 & 1 & 1 \\
0 & -2 & 1 & 1 \\
1 & 1 & -2 & 0 \\
1 & 1 & 0 & -2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{C}(3)=\mathcal{N}\left(C-3 I_{4}\right)=\left\langle\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}\right\rangle
\end{array}
$$

$$
\begin{array}{rlrl}
\lambda=1 & C-1 I_{4} & =\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] & \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{C}(1)=\mathcal{N}\left(C-1 I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right]\right\}\right\rangle \\
\lambda=-1 & C+1 I_{4}=\left[\begin{array}{llll}
2 & 0 & 1 & 1 \\
0 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 \\
1 & 1 & 0 & 2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{C}(-1)=\mathcal{N}\left(C+1 I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
1
\end{array}\right]\right\}\right\rangle
\end{array}
$$

So the eigenspace dimensions yield geometric multiplicities $\gamma_{C}(3)=1, \gamma_{C}(1)=2$ and $\gamma_{C}(-1)=1$, the same as for the algebraic multiplicities. This example is of interest because A is a symmetric matrix, and will be the subject of Theorem HMRE 421].

Example HMEM5

High multiplicity eigenvalues, matrix of size 5

Consider the matrix

$$
E=\left[\begin{array}{ccccc}
29 & 14 & 2 & 6 & -9 \\
-47 & -22 & -1 & -11 & 13 \\
19 & 10 & 5 & 4 & -8 \\
-19 & -10 & -3 & -2 & 8 \\
7 & 4 & 3 & 1 & -3
\end{array}\right]
$$

then

$$
p_{E}(x)=-16+16 x+8 x^{2}-16 x^{3}+7 x^{4}-x^{5}=-(x-2)^{4}(x+1)
$$

So the eigenvalues are $\lambda=2,-1$ with algebraic multiplicities $\alpha_{E}(2)=4$ and $\alpha_{E}(-1)=1$.
Computing eigenvectors,

$$
\begin{gathered}
\quad E-2 I_{5}=2=\left[\begin{array}{ccccc}
27 & 14 & 2 & 6 & -9 \\
-47 & -24 & -1 & -11 & 13 \\
19 & 10 & 3 & 4 & -8 \\
-19 & -10 & -3 & -4 & 8 \\
7 & 4 & 3 & 1 & -5
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
{[1} & 0 & 0 & 1 & 0 \\
0 & \boxed{1} & 0 & -\frac{3}{2} & -\frac{1}{2} \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{E}(2)=\mathcal{N}\left(E-2 I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
\frac{3}{2} \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
\frac{1}{2} \\
1 \\
0 \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
-2 \\
3 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
0 \\
2
\end{array}\right]\right\}\right\rangle
\end{gathered}
$$

$$
\begin{array}{rl}
\lambda=-1 & E+1 I_{5}
\end{array}=\left[\begin{array}{ccccc}
30 & 14 & 2 & 6 & -9 \\
-47 & -21 & -1 & -11 & 13 \\
19 & 10 & 6 & 4 & -8 \\
-19 & -10 & -3 & -1 & 8 \\
7 & 4 & 3 & 1 & -2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
1 & 0 & -4
\end{array}\right.} & 0 \\
0 & 0 & \begin{array}{c}
1 \\
1
\end{array} & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So the eigenspace dimensions yield geometric multiplicities $\gamma_{E}(2)=2$ and $\gamma_{E}(-1)=1$. This example is of interest because $\lambda=2$ has such a large algebraic multiplicity, which is also not equal to its geometric multiplicity.

Example CEMS6

Complex eigenvalues, matrix of size 6

Consider the matrix

$$
F=\left[\begin{array}{cccccc}
-59 & -34 & 41 & 12 & 25 & 30 \\
1 & 7 & -46 & -36 & -11 & -29 \\
-233 & -119 & 58 & -35 & 75 & 54 \\
157 & 81 & -43 & 21 & -51 & -39 \\
-91 & -48 & 32 & -5 & 32 & 26 \\
209 & 107 & -55 & 28 & -69 & -50
\end{array}\right]
$$

then

$$
\begin{aligned}
p_{F}(x) & =-50+55 x+13 x^{2}-50 x^{3}+32 x^{4}-9 x^{5}+x^{6} \\
& =(x-2)(x+1)\left(x^{2}-4 x+5\right)^{2} \\
& =(x-2)(x+1)((x-(2+i))(x-(2-i)))^{2} \\
& =(x-2)(x+1)(x-(2+i))^{2}(x-(2-i))^{2}
\end{aligned}
$$

So the eigenvalues are $\lambda=2,-1,2+i, 2-i$ with algebraic multiplicities $\alpha_{F}(2)=1, \alpha_{F}(-1)=1$, $\alpha_{F}(2+i)=2$ and $\alpha_{F}(2-i)=2$.

Computing eigenvectors,

$$
\begin{aligned}
\lambda & =2 \\
F-2 I_{6} & =\left[\begin{array}{cccccc}
-61 & -34 & 41 & 12 & 25 & 30 \\
1 & 5 & -46 & -36 & -11 & -29 \\
-233 & -119 & 56 & -35 & 75 & 54 \\
157 & 81 & -43 & 19 & -51 & -39 \\
-91 & -48 & 32 & -5 & 30 & 26 \\
209 & 107 & -55 & 28 & -69 & -52
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
{[1} & 0 & 0 & 0 & 0 & \frac{1}{5} \\
0 & \boxed{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{3}{5} \\
0 & 0 & 0 & 1 & 0 & -\frac{1}{5} \\
0 & 0 & 0 & 0 & 1 & \frac{4}{5} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{F}(2) & =\mathcal{N}\left(F-2 I_{6}\right)=\left\langle\left\{\left[\begin{array}{c}
-\frac{1}{5} \\
0 \\
-\frac{3}{5} \\
\frac{1}{5} \\
-\frac{4}{5} \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
-1 \\
0 \\
-3 \\
1 \\
-4 \\
5
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

$$
\left.\left.\left.\left.\begin{array}{rl}
\lambda & =-1 \\
F+1 I_{6} & =\left[\begin{array}{cccccc}
-58 & -34 & 41 & 12 & 25 & 30 \\
1 & 8 & -46 & -36 & -11 & -29 \\
-233 & -119 & 59 & -35 & 75 & 54 \\
157 & 81 & -43 & 22 & -51 & -39 \\
-91 & -48 & 32 & -5 & 33 & 26 \\
209 & 107 & -55 & 28 & -69 & -49
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
{\left[\begin{array}{ccc}
1 & 0 & 0
\end{array}\right.} & 0 & 0 & \frac{1}{2} \\
0 & \boxed{1} & 0 & 0 & 0 & -\frac{3}{2} \\
0 & 0 & 1 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{F}(-1) & =\mathcal{N}\left(F+I_{6}\right)=\left\langle\left\{\begin{array}{c}
-\frac{1}{2} \\
\frac{3}{2} \\
-\frac{1}{2} \\
0 \\
\frac{1}{2} \\
1
\end{array}\right]\right.
\end{array}\right\}\right\rangle=\left\langle\left\{\begin{array}{c}
-1 \\
3 \\
-1 \\
0 \\
1 \\
2
\end{array}\right]\right\}\right\rangle\right)
$$

$$
\left.\left.\left.\begin{array}{rl}
\lambda & =2+i \\
F-(2+i) I_{6} & =\left[\begin{array}{cccccc}
-61-i & -34 & 41 & 12 & 25 & 30 \\
1 & 5-i & -46 & -36 & -11 & -29 \\
-233 & -119 & 56-i & -35 & 75 & 54 \\
157 & 81 & -43 & 19-i & -51 & -39 \\
-91 & -48 & 32 & -5 & 30-i & 26 \\
209 & 107 & -55 & 28 & -69 & -52-i
\end{array}\right] \\
& \xrightarrow{\text { RREF }}\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & \frac{1}{5}(7+i) \\
0 & \boxed{1} & 0 & 0 & 0 & \frac{1}{5}(-9-2 i) \\
0 & 0 & \boxed{1} & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & \boxed{1} & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{F}(2+i)= & \mathcal{N}\left(F-(2+i) I_{6}\right)=\left\langle\left\{\left[\begin{array}{c}
-\frac{1}{5}(7+i) \\
\frac{1}{5}(9+2 i) \\
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right\}\right.
\end{array}\right]\right\}=\left\langle\left\{\left[\begin{array}{c}
-7-i \\
9+2 i \\
-5 \\
5 \\
-5 \\
5
\end{array}\right]\right\}\right\rangle\right)
$$

$$
\lambda=2-i
$$

$$
F-(2-i) I_{6}=\left[\begin{array}{cccccc}
-61+i & -34 & 41 & 12 & 25 & 30 \\
1 & 5+i & -46 & -36 & -11 & -29 \\
-233 & -119 & 56+i & -35 & 75 & 54 \\
157 & 81 & -43 & 19+i & -51 & -39 \\
-91 & -48 & 32 & -5 & 30+i & 26 \\
209 & 107 & -55 & 28 & -69 & -52+i
\end{array}\right]
$$

$$
\begin{gathered}
\xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
{\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0
\end{array} \frac{1}{5}(7-i)\right.} \\
0 & \boxed{1} & 0 & 0 & 0 & \frac{1}{5}(-9+2 i) \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{F}(2-i)=\mathcal{N}\left(F-(2-i) I_{6}\right)=\left\langle\left\{\left[\begin{array}{c}
\frac{1}{5}(-7+i) \\
\frac{1}{5}(9-2 i) \\
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\begin{array}{c}
\left.\left[\begin{array}{c}
-7+i \\
9-2 i \\
-5 \\
5 \\
-5 \\
5
\end{array}\right]\right\}
\end{array}\right) .\right.
\end{gathered}
$$

So the eigenspace dimensions yield geometric multiplicities $\gamma_{F}(2)=1, \gamma_{F}(-1)=1, \gamma_{F}(2+i)=1$ and $\gamma_{F}(2-i)=1$. This example demonstrates some of the possibilities for the appearance of complex eigenvalues, even when all the entries of the matrix are real. Notice how all the numbers in the analysis of $\lambda=2-i$ are conjugates of the corresponding number in the analysis of $\lambda=2+i$. This is the content of the upcoming Theorem ERMCP 417 .

Example DEMS5

Distinct eigenvalues, matrix of size 5

Consider the matrix

$$
H=\left[\begin{array}{ccccc}
15 & 18 & -8 & 6 & -5 \\
5 & 3 & 1 & -1 & -3 \\
0 & -4 & 5 & -4 & -2 \\
-43 & -46 & 17 & -14 & 15 \\
26 & 30 & -12 & 8 & -10
\end{array}\right]
$$

then

$$
p_{H}(x)=-6 x+x^{2}+7 x^{3}-x^{4}-x^{5}=x(x-2)(x-1)(x+1)(x+3)
$$

So the eigenvalues are $\lambda=2,1,0,-1,-3$ with algebraic multiplicities $\alpha_{H}(2)=1, \alpha_{H}(1)=1, \alpha_{H}(0)=1$, $\alpha_{H}(-1)=1$ and $\alpha_{H}(-3)=1$.

Computing eigenvectors,

$$
\begin{aligned}
& \lambda=2 \quad H-2 I_{5}=\left[\begin{array}{ccccc}
13 & 18 & -8 & 6 & -5 \\
5 & 1 & 1 & -1 & -3 \\
0 & -4 & 3 & -4 & -2 \\
-43 & -46 & 17 & -16 & 15 \\
26 & 30 & -12 & 8 & -12
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
\left.\begin{array}{|ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
\hline & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
0
\end{array}\right]
\end{array}\right. \\
& \mathcal{E}_{H}(2)=\mathcal{N}\left(H-2 I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
-1 \\
1
\end{array}\right]\right\}\right\rangle \\
& \lambda=1 \quad H-1 I_{5}=\left[\begin{array}{ccccc}
14 & 18 & -8 & 6 & -5 \\
5 & 2 & 1 & -1 & -3 \\
0 & -4 & 4 & -4 & -2 \\
-43 & -46 & 17 & -15 & 15 \\
26 & 30 & -12 & 8 & -11
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
\hline 1 & 0 & 0 & 0 & -\frac{1}{2} \\
0 & \boxed{1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{E}_{H}(1)=\mathcal{N}\left(H-1 I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2} \\
-1 \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
-2 \\
2
\end{array}\right]\right\}\right\rangle \\
& \lambda=0 \quad H-0 I_{5}=\left[\begin{array}{ccccc}
15 & 18 & -8 & 6 & -5 \\
5 & 3 & 1 & -1 & -3 \\
0 & -4 & 5 & -4 & -2 \\
-43 & -46 & 17 & -14 & 15 \\
26 & 30 & -12 & 8 & -10
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
\hline 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & -2 \\
0 & 0 & \boxed{1} & 0 & -2 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{E}_{H}(0)=\mathcal{N}\left(H-0 I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
2 \\
2 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \lambda=-1 \quad H+1 I_{5}=\left[\begin{array}{ccccc}
16 & 18 & -8 & 6 & -5 \\
5 & 4 & 1 & -1 & -3 \\
0 & -4 & 6 & -4 & -2 \\
-43 & -46 & 17 & -13 & 15 \\
26 & 30 & -12 & 8 & -9
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
{[1} & 0 & 0 & 0 & -1 / 2 \\
0 & \boxed{1} & 0 & 0 & 0 \\
0 & 0 & \boxed{1} & 0 & 0 \\
0 & 0 & 0 & 1 & 1 / 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{E}_{H}(-1)=\mathcal{N}\left(H+1 I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
0 \\
-\frac{1}{2} \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
2
\end{array}\right]\right\}\right\rangle \\
& \lambda=-3 \quad H+3 I_{5}=\left[\begin{array}{ccccc}
18 & 18 & -8 & 6 & -5 \\
5 & 6 & 1 & -1 & -3 \\
0 & -4 & 8 & -4 & -2 \\
-43 & -46 & 17 & -11 & 15 \\
26 & 30 & -12 & 8 & -7
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{E}_{H}(-3)=\mathcal{N}\left(H+3 I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
1 \\
-\frac{1}{2} \\
-1 \\
-2 \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
2 \\
4 \\
-2
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

So the eigenspace dimensions yield geometric multiplicities $\gamma_{H}(2)=1, \gamma_{H}(1)=1, \gamma_{H}(0)=1, \gamma_{H}(-1)=1$ and $\gamma_{H}(-3)=1$, identical to the algebraic multiplicities. This example is of interest for two reasons. First, $\lambda=0$ is an eigenvalue, illustrating the upcoming Theorem SMZE 414. Second, all the eigenvalues are distinct, yielding algebraic and geometric multiplicities of 1 for each eigenvalue, illustrating Theorem DED 433.

Subsection READ

Reading Questions

Suppose A is the 2×2 matrix

$$
A=\left[\begin{array}{ll}
-5 & 8 \\
-4 & 7
\end{array}\right]
$$

1. Find the eigenvalues of A.
2. Find the eigenspaces of A.
3. For the polynomial $p(x)=3 x^{2}-x+2$, compute $p(A)$.

Subsection EXC
 Exercises

C19 Find the eigenvalues, eigenspaces, algebraic multiplicities and geometric multiplicities for the matrix below. It is possible to do all these computations by hand, and it would be instructive to do so.

$$
C=\left[\begin{array}{ll}
-1 & 2 \\
-6 & 6
\end{array}\right]
$$

Contributed by Robert Beezer Solution 408
C20 Find the eigenvalues, eigenspaces, algebraic multiplicities and geometric multiplicities for the matrix below. It is possible to do all these computations by hand, and it would be instructive to do so.

$$
B=\left[\begin{array}{cc}
-12 & 30 \\
-5 & 13
\end{array}\right]
$$

Contributed by Robert Beezer Solution 408
C21 The matrix A below has $\lambda=2$ as an eigenvalue. Find the geometric multiplicity of $\lambda=2$ using your calculator only for row-reducing matrices.

$$
A=\left[\begin{array}{cccc}
18 & -15 & 33 & -15 \\
-4 & 8 & -6 & 6 \\
-9 & 9 & -16 & 9 \\
5 & -6 & 9 & -4
\end{array}\right]
$$

Contributed by Robert Beezer Solution 409
C22 Without using a calculator, find the eigenvalues of the matrix B.

$$
B=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]
$$

Contributed by Robert Beezer Solution 409
M60 Repeat Example CAEHW $\begin{aligned} & \text { vector of the matrix } A \text {. The hard way. }\end{aligned}$
vector of the matrix A. The hard way.
Contributed by Robert Beezer Solution 409
T10 A matrix A is idempotent if $A^{2}=A$. Show that the only possible eigenvalues of an idempotent matrix are $\lambda=0$ and $\lambda=1$. Then give an example of a matrix that is idempotent and has both of these two values as eigenvalues.
Contributed by Robert Beezer Solution 410
T20 Suppose that λ and ρ are two different eigenvalues of the square matrix A. Prove that the intersection of the eigenspaces for these two eigenvalues is trivial. That is, $\mathcal{E}_{A}(\lambda) \cap \mathcal{E}_{A}(\rho)=\{\mathbf{0}\}$.
Contributed by Robert Beezer Solution 410

Subsection SOL Solutions

C19 Contributed by Robert Beezer Statement 407
First compute the characteristic polynomial,

$$
\begin{aligned}
p_{C}(x) & =\operatorname{det}\left(C-x I_{2}\right) \\
& =\left|\begin{array}{cc}
-1-x & 2 \\
-6 & 6-x
\end{array}\right| \\
& =(-1-x)(6-x)-(2)(-6) \\
& =x^{2}-5 x+6 \\
& =(x-3)(x-2)
\end{aligned}
$$

Definition CP 396

So the eigenvalues of C are the solutions to $p_{C}(x)=0$, namely, $\lambda=2$ and $\lambda=3$.
To obtain the eigenspaces, construct the appropriate singular matrices and find expressions for the null spaces of these matrices.

$$
\begin{aligned}
\lambda & =2 \\
C-(2) I_{2} & =\left[\begin{array}{ll}
-3 & 2 \\
-6 & 4
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cc}
1 & -\frac{2}{3} \\
0 & 0
\end{array}\right] \\
\mathcal{E}_{C}(2) & =\mathcal{N}\left(C-(2) I_{2}\right)=\left\langle\left\{\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\}\right\rangle \\
\lambda & =3 \\
C-(3) I_{2} & =\left[\begin{array}{ll}
-4 & 2 \\
-6 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cc}
{\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & 0
\end{array}\right]} \\
\mathcal{E}_{C}(3) & =\mathcal{N}\left(C-(3) I_{2}\right)=\left\langle\left\{\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}\right\rangle
\end{array},=\left\{\begin{array}{l}
\text { (}
\end{array}\right]\right.
\end{aligned}
$$

C20 Contributed by Robert Beezer Statement 407
The characteristic polynomial of B is

$$
\begin{array}{rlrl}
p_{B}(x) & =\operatorname{det}\left(B-x I_{2}\right) & & \text { Definition CP 396 } \\
& =\left|\begin{array}{cc}
-12-x & 30 \\
-5 & 13-x
\end{array}\right| & & \\
& =(-12-x)(13-x)-(30)(-5) & & \text { Theorem DMST 369 } \\
& =x^{2}-x-6 & & \\
& =(x-3)(x+2) &
\end{array}
$$

From this we find eigenvalues $\lambda=3,-2$ with algebraic multiplicities $\alpha_{B}(3)=1$ and $\alpha_{B}(-2)=1$.
For eigenvectors and geometric multiplicities, we study the null spaces of $B-\lambda I_{2}$ (Theorem EMNS (398).

$$
\begin{array}{rl}
\lambda=3 & B-3 I_{2}
\end{array}=\left[\begin{array}{cc}
-15 & 30 \\
-5 & 10
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cc}
{[1} & 2 \\
0 & 0
\end{array}\right]
$$

$$
\begin{array}{ll}
\lambda=-2 & B+2 I_{2}=\left[\begin{array}{cc}
-10 & 30 \\
-5 & 15
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right] \\
\mathcal{E}_{B}(-2)=\mathcal{N}\left(B+2 I_{2}\right)=\left\langle\left\{\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\}\right\rangle
\end{array}
$$

Each eigenspace has dimension one, so we have geometric multiplicities $\gamma_{B}(3)=1$ and $\gamma_{B}(-2)=1$.
C21 Contributed by Robert Beezer Statement 407
If $\lambda=2$ is an eigenvalue of A, the matrix $A-2 I_{4}$ will be singular, and its null space will be the eigenspace of A. So we form this matrix and row-reduce,

$$
A-2 I_{4}=\left[\begin{array}{cccc}
16 & -15 & 33 & -15 \\
-4 & 6 & -6 & 6 \\
-9 & 9 & -18 & 9 \\
5 & -6 & 9 & -6
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 0 & 3 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

With two free variables, we know a basis of the null space Theorem BNS 138) will contain two vectors. Thus the null space of $A-2 I_{4}$ has dimension two, and so the eigenspace of $\lambda=2$ has dimension two also (Theorem EMNS 398), $\gamma_{A}(2)=2$.
C22 Contributed by Robert Beezer Statement 407
The characteristic polynomial (Definition CP (396) is

$$
\begin{aligned}
p_{B}(x) & =\operatorname{det}\left(B-x I_{2}\right) \\
& =\left|\begin{array}{cc}
2-x & -1 \\
1 & 1-x
\end{array}\right| \\
& =(2-x)(1-x)-(1)(-1) \\
& =x^{2}-3 x+3 \\
& =\left(x-\frac{3+3 i}{2}\right)\left(x-\frac{3-3 i}{2}\right)
\end{aligned}
$$

$$
=(2-x)(1-x)-(1)(-1) \quad \text { Theorem DMST } 369
$$

where the factorization can be obtained by finding the roots of $p_{B}(x)=0$ with the quadratic equation. By Theorem EMRCP 397 the eigenvalues of B are the complex numbers $\lambda_{1}=\frac{3+3 i}{2}$ and $\lambda_{2}=\frac{3-3 i}{2}$.
M60 Contributed by Robert Beezer Statement 407
Form the matrix C whose columns are $\mathbf{x}, A \mathbf{x}, A^{2} \mathbf{x}, \overline{A^{3} \mathbf{x}}, A^{4} \mathbf{x}, A^{5} \mathbf{x}$ and row-reduce the matrix,

$$
\left[\begin{array}{cccccc}
0 & 6 & 32 & 102 & 320 & 966 \\
8 & 10 & 24 & 58 & 168 & 490 \\
2 & 12 & 50 & 156 & 482 & 1452 \\
1 & -5 & -47 & -149 & -479 & -1445 \\
2 & 12 & 50 & 156 & 482 & 1452
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
\begin{array}{|ccccc}
1 & 0 & 0 & -3 & -9
\end{array}-30 \\
0 & \boxed{1} & 0 & 1 & 0 & 1 \\
0 & 0 & \boxed{1} & 3 & 10 & 30 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The simplest possible relation of linear dependence on the columns of C comes from using scalars $\alpha_{4}=1$ and $\alpha_{5}=\alpha_{6}=0$ for the free variables in a solution to $\mathcal{L S}(C, \mathbf{0})$. The remainder of this solution is $\alpha_{1}=3$, $\alpha_{2}=-1, \alpha_{3}=-3$. This solution gives rise to the polynomial

$$
p(x)=3-x-3 x^{2}+x^{3}=(x-3)(x-1)(x+1)
$$

which then has the property that $p(A) \mathbf{x}=\mathbf{0}$.
No matter how you choose to order the factors of $p(x)$, the value of k (in the language of Theorem EMHE 393 and Example CAEHW 394) is $k=2$. For each of the three possibilities, we list the resulting
eigenvector and the associated eigenvalue:

$$
\begin{aligned}
\left(C-3 I_{5}\right)\left(C-I_{5}\right) \mathbf{z} & =\left[\begin{array}{c}
8 \\
8 \\
8 \\
-24 \\
8
\end{array}\right] \\
\left(C-3 I_{5}\right)\left(C+I_{5}\right) \mathbf{z} & =\left[\begin{array}{c}
20 \\
-20 \\
20 \\
-40 \\
20
\end{array}\right] \\
\left(C+I_{5}\right)\left(C-I_{5}\right) \mathbf{z} & =\left[\begin{array}{c}
32 \\
16 \\
48 \\
-48 \\
48
\end{array}\right]
\end{aligned}
$$

Note that each of these eigenvectors can be simplified by an appropriate scalar multiple, but we have shown here the actual vector obtained by the product specified in the theorem.

T10 Contributed by Robert Beezer Statement 407
Suppopse that λ is an eigenvalue of A. Then there is an eigenvector \mathbf{x}, such that $A \mathbf{x}=\lambda \mathbf{x}$. We have,

$$
\begin{aligned}
\lambda \mathbf{x} & =A \mathbf{x} & & \mathbf{x} \text { eigenvector of } A \\
& =A^{2} \mathbf{x} & & A \text { is idempotent } \\
& =A(A \mathbf{x}) & & \\
& =A(\lambda \mathbf{x}) & & \mathbf{x} \text { eigenvector of } A \\
& =\lambda(A \mathbf{x}) & & \text { Theorem MMSMM } \\
& =\lambda(\lambda \mathbf{x}) & & \mathbf{x} \text { eigenvector of } A \\
& =\lambda^{2} \mathbf{x} & &
\end{aligned}
$$

From this we get

$$
\begin{aligned}
\mathbf{0} & =\lambda^{2} \mathbf{x}-\lambda \mathbf{x} \\
& =\left(\lambda^{2}-\lambda\right) \mathbf{x}
\end{aligned}
$$

Property DSAC 83

Since \mathbf{x} is an eigenvector, it is nonzero, and Theorem SMEZV 284 leaves us with the conclusion that $\lambda^{2}-\lambda=0$, and the solutions to this quadratic polynomial equation in λ are $\lambda=0$ and $\lambda=1$.

The matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

is idempotent (check this!) and since it is a diagonal matrix, its eigenvalues are the diagonal entries, $\lambda=0$ and $\lambda=1$, so each of these possible values for an eigenvalue of an idempotent matrix actually occurs as an eigenvalue of some idempotent matrix.
T20 Contributed by Robert Beezer Statement 407
This problem asks you to prove that two sets are equal, so use Definition SE 670 .

First show that $\{\mathbf{0}\} \subseteq \mathcal{E}_{A}(\lambda) \cap \mathcal{E}_{A}(\rho)$. Choose $\mathbf{x} \in\{\mathbf{0}\}$. Then $\mathbf{x}=\mathbf{0}$. Eigenspaces are subspaces Theorem EMS 397), so both $\mathcal{E}_{A}(\lambda)$ and $\mathcal{E}_{A}(\rho)$ contain the zero vector, and therefore $\mathbf{x} \in \mathcal{E}_{A}(\lambda) \cap \mathcal{E}_{A}(\rho)$ (Definition SI 671).

To show that $\mathcal{E}_{A}(\lambda) \cap \mathcal{E}_{A}(\rho) \subseteq\{\mathbf{0}\}$, suppose that $\mathbf{x} \in \mathcal{E}_{A}(\lambda) \cap \mathcal{E}_{A}(\rho)$. Then \mathbf{x} is an eigenvector of A for both λ and ρ (Definition SI 671) and so

$$
\begin{aligned}
\mathbf{x} & =1 \mathbf{x} & & \text { Property O 276 } \\
& =\frac{1}{\lambda-\rho}(\lambda-\rho) \mathbf{x} & & \lambda \neq \rho, \lambda-\rho \neq 0 \\
& =\frac{1}{\lambda-\rho}(\lambda \mathbf{x}-\rho \mathbf{x}) & & \text { Property DSAC 83 } \\
& =\frac{1}{\lambda-\rho}(A \mathbf{x}-A \mathbf{x}) & & \mathbf{x} \text { eigenvector of } A \text { for } \lambda, \rho \\
& =\frac{1}{\lambda-\rho}(\mathbf{0}) & & \\
& =\mathbf{0} & & \text { Theorem ZVSM 282 }
\end{aligned}
$$

So $\mathbf{x}=\mathbf{0}$, and trivially, $\mathbf{x} \in\{\mathbf{0}\}$.

Section PEE
 Properties of Eigenvalues and Eigenvectors

The previous section introduced eigenvalues and eigenvectors, and concentrated on their existence and determination. This section will be more about theorems, and the various properties eigenvalues and eigenvectors enjoy. Like a good 4×100 meter relay, we will lead-off with one of our better theorems and save the very best for the anchor leg.

Theorem EDELI

Eigenvectors with Distinct Eigenvalues are Linearly Independent

Suppose that A is an $n \times n$ square matrix and $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{p}\right\}$ is a set of eigenvectors with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{p}$ such that $\lambda_{i} \neq \lambda_{j}$ whenever $i \neq j$. Then S is a linearly independent set.

Proof If $p=1$, then the set $S=\left\{\mathbf{x}_{1}\right\}$ is linearly independent since eigenvectors are nonzero Definition EEM (389), so assume for the remainder that $p \geq 2$.

We will prove this result by contradiction (Technique CD [678]). Suppose to the contrary that S is a linearly dependent set. Define k to be an integer such that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{k-1}\right\}$ is linearly independent and $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{k}\right\}$ is linearly dependent. We have to ask if there is even such an integer? Since eigenvectors are nonzero, the set $\left\{\mathbf{x}_{1}\right\}$ is linearly independent. Think of adding in vectors to this set, one at a time, $\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \ldots$ Since we are assuming that S is linearly dependent, eventually this set will convert from being linearly independent to being linearly dependent. In other words, it is the addition of the vector \mathbf{x}_{k} that converts the set from linear independence to linear dependence. So there is such a k, and futhermore $2 \leq k \leq p$.

Since $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{k}\right\}$ is linearly dependent there are scalars, $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$, some non-zero, so that

$$
\mathbf{0}=a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+a_{3} \mathbf{x}_{3}+\cdots+a_{k} \mathbf{x}_{k}
$$

Then,

$$
\begin{aligned}
\mathbf{0} & =\left(A-\lambda_{k} I_{n}\right) \mathbf{0} & & \text { Theorem ZVSM } 282 \\
& =\left(A-\lambda_{k} I_{n}\right)\left(a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+a_{3} \mathbf{x}_{3}+\cdots+a_{k} \mathbf{x}_{k}\right) & & \text { Definition RLD } 305 \\
& =\left(A-\lambda_{k} I_{n}\right) a_{1} \mathbf{x}_{1}+\left(A-\lambda_{k} I_{n}\right) a_{2} \mathbf{x}_{2}+\cdots+\left(A-\lambda_{k} I_{n}\right) a_{k} \mathbf{x}_{k} & & \text { Theorem MMDAA 196 } \\
& =a_{1}\left(A-\lambda_{k} I_{n}\right) \mathbf{x}_{1}+a_{2}\left(A-\lambda_{k} I_{n}\right) \mathbf{x}_{2}+\cdots+a_{k}\left(A-\lambda_{k} I_{n}\right) \mathbf{x}_{k} & & \text { Theorem MMSMM } 196 \\
& =a_{1}\left(A \mathbf{x}_{1}-\lambda_{k} I_{n} \mathbf{x}_{1}\right)+a_{2}\left(A \mathbf{x}_{2}-\lambda_{k} I_{n} \mathbf{x}_{2}\right)+\cdots+a_{k}\left(A \mathbf{x}_{k}-\lambda_{k} I_{n} \mathbf{x}_{k}\right) & & \text { Theorem MMDAA 196 } \\
& =a_{1}\left(A \mathbf{x}_{1}-\lambda_{k} \mathbf{x}_{1}\right)+a_{2}\left(A \mathbf{x}_{2}-\lambda_{k} \mathbf{x}_{2}\right)+\cdots+a_{k}\left(A \mathbf{x}_{k}-\lambda_{k} \mathbf{x}_{k}\right) & & \text { Theorem MMIM 195 } \\
& =a_{1}\left(\lambda_{1} \mathbf{x}_{1}-\lambda_{k} \mathbf{x}_{1}\right)+a_{2}\left(\lambda_{2} \mathbf{x}_{2}-\lambda_{k} \mathbf{x}_{2}\right)+\cdots+a_{k}\left(\lambda_{k} \mathbf{x}_{k}-\lambda_{k} \mathbf{x}_{k}\right) & & \text { Definition EEM 389] } \\
& =a_{1}\left(\lambda_{1}-\lambda_{k}\right) \mathbf{x}_{1}+a_{2}\left(\lambda_{2}-\lambda_{k}\right) \mathbf{x}_{2}+\cdots+a_{k}\left(\lambda_{k}-\lambda_{k}\right) \mathbf{x}_{k} & & \text { Theorem MMDAA 196 } \\
& =a_{1}\left(\lambda_{1}-\lambda_{k}\right) \mathbf{x}_{1}+a_{2}\left(\lambda_{2}-\lambda_{k}\right) \mathbf{x}_{2}+\cdots+a_{k}(0) \mathbf{x}_{k} & & \text { Property AICN 667 } \\
& =a_{1}\left(\lambda_{1}-\lambda_{k}\right) \mathbf{x}_{1}+a_{2}\left(\lambda_{2}-\lambda_{k}\right) \mathbf{x}_{2}+\cdots+a_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right) \mathbf{x}_{k-1}+\mathbf{0} & & \text { Theorem ZSSM } 282 \\
& =a_{1}\left(\lambda_{1}-\lambda_{k}\right) \mathbf{x}_{1}+a_{2}\left(\lambda_{2}-\lambda_{k}\right) \mathbf{x}_{2}+\cdots+a_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right) \mathbf{x}_{k-1} & & \text { Property Z 276 }
\end{aligned}
$$

This is a relation of linear dependence on the linearly independent set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{k-1}\right\}$, so the scalars must all be zero. That is, $a_{i}\left(\lambda_{i}-\lambda_{k}\right)=0$ for $1 \leq i \leq k-1$. However, we have the hypothesis that the eigenvalues are distinct, so $\lambda_{i} \neq \lambda_{k}$ for $1 \leq i \leq k-1$. Thus $a_{i}=0$ for $1 \leq i \leq k-1$.

This reduces the original relation of linear dependence on $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{k}\right\}$ to the simpler equation $a_{k} \mathbf{x}_{k}=\mathbf{0}$. By Theorem SMEZV 284 we conclude that $a_{k}=0$ or $\mathbf{x}_{k}=\mathbf{0}$. Eigenvectors are never the zero
vector (Definition EEM [389), so $a_{k}=0$. So all of the scalars $a_{i}, 1 \leq i \leq k$ are zero, contradicting their introduction as the scalars creating a nontrivial relation of linear dependence on the set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{k}\right\}$. With a contradiction in hand, we conclude that S must be linearly independent.

There is a simple connection between the eigenvalues of a matrix and whether or not the matrix is nonsingular.

Theorem SMZE

Singular Matrices have Zero Eigenvalues

Suppose A is a square matrix. Then A is singular if and only if $\lambda=0$ is an eigenvalue of A.
Proof We have the following equivalences:

$$
\begin{array}{rlrl}
A \text { is singular } & \Longleftrightarrow \text { there exists } \mathbf{x} \neq \mathbf{0}, A \mathbf{x}=\mathbf{0} & & \text { Definition NSM } 59 \\
& \Longleftrightarrow \text { there exists } \mathbf{x} \neq \mathbf{0}, A \mathbf{x}=0 \mathbf{x} & & \text { Theorem ZSSM } \\
& \Longleftrightarrow \lambda=0 \text { is an eigenvalue of } A & & \text { Definition EEM } \\
& \Longleftrightarrow 389
\end{array}
$$

With an equivalence about singular matrices we can update our list of equivalences about nonsingular matrices.

Theorem NME8

Nonsingular Matrix Equivalences, Round 8
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{0\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.
12. $\lambda=0$ is not an eigenvalue of A.

Proof The equivalence of the first and last statements is the contrapositive of Theorem SMZE 414, so we are able to improve on Theorem NME7 384.

Certain changes to a matrix change its eigenvalues in a predictable way.

Theorem ESMM

Eigenvalues of a Scalar Multiple of a Matrix

Suppose A is a square matrix and λ is an eigenvalue of A. Then $\alpha \lambda$ is an eigenvalue of αA.
Proof Let $\mathbf{x} \neq \mathbf{0}$ be one eigenvector of A for λ. Then

$$
\begin{aligned}
(\alpha A) \mathbf{x} & =\alpha(A \mathbf{x}) & & \text { Theorem MMSMM } 196 \\
& =\alpha(\lambda \mathbf{x}) & & \mathbf{x} \text { eigenvector of } A \\
& =(\alpha \lambda) \mathbf{x} & & \text { Property SMAC 82 }
\end{aligned}
$$

So $\mathbf{x} \neq \mathbf{0}$ is an eigenvector of αA for the eigenvalue $\alpha \lambda$.
Unfortunately, there are not parallel theorems about the sum or product of arbitrary matrices. But we can prove a similar result for powers of a matrix.

Theorem EOMP

Eigenvalues Of Matrix Powers

Suppose A is a square matrix, λ is an eigenvalue of A, and $s \geq 0$ is an integer. Then λ^{s} is an eigenvalue of A^{s}.
Proof Let $\mathbf{x} \neq \mathbf{0}$ be one eigenvector of A for λ. Suppose A has size n. Then we proceed by induction on s Technique I 680). First, for $s=0$,

$$
\begin{array}{rlr}
A^{s} \mathbf{x} & =A^{0} \mathbf{x} & \\
& =I_{n} \mathbf{x} & \\
& =\mathbf{x} & \\
& =1 \mathbf{x} & \text { Theorem MMIM } 195 \\
& =\lambda^{0} \mathbf{x} & \\
& =\lambda^{s} \mathbf{x} &
\end{array}
$$

so λ^{s} is an eigenvalue of A^{s} in this special case. If we assume the theorem is true for s, then we find

$$
\begin{aligned}
& A^{s+1} \mathbf{x}=A^{s} A \mathbf{x} \\
& =A^{s}(\lambda \mathbf{x}) \quad \mathbf{x} \text { eigenvector of } A \text { for } \lambda \\
& =\lambda\left(A^{s} \mathbf{x}\right) \quad \text { Theorem MMSMM 196 } \\
& =\lambda\left(\lambda^{s} \mathbf{x}\right) \quad \text { Induction hypothesis } \\
& =\left(\lambda \lambda^{s}\right) \mathbf{x} \quad \text { Property SMAC 82 } \\
& =\lambda^{s+1} \mathbf{x}
\end{aligned}
$$

So $\mathbf{x} \neq \mathbf{0}$ is an eigenvector of A^{s+1} for λ^{s+1}, and induction tells us the theorem is true for all $s \geq 0$.
While we cannot prove that the sum of two arbitrary matrices behaves in any reasonable way with regard to eigenvalues, we can work with the sum of dissimilar powers of the same matrix. We have already seen two connections between eigenvalues and polynomials, in the proof of Theorem EMHE 393 and the characteristic polynomial (Definition CP (396). Our next theorem strengthens this connection.

Theorem EPM

Eigenvalues of the Polynomial of a Matrix

Suppose A is a square matrix and λ is an eigenvalue of A. Let $q(x)$ be a polynomial in the variable x. Then $q(\lambda)$ is an eigenvalue of the matrix $q(A)$.
Proof Let $\mathbf{x} \neq \mathbf{0}$ be one eigenvector of A for λ, and write $q(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}$. Then

$$
q(A) \mathbf{x}=\left(a_{0} A^{0}+a_{1} A^{1}+a_{2} A^{2}+\cdots+a_{m} A^{m}\right) \mathbf{x}
$$

$$
\begin{array}{ll}
=\left(a_{0} A^{0}\right) \mathbf{x}+\left(a_{1} A^{1}\right) \mathbf{x}+\left(a_{2} A^{2}\right) \mathbf{x}+\cdots+\left(a_{m} A^{m}\right) \mathbf{x} & \\
=a_{0}\left(A^{0} \mathbf{x}\right)+a_{1}\left(A^{1} \mathbf{x}\right)+a_{2}\left(A^{2} \mathbf{x}\right)+\cdots+a_{m}\left(A^{m} \mathbf{x}\right) & \\
=a_{0}\left(\lambda^{0} \mathbf{x}\right)+a_{1}\left(\lambda^{1} \mathbf{x}\right)+a_{2}\left(\lambda^{2} \mathbf{x}\right)+\cdots+a_{m}\left(\lambda^{m} \mathbf{x}\right) & \\
=\left(a_{0} \lambda^{0}\right) \mathbf{x}+\left(a_{1} \lambda^{1}\right) \mathbf{x}+\left(a_{2} \lambda^{2}\right) \mathbf{x}+\cdots+\left(a_{m} \lambda^{m}\right) \mathbf{x} & \\
=\left(a_{0} \lambda^{0}+a_{1} \lambda^{1}+a_{2} \lambda^{2}+\cdots+a_{m} \lambda^{m}\right) \mathbf{x} & \text { Properem EOMP 4MSM SMAC } 815 \\
=q(\lambda) \mathbf{x} & \\
\text { Property DSAC 83 } \\
\end{array}
$$

So $\mathbf{x} \neq 0$ is an eigenvector of $q(A)$ for the eigenvalue $q(\lambda)$.

Example BDE

Building desired eigenvalues
In Example ESMS4 400 the 4×4 symmetric matrix

$$
C=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

is shown to have the three eigenvalues $\lambda=3,1,-1$. Suppose we wanted a 4×4 matrix that has the three eigenvalues $\lambda=4,0,-2$. We can employ Theorem EPM 415 by finding a polynomial that converts 3 to 4,1 to 0 , and -1 to -2 . Such a polynomial is called an interpolating polynomial, and in this example we can use

$$
r(x)=\frac{1}{4} x^{2}+x-\frac{5}{4}
$$

We will not discuss how to concoct this polynomial, but a text on numerical analysis should provide the details. In our case, simply verify that $r(3)=4, r(1)=0$ and $r(-1)=-2$.

Now compute

$$
\begin{aligned}
r(C) & =\frac{1}{4} C^{2}+C-\frac{5}{4} I_{4} \\
& =\frac{1}{4}\left[\begin{array}{llll}
3 & 2 & 2 & 2 \\
2 & 3 & 2 & 2 \\
2 & 2 & 3 & 2 \\
2 & 2 & 2 & 3
\end{array}\right]+\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]-\frac{5}{4}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{llll}
1 & 1 & 3 & 3 \\
1 & 1 & 3 & 3 \\
3 & 3 & 1 & 1 \\
3 & 3 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Theorem EPM 415 tells us that if $r(x)$ transforms the eigenvalues in the desired manner, then $r(C)$ will have the desired eigenvalues. You can check this by computing the eigenvalues of $r(C)$ directly. Furthermore, notice that the multiplicities are the same, and the eigenspaces of C and $r(C)$ are identical.

Inverses and transposes also behave predictably with regard to their eigenvalues.

Theorem EIM

Eigenvalues of the Inverse of a Matrix

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then $\frac{1}{\lambda}$ is an eigenvalue of the matrix A^{-1}.

Proof Notice that since A is assumed nonsingular, A^{-1} exists by Theorem NI 223 , but more importantly, $\frac{1}{\lambda}$ does not involve division by zero since Theorem SMZE 414 prohibits this possibility.

Let $\mathbf{x} \neq \mathbf{0}$ be one eigenvector of A for λ. Suppose A has size n. Then

$$
\begin{aligned}
A^{-1} \mathbf{x} & =A^{-1}(1 \mathbf{x}) & & \text { Property OC } 83 \\
& =A^{-1}\left(\frac{1}{\lambda} \lambda \mathbf{x}\right) & & \text { Property MICN 667 } \\
& =\frac{1}{\lambda} A^{-1}(\lambda \mathbf{x}) & & \text { Theorem MMSMM 196 } \\
& =\frac{1}{\lambda} A^{-1}(A \mathbf{x}) & & \text { Definition EEM 389 } \\
& =\frac{1}{\lambda}\left(A^{-1} A\right) \mathbf{x} & & \text { Theorem MMA 196 } \\
& =\frac{1}{\lambda} I_{n} \mathbf{x} & & \text { Definition MI 208 } \\
& =\frac{1}{\lambda} \mathbf{x} & & \text { Theorem MMIM 195 }
\end{aligned}
$$

So $\mathbf{x} \neq 0$ is an eigenvector of A^{-1} for the eigenvalue $\frac{1}{\lambda}$.
The theorems above have a similar style to them, a style you should consider using when confronted with a need to prove a theorem about eigenvalues and eigenvectors. So far we have been able to reserve the characteristic polynomial for strictly computational purposes. However, the next theorem, whose statement resembles the preceding theorems, has an easier proof if we employ the characteristic polynomial and results about determinants.

Theorem ETM

Eigenvalues of the Transpose of a Matrix

Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix A^{t}.
Proof Let $\mathbf{x} \neq \mathbf{0}$ be one eigenvector of A for λ. Suppose A has size n. Then

$$
\begin{aligned}
p_{A}(x) & =\operatorname{det}\left(A-x I_{n}\right) & & \text { Definition CP } 396 \\
& =\operatorname{det}\left(\left(A-x I_{n}\right)^{t}\right) & & \text { Theorem DT } 370 \\
& =\operatorname{det}\left(A^{t}-\left(x I_{n}\right)^{t}\right) & & \text { Theorem TMA } 181 \\
& =\operatorname{det}\left(A^{t}-x I_{n}^{t}\right) & & \text { Theorem TMSM } 18 \\
& =\operatorname{det}\left(A^{t}-x I_{n}\right) & & \text { Definition IM } 68 \\
& =p_{A^{t}}(x) & & \text { Definition CP } 396
\end{aligned}
$$

So A and A^{t} have the same characteristic polynomial, and by Theorem EMRCP 397, their eigenvalues are identical and have equal algebraic multiplicities. Notice that what we have proved here is a bit stronger than the stated conclusion in the theorem.

If a matrix has only real entries, then the computation of the characteristic polynomial Definition CP (396) will result in a polynomial with coefficients that are real numbers. Complex numbers could result as roots of this polynomial, but they are roots of quadratic factors with real coefficients, and as such, come in conjugate pairs. The next theorem proves this, and a bit more, without mentioning the characteristic polynomial.

Theorem ERMCP

Eigenvalues of Real Matrices come in Conjugate Pairs

Suppose A is a square matrix with real entries and \mathbf{x} is an eigenvector of A for the eigenvalue λ. Then $\overline{\mathbf{x}}$ is an eigenvector of A for the eigenvalue $\bar{\lambda}$.

Proof

$$
A \overline{\mathbf{x}}=\bar{A} \overline{\mathbf{x}} \quad A \text { has real entries }
$$

$$
\begin{array}{ll}
=\overline{A \mathbf{x}} & \text { Theorem MMCC 198 } \\
=\overline{\lambda \mathbf{x}} & \mathbf{x} \text { eigenvector of } A \\
=\bar{\lambda} \overline{\mathbf{x}} & \text { Theorem CRSM 163 }
\end{array}
$$

So $\overline{\mathrm{x}}$ is an eigenvector of A for the eigenvalue $\bar{\lambda}$.
This phenomenon is amply illustrated in Example CEMS6 402, where the four complex eigenvalues come in two pairs, and the two basis vectors of the eigenspaces are complex conjugates of each other. Theorem ERMCP 417 can be a time-saver for computing eigenvalues and eigenvectors of real matrices with complex eigenvalues, since the conjugate eigenvalue and eigenspace can be inferred from the theorem rather than computed.

Subsection ME
 Multiplicities of Eigenvalues

A polynomial of degree n will have exactly n roots. From this fact about polynomial equations we can say more about the algebraic multiplicities of eigenvalues.

Theorem DCP

Degree of the Characteristic Polynomial

Suppose that A is a square matrix of size n. Then the characteristic polynomial of $A, p_{A}(x)$, has degree n.

Proof We will prove a more general result by induction Technique I 680). Then the theorem will be true as a special case. We will carefully state this result as a proposition indexed by $m, m \geq 1$.
$P(m)$: Suppose that A is an $m \times m$ matrix whose entries are complex numbers or linear polynomials in the variable x of the form $c-x$, where c is a complex number. Suppose further that there are exactly k entries that contain x and that no row or column contains more than one such entry. Then, when $k=m, \operatorname{det}(A)$ is a polynomial in x of degree m, with leading coefficient ± 1, and when $k<m$, $\operatorname{det}(A)$ is a polynomial in x of degree k or less.

Base Case: Suppose A is a 1×1 matrix. Then its determinant is equal to the lone entry Definition DM (368). When $k=m=1$, the entry is of the form $c-x$, a polynomial in x of degree $m=1$ with leading coefficient -1 . When $k<m$, then $k=0$ and the entry is simply a complex number, a polynomial of degree $0 \leq k$. So $P(1)$ is true.

Induction Step: Assume $P(m)$ is true, and that A is an $(m+1) \times(m+1)$ matrix with k entries of the form $c-x$. There are two cases to consider.

Suppose $k=m+1$. Then every row and every column will contain an entry of the form $c-x$. Suppose that for the first row, this entry is in column t. Compute the determinant of A by an expansion about this first row (Definition DM 368). The term associated with entry t of this row will be of the form

$$
(c-x)(-1)^{1+t} \operatorname{det}(A(1 \mid t))
$$

The submatrix $A(1 \mid t)$ is an $m \times m$ matrix with $k=m$ terms of the form $c-x$, no more than one per row or column. By the induction hypothesis, $\operatorname{det}(A(1 \mid t))$ will be a polynomial in x of degree m with coefficient ± 1. So this entire term is then a polynomial of degree $m+1$ with leading coefficient ± 1.

The remaining terms (which constitute the sum that is the determinant of A) are products of complex numbers from the first row with cofactors built from submatrices that lack the first row of A and lack some column of A, other than column t. As such, these submatrices are $m \times m$ matrices with $k=m-1<m$ entries of the form $c-x$, no more than one per row or column. Applying the induction hypothesis, we see that these terms are polynomials in x of degree $m-1$ or less. Adding the single term from the entry
in column t with all these others, we see that $\operatorname{det}(A)$ is a polynomial in x of degree $m+1$ and leading coefficient ± 1.

The second case occurs when $k<m+1$. Now there is a row of A that does not contain an entry of the form $c-x$. We consider the determinant of A by expanding about this row Theorem DER 369), whose entries are all complex numbers. The cofactors employed are built from submatrices that are $m \times m$ matrices with either k or $k-1$ entries of the form $c-x$, no more than one per row or column. In either case, $k \leq m$, and we can apply the induction hypothesis to see that the determinants computed for the cofactors are all polynomials of degree k or less. Summing these contributions to the determinant of A yields a polynomial in x of degree k or less, as desired.

Definition CP 396 tells us that the characteristic polynomial of an $n \times n$ matrix is the determinant of a matrix having exactly n entries of the form $c-x$, no more than one per row or column. As such we can apply $P(n)$ to see that the characteristic polynomial has degree n.

Theorem NEM

Number of Eigenvalues of a Matrix

Suppose that A is a square matrix of size n with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}$. Then

$$
\sum_{i=1}^{k} \alpha_{A}\left(\lambda_{i}\right)=n
$$

Proof By the definition of the algebraic multiplicity (Definition AME 399), we can factor the characteristic polynomial as

$$
p_{A}(x)=c\left(x-\lambda_{1}\right)^{\alpha_{A}\left(\lambda_{1}\right)}\left(x-\lambda_{2}\right)^{\alpha_{A}\left(\lambda_{2}\right)}\left(x-\lambda_{3}\right)^{\alpha_{A}\left(\lambda_{3}\right)} \cdots\left(x-\lambda_{k}\right)^{\alpha_{A}\left(\lambda_{k}\right)}
$$

where c is a nonzero constant. (We could prove that $c=(-1)^{n}$, but we do not need that specificity right now. See Exercise PEE.T30 423) The left-hand side is a polynomial of degree n by Theorem DCP 418 and the right-hand side is a polynomial of degree $\sum_{i=1}^{k} \alpha_{A}\left(\lambda_{i}\right)$. So the equality of the polynomials' degrees gives the equality $\sum_{i=1}^{k} \alpha_{A}\left(\lambda_{i}\right)=n$.

Theorem ME

Multiplicities of an Eigenvalue

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

$$
1 \leq \gamma_{A}(\lambda) \leq \alpha_{A}(\lambda) \leq n
$$

Proof Since λ is an eigenvalue of A, there is an eigenvector of A for λ, \mathbf{x}. Then $\mathbf{x} \in \mathcal{E}_{A}(\lambda)$, so $\gamma_{A}(\lambda) \geq 1$, since we can extend $\{\mathbf{x}\}$ into a basis of $\mathcal{E}_{A}(\lambda)$ Theorem ELIS 349).

To show that $\gamma_{A}(\lambda) \leq \alpha_{A}(\lambda)$ is the most involved portion of this proof. To this end, let $g=\gamma_{A}(\lambda)$ and let $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{g}$ be a basis for the eigenspace of $\lambda, \mathcal{E}_{A}(\lambda)$. Construct another $n-g$ vectors, $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{n-g}$, so that

$$
\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{g}, \mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{n-g}\right\}
$$

is a basis of \mathbb{C}^{n}. This can be done by repeated applications of Theorem ELIS 349. Finally, define a matrix S by

$$
S=\left[\mathbf{x}_{1}\left|\mathbf{x}_{2}\right| \mathbf{x}_{3}|\ldots| \mathbf{x}_{g}\left|\mathbf{y}_{1}\right| \mathbf{y}_{2}\left|\mathbf{y}_{3}\right| \ldots \mid \mathbf{y}_{n-g}\right]=\left[\mathbf{x}_{1}\left|\mathbf{x}_{2}\right| \mathbf{x}_{3}|\ldots| \mathbf{x}_{g} \mid R\right]
$$

where R is an $n \times(n-g)$ matrix whose columns are $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{n-g}$. The columns of S are linearly independent by design, so S is nonsingular (Theorem NMLIC 137) and therefore invertible Theorem NI (223). Then,

$$
\begin{aligned}
{\left[\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \mathbf{e}_{3}|\ldots| \mathbf{e}_{n}\right] } & =I_{n} \\
& =S^{-1} S \\
& =S^{-1}\left[\mathbf{x}_{1}\left|\mathbf{x}_{2}\right| \mathbf{x}_{3}|\ldots| \mathbf{x}_{g} \mid R\right] \\
& =\left[S^{-1} \mathbf{x}_{1}\left|S^{-1} \mathbf{x}_{2}\right| S^{-1} \mathbf{x}_{3}|\ldots| S^{-1} \mathbf{x}_{g} \mid S^{-1} R\right]
\end{aligned}
$$

So

$$
\begin{equation*}
S^{-1} \mathbf{x}_{i}=\mathbf{e}_{i} \quad 1 \leq i \leq g \tag{*}
\end{equation*}
$$

Preparations in place, we compute the characteristic polynomial of A,

$$
\begin{aligned}
p_{A}(x) & =\operatorname{det}\left(A-x I_{n}\right) & & \text { Definition CP } 396 \\
& =1 \operatorname{det}\left(A-x I_{n}\right) & & \text { Property OCN } 667 \\
& =\operatorname{det}\left(I_{n}\right) \operatorname{det}\left(A-x I_{n}\right) & & \text { Definition DM } 368 \\
& =\operatorname{det}\left(S^{-1} S\right) \operatorname{det}\left(A-x I_{n}\right) & & \text { Definition MI } 208 \\
& =\operatorname{det}\left(S^{-1}\right) \operatorname{det}(S) \operatorname{det}\left(A-x I_{n}\right) & & \text { Theorem DRMM 385 } \\
& =\operatorname{det}\left(S^{-1}\right) \operatorname{det}\left(A-x I_{n}\right) \operatorname{det}(S) & & \text { Property MCCN 666 } \\
& =\operatorname{det}\left(S^{-1}\left(A-x I_{n}\right) S\right) & & \text { Theorem DRMM } 385 \\
& =\operatorname{det}\left(S^{-1} A S-S^{-1} x I_{n} S\right) & & \text { Theorem MMDAA 196 } \\
& =\operatorname{det}\left(S^{-1} A S-x S^{-1} I_{n} S\right) & & \text { Theorem MMSMM 196 } \\
& =\operatorname{det}\left(S^{-1} A S-x S^{-1} S\right) & & \text { Theorem MMIM 195 } \\
& =\operatorname{det}\left(S^{-1} A S-x I_{n}\right) & & \text { Definition MI 208 } \\
& =p_{S^{-1} A S}(x) & & \text { Definition CP } 396
\end{aligned}
$$

What can we learn then about the matrix $S^{-1} A S$?

$$
\begin{aligned}
S^{-1} A S & =S^{-1} A\left[\mathbf{x}_{1}\left|\mathbf{x}_{2}\right| \mathbf{x}_{3}|\ldots| \mathbf{x}_{g} \mid R\right] & & \\
& =S^{-1}\left[A \mathbf{x}_{1}\left|A \mathbf{x}_{2}\right| A \mathbf{x}_{3}|\ldots| A \mathbf{x}_{g} \mid A R\right] & & \text { Definition MM 192 } \\
& =S^{-1}\left[\lambda \mathbf{x}_{1}\left|\lambda \mathbf{x}_{2}\right| \lambda \mathbf{x}_{3}|\ldots| \lambda \mathbf{x}_{g} \mid A R\right] & & \text { Definition EEM 389 } \\
& =\left[S^{-1} \lambda \mathbf{x}_{1}\left|S^{-1} \lambda \mathbf{x}_{2}\right| S^{-1} \lambda \mathbf{x}_{3}|\ldots| S^{-1} \lambda \mathbf{x}_{g} \mid S^{-1} A R\right] & & \text { Definition MM 192 } \\
& =\left[\lambda S^{-1} \mathbf{x}_{1}\left|\lambda S^{-1} \mathbf{x}_{2}\right| \lambda S^{-1} \mathbf{x}_{3}|\ldots| \lambda S^{-1} \mathbf{x}_{g} \mid S^{-1} A R\right] & & \text { Theorem MMSMM 196 } \\
& =\left[\lambda \mathbf{e}_{1}\left|\lambda \mathbf{e}_{2}\right| \lambda \mathbf{e}_{3}|\ldots| \lambda \mathbf{e}_{g} \mid S^{-1} A R\right] & & S^{-1} S=I_{n},((*) \text { above })
\end{aligned}
$$

Now imagine computing the characteristic polynomial of A by computing the characteristic polynomial of $S^{-1} A S$ using the form just obtained. The first g columns of $S^{-1} A S$ are all zero, save for a λ on the diagonal. So if we compute the determinant by expanding about the first column, successively, we will get successive factors of $(\lambda-x)$. More precisely, let T be the square matrix of size $n-g$ that is formed from the last $n-g$ rows and last $n-g$ columns of $S^{-1} A R$. Then

$$
p_{A}(x)=p_{S^{-1} A S}(x)=(\lambda-x)^{g} p_{T}(x) .
$$

This says that $(x-\lambda)$ is a factor of the characteristic polynomial at least g times, so the algebraic multiplicity of λ as an eigenvalue of A is greater than or equal to g (Definition AME 399). In other words,

$$
\gamma_{A}(\lambda)=g \leq \alpha_{A}(\lambda)
$$

as desired.
Theorem NEM 419 says that the sum of the algebraic multiplicities for all the eigenvalues of A is equal to n. Since the algebraic multiplicity is a positive quantity, no single algebraic multiplicity can exceed n without the sum of all of the algebraic multiplicities doing the same.

Theorem MNEM

Maximum Number of Eigenvalues of a Matrix

Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigenvalues.
Proof Suppose that A has k distinct eigenvalues, $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}$. Then

$$
\begin{array}{rlr}
k & =\sum_{i=1}^{k} 1 & \\
& \leq \sum_{i=1}^{k} \alpha_{A}\left(\lambda_{i}\right) & \\
& =n & \text { Theorem ME 419 } \\
& \text { Theorem NEM 419 }
\end{array}
$$

Subsection EHM

Eigenvalues of Hermitian Matrices

Recall that a matrix is Hermitian (or self-adjoint) if $A=A^{*}$ (Definition HM 200). In the case where A is a matrix whose entries are all real numbers, being Hermitian is identical to being symmetric Definition SYM (181). Keep this in mind as you read the next two theorems. Their hypotheses could be changed to "suppose A is a real symmetric matrix."

Theorem HMRE

Hermitian Matrices have Real Eigenvalues

Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then $\lambda \in \mathbb{R}$.
Proof Let $\mathbf{x} \neq \mathbf{0}$ be one eigenvector of A for the eigenvalue λ. Then by Theorem PIP 168 we know $\langle\mathbf{x}, \mathbf{x}\rangle \neq 0$. So

$$
\begin{aligned}
\lambda & =\frac{1}{\langle\mathbf{x}, \mathbf{x}\rangle} \lambda\langle\mathbf{x}, \mathbf{x}\rangle & & \text { Property MICN } 667 \\
& =\frac{1}{\langle\mathbf{x}, \mathbf{x}\rangle}\langle\lambda \mathbf{x}, \mathbf{x}\rangle & & \text { Theorem IPSM } 165 \\
& =\frac{1}{\langle\mathbf{x}, \mathbf{x}\rangle}\langle A \mathbf{x}, \mathbf{x}\rangle & & \text { Definition EEM 389 } \\
& =\frac{1}{\langle\mathbf{x}, \mathbf{x}\rangle}\langle\mathbf{x}, A \mathbf{x}\rangle & & \text { Theorem HMIP 200 } \\
& =\frac{1}{\langle\mathbf{x}, \mathbf{x}\rangle}\langle\mathbf{x}, \lambda \mathbf{x}\rangle & & \text { Definition EEM 389 } \\
& =\frac{1}{\langle\mathbf{x}, \mathbf{x}\rangle} \bar{\lambda}\langle\mathbf{x}, \mathbf{x}\rangle & & \text { Theorem IPSM 165 } \\
& =\bar{\lambda} & & \text { Property MICN 667 }
\end{aligned}
$$

If a complex number is equal to its conjugate, then it has a complex part equal to zero, and therefore is a real number.

Notice the appealing symmetry to the justificcations given for the steps of this proof. In the center is the ability to pitch a Hermitian matrix from one side of the inner product to the other.

Look back and compare Example ESMS4 400 and Example CEMS6 402 . In Example CEMS6 402 the matrix has only real entries, yet the characteristic polynomial has roots that are complex numbers, and so the matrix has complex eigenvalues. However, in Example ESMS4 400, the matrix has only real entries, but is also symmetric, and hence Hermitian. So by Theorem HMRE 421, we were guaranteed eigenvalues that are real numbers.

In many physical problems, a matrix of interest will be real and symmetric, or Hermitian. Then if the eigenvalues are to represent physical quantities of interest, Theorem HMRE 421 guarantees that these values will not be complex numbers.

The eigenvectors of a Hermitian matrix also enjoy a pleasing property that we will exploit later.

Theorem HMOE

Hermitian Matrices have Orthogonal Eigenvectors

Suppose that A is a Hermitian matrix and \mathbf{x} and \mathbf{y} are two eigenvectors of A for different eigenvalues. Then \mathbf{x} and \mathbf{y} are orthogonal vectors.

Proof Let \mathbf{x} be an eigenvector of A for λ and let \mathbf{y} be an eigenvector of A for a different eigenvalue ρ. So we have $\lambda-\rho \neq 0$. Then

$$
\begin{aligned}
\langle\mathbf{x}, \mathbf{y}\rangle & =\frac{1}{\lambda-\rho}(\lambda-\rho)\langle\mathbf{x}, \mathbf{y}\rangle & & \text { Property MICN 667 } \\
& =\frac{1}{\lambda-\rho}(\lambda\langle\mathbf{x}, \mathbf{y}\rangle-\rho\langle\mathbf{x}, \mathbf{y}\rangle) & & \text { Property MICN 667 } \\
& =\frac{1}{\lambda-\rho}(\langle\lambda \mathbf{x}, \mathbf{y}\rangle-\langle\mathbf{x}, \bar{\rho} \mathbf{y}\rangle) & & \text { Theorem IPSM } 165 \\
& =\frac{1}{\lambda-\rho}(\langle\lambda \mathbf{x}, \mathbf{y}\rangle-\langle\mathbf{x}, \rho \mathbf{y}\rangle) & & \text { Theorem HMRE 421 } \\
& =\frac{1}{\lambda-\rho}(\langle A \mathbf{x}, \mathbf{y}\rangle-\langle\mathbf{x}, A \mathbf{y}\rangle) & & \text { Definition EEM 389 } \\
& =\frac{1}{\lambda-\rho}(\langle A \mathbf{x}, \mathbf{y}\rangle-\langle A \mathbf{x}, \mathbf{y}\rangle) & & \text { Theorem HMIP 200 } \\
& =\frac{1}{\lambda-\rho}(0) & & \text { Property AICN 667 } \\
& =0 & &
\end{aligned}
$$

This equality says that \mathbf{x} and \mathbf{y} are orthogonal vectors (Definition OV 168).
Notice again how the key step in this proof is the fundamental property of a Hermitian matrix Theorem HMIP 200) - the ability to swap A across the two argumanrs of the inner product. We'll build on these results and continue to see some more interesting properties in Section OD 587.

Subsection READ
 Reading Questions

1. How can you identify a nonsingular matrix just by looking at its eigenvalues?
2. How many different eigenvalues may a square matrix of size n have?
3. What is amazing about the eigenvalues of a Hermitian matrix and why is it amazing?

Subsection EXC
 Exercises

T10 Suppose that A is a square matrix. Prove that the constant term of the characteristic polynomial of A is equal to the determinant of A.
Contributed by Robert Beezer Solution 424
T20 Suppose that A is a square matrix. Prove that a single vector may not be an eigenvector of A for two different eigenvalues.
Contributed by Robert Beezer Solution 424
T30 Theorem DCP 418 tells us that the characteristic polynomial of a square matrix of size n has degree n. By suitably augmenting the proof of Theorem DCP 418 prove that the coefficient of x^{n} in the characteristic polynomial is $(-1)^{n}$.
Contributed by Robert Beezer

Subsection SOL Solutions

T10 Contributed by Robert Beezer Statement 423
Suppose that the characteristic polynomial of A is

$$
p_{A}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

Then

$$
\begin{aligned}
a_{0} & =a_{0}+a_{1}(0)+a_{2}(0)^{2}+\cdots+a_{n}(0)^{n} \\
& =p_{A}(0) \\
& =\operatorname{det}\left(A-0 I_{n}\right) \\
& =\operatorname{det}(A)
\end{aligned}
$$

$$
=\operatorname{det}\left(A-0 I_{n}\right) \quad \text { Definition CP } 396
$$

T20 Contributed by Robert Beezer Statement 423
Suppose that the vector $\mathbf{x} \neq \mathbf{0}$ is an eigenvector of A for the two eigenvalues λ and ρ, where $\lambda \neq \rho$. Then $\lambda-\rho \neq 0$, so

$$
\begin{aligned}
\mathbf{0} & \neq(\lambda-\rho) \mathbf{x} & & \text { Theorem SMEZV } 284 \\
& =\lambda \mathbf{x}-\rho \mathbf{x} & & \text { Property DSAC } 83 \\
& =A \mathbf{x}-A \mathbf{x} & & \lambda, \rho \text { eigenvalues of } A \\
& =\mathbf{0} & & \text { Property AIC } 82
\end{aligned}
$$

which is a contradiction.

Section SD
 Similarity and Diagonalization

This section's topic will perhaps seem out of place at first, but we will make the connection soon with eigenvalues and eigenvectors. This is also our first look at one of the central ideas of Chapter R 513.

Subsection SM
 Similar Matrices

The notion of matrices being "similar" is a lot like saying two matrices are row-equivalent. Two similar matrices are not equal, but they share many important properties. This section, and later sections in Chapter R 513 will be devoted in part to discovering just what these common properties are.

First, the main definition for this section.

Definition SIM

Similar Matrices

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists a nonsingular matrix of size n, S, such that $A=S^{-1} B S$.

We will say " A is similar to B via S " when we want to emphasize the role of S in the relationship between A and B. Also, it doesn't matter if we say A is similar to B, or B is similar to A. If one statement is true then so is the other, as can be seen by using S^{-1} in place of S (see Theorem SER 426 for the careful proof). Finally, we will refer to $S^{-1} B S$ as a similarity transformation when we want to emphasize the way S changes B. OK, enough about language, let's build a few examples.

Example SMS5

Similar matrices of size 5

If you wondered if there are examples of similar matrices, then it won't be hard to convince you they exist. Define

$$
B=\left[\begin{array}{ccccc}
-4 & 1 & -3 & -2 & 2 \\
1 & 2 & -1 & 3 & -2 \\
-4 & 1 & 3 & 2 & 2 \\
-3 & 4 & -2 & -1 & -3 \\
3 & 1 & -1 & 1 & -4
\end{array}\right]
$$

$$
S=\left[\begin{array}{ccccc}
1 & 2 & -1 & 1 & 1 \\
0 & 1 & -1 & -2 & -1 \\
1 & 3 & -1 & 1 & 1 \\
-2 & -3 & 3 & 1 & -2 \\
1 & 3 & -1 & 2 & 1
\end{array}\right]
$$

Check that S is nonsingular and then compute

$$
\begin{aligned}
A & =S^{-1} B S \\
& =\left[\begin{array}{ccccc}
10 & 1 & 0 & 2 & -5 \\
-1 & 0 & 1 & 0 & 0 \\
3 & 0 & 2 & 1 & -3 \\
0 & 0 & -1 & 0 & 1 \\
-4 & -1 & 1 & -1 & 1
\end{array}\right]\left[\begin{array}{ccccc}
-4 & 1 & -3 & -2 & 2 \\
1 & 2 & -1 & 3 & -2 \\
-4 & 1 & 3 & 2 & 2 \\
-3 & 4 & -2 & -1 & -3 \\
3 & 1 & -1 & 1 & -4
\end{array}\right]\left[\begin{array}{cccc}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & -2 \\
-1 \\
1 & 3 & -1 & 1 \\
-2 & -3 & 3 & 1 \\
-2 \\
1 & 3 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
-10 & -27 & -29 & -80 & -25 \\
-2 & 6 & 6 & 10 & -2 \\
-3 & 11 & -9 & -14 & -9 \\
-1 & -13 & 0 & -10 & -1 \\
11 & 35 & 6 & 49 & 19
\end{array}\right]
\end{aligned}
$$

So by this construction, we know that A and B are similar.
Let's do that again.

Example SMS3

Similar matrices of size 3

Define

$$
B=\left[\begin{array}{ccc}
-13 & -8 & -4 \\
12 & 7 & 4 \\
24 & 16 & 7
\end{array}\right]
$$

$$
S=\left[\begin{array}{ccc}
1 & 1 & 2 \\
-2 & -1 & -3 \\
1 & -2 & 0
\end{array}\right]
$$

Check that S is nonsingular and then compute

$$
\begin{aligned}
A & =S^{-1} B S \\
& =\left[\begin{array}{ccc}
-6 & -4 & -1 \\
-3 & -2 & -1 \\
5 & 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
-13 & -8 & -4 \\
12 & 7 & 4 \\
24 & 16 & 7
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 2 \\
-2 & -1 & -3 \\
1 & -2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

So by this construction, we know that A and B are similar. But before we move on, look at how pleasing the form of A is. Not convinced? Then consider that several computations related to A are especially easy. For example, in the spirit of Example DUTM 372, $\operatorname{det}(A)=(-1)(3)(-1)=3$. Similarly, the characteristic polynomial is straightforward to compute by hand, $p_{A}(x)=(-1-x)(3-x)(-1-x)=-(x-3)(x+1)^{2}$ and since the result is already factored, the eigenvalues are transparently $\lambda=3,-1$. Finally, the eigenvectors of A are just the standard unit vectors (Definition SUV 210).

Subsection PSM
 Properties of Similar Matrices

Similar matrices share many properties and it is these theorems that justify the choice of the word "similar." First we will show that similarity is an equivalence relation. Equivalence relations are important in the study of various algebras and can always be regarded as a kind of weak version of equality. Sort of alike, but not quite equal. The notion of two matrices being row-equivalent is an example of an equivalence relation we have been working with since the beginning of the course (see Exercise RREF.T11 [40). Row-equivalent matrices are not equal, but they are a lot alike. For example, row-equivalent matrices have the same rank. Formally, an equivalence relation requires three conditions hold: reflexive, symmetric and transitive. We will illustrate these as we prove that similarity is an equivalence relation.

Theorem SER

Similarity is an Equivalence Relation

Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)
2. If A is similar to B, then B is similar to A. (Symmetric)
3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)

Proof To see that A is similar to A, we need only demonstrate a nonsingular matrix that effects a similarity transformation of A to $A . I_{n}$ is nonsingular (since it row-reduces to the identity matrix, Theorem NMRRI 68), and

$$
I_{n}^{-1} A I_{n}=I_{n} A I_{n}=A
$$

If we assume that A is similar to B, then we know there is a nonsingular matrix S so that $A=S^{-1} B S$ by Definition SIM 425. By Theorem MIMI 215, S^{-1} is invertible, and by Theorem NI 223 is therefore nonsingular. So

$$
\begin{aligned}
\left(S^{-1}\right)^{-1} A\left(S^{-1}\right) & =S A S^{-1} \\
& =S S^{-1} B S S^{-1} \\
& =\left(S S^{-1}\right) B\left(S S^{-1}\right) \\
& =I_{n} B I_{n} \\
& =B
\end{aligned}
$$

Theorem MIMI 215
Definition SIM 425
Theorem MMA 196
Definition MI 208
Theorem MMIM 195
and we see that B is similar to A.
Assume that A is similar to B, and B is similar to C. This gives us the existence of two nonsingular matrices, S and R, such that $A=S^{-1} B S$ and $B=R^{-1} C R$, by Definition SIM 425. (Notice how we have to assume $S \neq R$, as will usually be the case.) Since S and R are invertible, so too $R S$ is invertible by Theorem SS 214 and then nonsingular by Theorem NI 223 . Now

$$
\begin{aligned}
(R S)^{-1} C(R S) & =S^{-1} R^{-1} C R S & & \text { Theorem SS 214 } \\
& =S^{-1}\left(R^{-1} C R\right) S & & \text { Theorem MMA 196 } \\
& =S^{-1} B S & & \text { Definition SIM 425 } \\
& =A & &
\end{aligned}
$$

so A is similar to C via the nonsingular matrix $R S$.
Here's another theorem that tells us exactly what sorts of properties similar matrices share.

Theorem SMEE

Similar Matrices have Equal Eigenvalues

Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are equal, that is $p_{A}(x)=p_{B}(x)$.
Proof Suppose A and B have size n and are similar via the nonsingular matrix S, so $A=S^{-1} B S$ by Definition SIM 425.

$$
\begin{aligned}
p_{A}(x) & =\operatorname{det}\left(A-x I_{n}\right) & & \text { Definition CP } 396 \\
& =\operatorname{det}\left(S^{-1} B S-x I_{n}\right) & & \text { Definition SIM } 425 \\
& =\operatorname{det}\left(S^{-1} B S-x S^{-1} I_{n} S\right) & & \text { Theorem MMIM } 195 \\
& =\operatorname{det}\left(S^{-1} B S-S^{-1} x I_{n} S\right) & & \text { Theorem MMSMM 196 } \\
& =\operatorname{det}\left(S^{-1}\left(B-x I_{n}\right) S\right) & & \text { Theorem MMDAA 196 } \\
& =\operatorname{det}\left(S^{-1}\right) \operatorname{det}\left(B-x I_{n}\right) \operatorname{det}(S) & & \text { Theorem DRMM } 385 \\
& =\operatorname{det}\left(S^{-1}\right) \operatorname{det}(S) \operatorname{det}\left(B-x I_{n}\right) & & \text { Property MCCN 666 } \\
& =\operatorname{det}\left(S^{-1} S\right) \operatorname{det}\left(B-x I_{n}\right) & & \text { Theorem DRMM } 385 \\
& =\operatorname{det}\left(I_{n}\right) \operatorname{det}\left(B-x I_{n}\right) & & \text { Definition MI 208 } \\
& =1 \operatorname{det}\left(B-x I_{n}\right) & & \text { Definition DM } 368
\end{aligned}
$$

$$
=p_{B}(x)
$$

$$
\begin{array}{|l|}
\hline \text { Definition CP } 396 \\
\hline
\end{array}
$$

So similar matrices not only have the same set of eigenvalues, the algebraic multiplicities of these eigenvalues will also be the same. However, be careful with this theorem. It is tempting to think the converse is true, and argue that if two matrices have the same eigenvalues, then they are similar. Not so, as the following example illustrates.

Example EENS

Equal eigenvalues, not similar

Define

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and check that

$$
p_{A}(x)=p_{B}(x)=1-2 x+x^{2}=(x-1)^{2}
$$

and so A and B have equal characteristic polynomials. If the converse of Theorem SMEE 427 were true, then A and B would be similar. Suppose this is the case. In other words, there is a nonsingular matrix S so that $A=S^{-1} B S$. Then

$$
A=S^{-1} B S=S^{-1} I_{2} S=S^{-1} S=I_{2} \neq A
$$

and this contradiction tells us that the converse of Theorem SMEE 427 is false.

Subsection D
 Diagonalization

Good things happen when a matrix is similar to a diagonal matrix. For example, the eigenvalues of the matrix are the entries on the diagonal of the diagonal matrix. And it can be a much simpler matter to compute high powers of the matrix. Diagonalizable matrices are also of interest in more abstract settings. Here are the relevant definitions, then our main theorem for this section.

Definition DIM

Diagonal Matrix
Suppose that A is a square matrix. Then A is a diagonal matrix if $[A]_{i j}=0$ whenever $i \neq j$.

Definition DZM

Diagonalizable Matrix
Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix.

Example DAB

Diagonalization of Archetype B
Archetype B 694 has a 3×3 coefficient matrix

$$
B=\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]
$$

and is similar to a diagonal matrix, as can be seen by the following computation with the nonsingular matrix S,

$$
S^{-1} B S=\left[\begin{array}{ccc}
-5 & -3 & -2 \\
3 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]^{-1}\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
-5 & -3 & -2 \\
3 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
-1 & -1 & -1 \\
2 & 3 & 1 \\
-1 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
-5 & -3 & -2 \\
3 & 2 & 1 \\
1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

Example SMS3 426 provides yet another example of a matrix that is subjected to a similarity transformation and the result is a diagonal matrix. Alright, just how would we find the magic matrix S that can be used in a similarity transformation to produce a diagonal matrix? Before you read the statement of the next theorem, you might study the eigenvalues and eigenvectors of Archetype B 694 and compute the eigenvalues and eigenvectors of the matrix in Example SMS3 426.

Theorem DC

Diagonalization Characterization

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a linearly independent set S that contains n eigenvectors of A.

Proof (\Leftarrow) Let $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{n}\right\}$ be a linearly independent set of eigenvectors of A for the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$. Recall Definition SUV 210 and define

$$
\begin{aligned}
R & =\left[\mathbf{x}_{1}\left|\mathbf{x}_{2}\right| \mathbf{x}_{3}|\ldots| \mathbf{x}_{n}\right] \\
D & =\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=\left[\lambda_{1} \mathbf{e}_{1}\left|\lambda_{2} \mathbf{e}_{2}\right| \lambda_{3} \mathbf{e}_{3}|\ldots| \lambda_{n} \mathbf{e}_{n}\right]
\end{aligned}
$$

The columns of R are the vectors of the linearly independent set S and so by Theorem NMLIC 137 the matrix R is nonsingular. By Theorem NI 223 we know R^{-1} exists.

$$
\begin{aligned}
R^{-1} A R & =R^{-1} A\left[\mathbf{x}_{1}\left|\mathbf{x}_{2}\right| \mathbf{x}_{3}|\ldots| \mathbf{x}_{n}\right] & & \\
& =R^{-1}\left[A \mathbf{x}_{1}\left|A \mathbf{x}_{2}\right| A \mathbf{x}_{3}|\ldots| A \mathbf{x}_{n}\right] & & \text { Definition MM 192 } \\
& =R^{-1}\left[\lambda_{1} \mathbf{x}_{1}\left|\lambda_{2} \mathbf{x}_{2}\right| \lambda_{3} \mathbf{x}_{3}|\ldots| \lambda_{n} \mathbf{x}_{n}\right] & & \mathbf{x}_{i} \text { eigenvector of } A \text { for } \lambda_{i} \\
& =R^{-1}\left[\lambda_{1} R \mathbf{e}_{1}\left|\lambda_{2} R \mathbf{e}_{2}\right| \lambda_{3} R \mathbf{e}_{3}|\ldots| \lambda_{n} R \mathbf{e}_{n}\right] & & \text { Definition MVP 189 } \\
& =R^{-1}\left[R\left(\lambda_{1} \mathbf{e}_{1}\right)\left|R\left(\lambda_{2} \mathbf{e}_{2}\right)\right| R\left(\lambda_{3} \mathbf{e}_{3}\right)|\ldots| R\left(\lambda_{n} \mathbf{e}_{n}\right)\right] & & \text { Theorem MMSMM 196 } \\
& =R^{-1} R\left[\lambda_{1} \mathbf{e}_{1}\left|\lambda_{2} \mathbf{e}_{2}\right| \lambda_{3} \mathbf{e}_{3}|\ldots| \lambda_{n} \mathbf{e}_{n}\right] & & \text { Definition MM 192 } \\
& =I_{n} D & & \text { Definition MI 208 } \\
& =D & & \text { Theorem MMIM 195 }
\end{aligned}
$$

This says that A is similar to the diagonal matrix D via the nonsingular matrix R. Thus A is diagonalizable (Definition DZM 428).
(\Rightarrow) Suppose that A is diagonalizable, so there is a nonsingular matrix of size n

$$
T=\left[\mathbf{y}_{1}\left|\mathbf{y}_{2}\right| \mathbf{y}_{3}|\ldots| \mathbf{y}_{n}\right]
$$

and a diagonal matrix (recall Definition SUV 210)

$$
E=\left[\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & d_{n}
\end{array}\right]=\left[d_{1} \mathbf{e}_{1}\left|d_{2} \mathbf{e}_{2}\right| d_{3} \mathbf{e}_{3}|\ldots| d_{n} \mathbf{e}_{n}\right]
$$

such that $T^{-1} A T=E$. Then consider,

$$
\begin{aligned}
{\left[A \mathbf{y}_{1}\left|A \mathbf{y}_{2}\right| A \mathbf{y}_{3}|\ldots| A \mathbf{y}_{n}\right] } & =A\left[\mathbf{y}_{1}\left|\mathbf{y}_{2}\right| \mathbf{y}_{3}|\ldots| \mathbf{y}_{n}\right] & & \text { Definition MM } 192 \\
& =A T & & \\
& =I_{n} A T & & \text { Theorem MMIM 195 } \\
& =T T^{-1} A T & & \text { Definition MT 208 } \\
& =T E & & \text { Substitution } \\
& =T\left[d_{1} \mathbf{e}_{1}\left|d_{2} \mathbf{e}_{2}\right| d_{3} \mathbf{e}_{3}|\ldots| d_{n} \mathbf{e}_{n}\right] & & \\
& =\left[T\left(d_{1} \mathbf{e}_{1}\right)\left|T\left(d_{2} \mathbf{e}_{2}\right)\right| T\left(d_{3} \mathbf{e}_{3}\right)|\ldots| T\left(d_{n} \mathbf{e}_{n}\right)\right] & & \text { Definition MM } 192 \\
& =\left[d_{1} T \mathbf{e}_{1}\left|d_{2} T \mathbf{e}_{2}\right| d_{3} T \mathbf{e}_{3}|\ldots| d_{n} T \mathbf{e}_{n}\right] & & \text { Definition MM 192 } \\
& =\left[d_{1} \mathbf{y}_{1}\left|d_{2} \mathbf{y}_{2}\right| d_{3} \mathbf{y}_{3}|\ldots| d_{n} \mathbf{y}_{n}\right] & & \text { Definition MVP 189 }
\end{aligned}
$$

This equality of matrices (Definition ME (177) allows us to conclude that the individual columns are equal vectors (Definition CVE 80]). That is, $A \mathbf{y}_{i}=d_{i} \mathbf{y}_{i}$ for $1 \leq i \leq n$. In other words, \mathbf{y}_{i} is an eigenvector of A for the eigenvalue $d_{i}, 1 \leq i \leq n$. (Why can't $\mathbf{y}_{i}=\mathbf{0}$?). Because T is nonsingular, the set containing T 's columns, $S=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{n}\right\}$, is a linearly independent set (Theorem NMLIC 137). So the set S has all the required properties.

Notice that the proof of Theorem DC 429 is constructive. To diagonalize a matrix, we need only locate n linearly independent eigenvectors. Then we can construct a nonsingular matrix using the eigenvectors as columns (R) so that $R^{-1} A R$ is a diagonal matrix (D). The entries on the diagonal of D will be the eigenvalues of the eigenvectors used to create R, in the same order as the eigenvectors appear in R. We illustrate this by diagonalizing some matrices.

Example DMS3

Diagonalizing a matrix of size 3

Consider the matrix

$$
F=\left[\begin{array}{ccc}
-13 & -8 & -4 \\
12 & 7 & 4 \\
24 & 16 & 7
\end{array}\right]
$$

of Example CPMS3 396, Example EMS3 397 and Example ESMS3 398. F's eigenvalues and eigenspaces are

$$
\begin{array}{ll}
\lambda=3 & \mathcal{E}_{F}(3)=\left\langle\left\{\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]\right\}\right\rangle \\
\lambda=-1 & \mathcal{E}_{F}(-1)=\left\langle\left\{\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{1}{3} \\
0 \\
1
\end{array}\right]\right\}\right\rangle
\end{array}
$$

Define the matrix S to be the 3×3 matrix whose columns are the three basis vectors in the eigenspaces for F,

$$
S=\left[\begin{array}{ccc}
-\frac{1}{2} & -\frac{2}{3} & -\frac{1}{3} \\
\frac{1}{2} & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Check that S is nonsingular (row-reduces to the identity matrix, Theorem NMRRI 68 or has a nonzero determinant, Theorem SMZD 383]). Then the three columns of S are a linearly independent set Theorem NMLIC 137). By Theorem DC 429 we now know that F is diagonalizable. Furthermore, the construction in the proof of Theorem DC 429 tells us that if we apply the matrix S to F in a similarity transformation, the result will be a diagonal matrix with the eigenvalues of F on the diagonal. The eigenvalues appear on the diagonal of the matrix in the same order as the eigenvectors appear in S. So,

$$
\begin{aligned}
S^{-1} F S & =\left[\begin{array}{ccc}
-\frac{1}{2} & -\frac{2}{3} & -\frac{1}{3} \\
\frac{1}{2} & 1 & 0 \\
1 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ccc}
-13 & -8 & -4 \\
12 & 7 & 4 \\
24 & 16 & 7
\end{array}\right]\left[\begin{array}{ccc}
-\frac{1}{2} & -\frac{2}{3} & -\frac{1}{3} \\
\frac{1}{2} & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
6 & 4 & 2 \\
-3 & -1 & -1 \\
-6 & -4 & -1
\end{array}\right]\left[\begin{array}{ccc}
-13 & -8 & -4 \\
12 & 7 & 4 \\
24 & 16 & 7
\end{array}\right]\left[\begin{array}{ccc}
-\frac{1}{2} & -\frac{2}{3} & -\frac{1}{3} \\
\frac{1}{2} & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

Note that the above computations can be viewed two ways. The proof of Theorem DC 429 tells us that the four matrices (F, S, F^{-1} and the diagonal matrix) will interact the way we have written the equation. Or as an example, we can actually perform the computations to verify what the theorem predicts.

The dimension of an eigenspace can be no larger than the algebraic multiplicity of the eigenvalue by Theorem ME 419. When every eigenvalue's eigenspace is this large, then we can diagonalize the matrix, and only then. Three examples we have seen so far in this section, Example SMS5 425, Example DAB 428 and Example DMS3 430, illustrate the diagonalization of a matrix, with varying degrees of detail about just how the diagonalization is achieved. However, in each case, you can verify that the geometric and algebraic multiplicities are equal for every eigenvalue. This is the substance of the next theorem.

Theorem DMFE

Diagonalizable Matrices have Full Eigenspaces

Suppose A is a square matrix. Then A is diagonalizable if and only if $\gamma_{A}(\lambda)=\alpha_{A}(\lambda)$ for every eigenvalue λ of A.

Proof Suppose A has size n and k distinct eigenvalues, $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{k}$.
(\Leftarrow) Let $S_{i}=\left\{\mathbf{x}_{i 1}, \mathbf{x}_{i 2}, \mathbf{x}_{i 3}, \ldots, \mathbf{x}_{i \gamma_{A}\left(\lambda_{i}\right)}\right\}$, be a basis for the eigenspace of $\lambda_{i}, \mathcal{E}_{A}\left(\lambda_{i}\right), 1 \leq i \leq k$. Then

$$
S=S_{1} \cup S_{2} \cup S_{3} \cup \cdots \cup S_{k}
$$

is a set of eigenvectors for A. A vector cannot be an eigenvector for two different eigenvalues (see Exercise EE.T20 407) so the sets S_{i} have no vectors in common. Thus the size of S is

$$
\begin{aligned}
\sum_{i=1}^{k} \gamma_{A}\left(\lambda_{i}\right) & =\sum_{i=1}^{k} \alpha_{A}\left(\lambda_{i}\right) & & \text { Hypothesis } \\
& =n & & \text { Theorem NEM 419 }
\end{aligned}
$$

We now want to show that S is a linearly independent set. So we will begin with a relation of linear dependence on S, using doubly-subscripted scalars and eigenvectors,

$$
\mathbf{0}=\left(a_{11} \mathbf{x}_{11}+a_{12} \mathbf{x}_{12}+\cdots+a_{1 \gamma_{A}\left(\lambda_{1}\right)} \mathbf{x}_{1 \gamma_{A}\left(\lambda_{1}\right)}\right)+\left(a_{21} \mathbf{x}_{21}+a_{22} \mathbf{x}_{22}+\cdots+a_{2 \gamma_{A}\left(\lambda_{2}\right)} \mathbf{x}_{2 \gamma_{A}\left(\lambda_{2}\right)}\right)
$$

$$
+\cdots+\left(a_{k 1} \mathbf{x}_{k 1}+a_{k 2} \mathbf{x}_{k 2}+\cdots+a_{k \gamma_{A}\left(\lambda_{k}\right)} \mathbf{x}_{k \gamma_{A}\left(\lambda_{k}\right)}\right)
$$

Define the vectors $\mathbf{y}_{i}, 1 \leq i \leq k$ by

$$
\begin{aligned}
& \mathbf{y}_{1}=\left(a_{11} \mathbf{x}_{11}+a_{12} \mathbf{x}_{12}+a_{13} \mathbf{x}_{13}+\cdots+a_{\gamma_{A}\left(1 \lambda_{1}\right)} \mathbf{x}_{1 \gamma_{A}\left(\lambda_{1}\right)}\right) \\
& \mathbf{y}_{2}=\left(a_{21} \mathbf{x}_{21}+a_{22} \mathbf{x}_{22}+a_{23} \mathbf{x}_{23}+\cdots+a_{\gamma_{A}\left(2 \lambda_{2}\right)} \mathbf{x}_{2 \gamma_{A}\left(\lambda_{2}\right)}\right) \\
& \mathbf{y}_{3}=\left(a_{31} \mathbf{x}_{31}+a_{32} \mathbf{x}_{32}+a_{33} \mathbf{x}_{33}+\cdots+a_{\gamma_{A}\left(3 \lambda_{3}\right)} \mathbf{x}_{3 \gamma_{A}\left(\lambda_{3}\right)}\right) \\
& \quad \vdots \\
& \mathbf{y}_{k}=\left(a_{k 1} \mathbf{x}_{k 1}+a_{k 2} \mathbf{x}_{k 2}+a_{k 3} \mathbf{x}_{k 3}+\cdots+a_{\gamma_{A}\left(k \lambda_{k}\right)} \mathbf{x}_{k \gamma_{A}\left(\lambda_{k}\right)}\right)
\end{aligned}
$$

Then the relation of linear dependence becomes

$$
\mathbf{0}=\mathbf{y}_{1}+\mathbf{y}_{2}+\mathbf{y}_{3}+\cdots+\mathbf{y}_{k}
$$

Since the eigenspace $\mathcal{E}_{A}\left(\lambda_{i}\right)$ is closed under vector addition and scalar multiplication, $\mathbf{y}_{i} \in \mathcal{E}_{A}\left(\lambda_{i}\right), 1 \leq$ $i \leq k$. Thus, for each i, the vector \mathbf{y}_{i} is an eigenvector of A for λ_{i}, or is the zero vector. Recall that sets of eigenvectors whose eigenvalues are distinct form a linearly independent set by Theorem EDELI 413. Should any (or some) \mathbf{y}_{i} be nonzero, the previous equation would provide a nontrivial relation of linear dependence on a set of eigenvectors with distinct eigenvalues, contradicting Theorem EDELI 413. Thus $\mathbf{y}_{i}=\mathbf{0}, 1 \leq i \leq k$.

Each of the k equations, $\mathbf{y}_{i}=\mathbf{0}$ is a relation of linear dependence on the corresponding set S_{i}, a set of basis vectors for the eigenspace $\mathcal{E}_{A}\left(\lambda_{i}\right)$, which is therefore linearly independent. From these relations of linear dependence on linearly independent sets we conclude that the scalars are all zero, more precisely, $a_{i j}=0,1 \leq j \leq \gamma_{A}\left(\lambda_{i}\right)$ for $1 \leq i \leq k$. This establishes that our original relation of linear dependence on S has only the trivial relation of linear dependence, and hence S is a linearly independent set.

We have determined that S is a set of n linearly independent eigenvectors for A, and so by Theorem DC 429 is diagonalizable.
(\Rightarrow) Now we assume that A is diagonalizable. Aiming for a contradiction (Technique CD (678), suppose that there is at least one eigenvalue, say λ_{t}, such that $\gamma_{A}\left(\lambda_{t}\right) \neq \alpha_{A}\left(\lambda_{t}\right)$. By Theorem ME 419 we must have $\gamma_{A}\left(\lambda_{t}\right)<\alpha_{A}\left(\lambda_{t}\right)$, and $\gamma_{A}\left(\lambda_{i}\right) \leq \alpha_{A}\left(\lambda_{i}\right)$ for $1 \leq i \leq k, i \neq t$.

Since A is diagonalizable, Theorem DC 429 guarantees a set of n linearly independent vectors, all of which are eigenvectors of A. Let n_{i} denote the number of eigenvectors in S that are eigenvectors for λ_{i}, and recall that a vector cannot be an eigenvector for two different eigenvalues (Exercise EE.T20 407). S is a linearly independent set, so the the subset S_{i} containing the n_{i} eigenvectors for λ_{i} must also be linearly independent. Because the eigenspace $\mathcal{E}_{A}\left(\lambda_{i}\right)$ has dimension $\gamma_{A}\left(\lambda_{i}\right)$ and S_{i} is a linearly independent subset in $\mathcal{E}_{A}\left(\lambda_{i}\right), n_{i} \leq \gamma_{A}\left(\lambda_{i}\right), 1 \leq i \leq k$. Now,

$$
\begin{aligned}
n & =n_{1}+n_{2}+n_{3}+\cdots+n_{t}+\cdots+n_{k} \\
& \leq \gamma_{A}\left(\lambda_{1}\right)+\gamma_{A}\left(\lambda_{2}\right)+\gamma_{A}\left(\lambda_{3}\right)+\cdots+\gamma_{A}\left(\lambda_{t}\right)+\cdots+\gamma_{A}\left(\lambda_{k}\right) \\
& <\alpha_{A}\left(\lambda_{1}\right)+\alpha_{A}\left(\lambda_{2}\right)+\alpha_{A}\left(\lambda_{3}\right)+\cdots+\alpha_{A}\left(\lambda_{t}\right)+\cdots+\alpha_{A}\left(\lambda_{k}\right) \\
& =n
\end{aligned}
$$

Size of S
S_{i} linearly independent Assumption about λ_{t}
Theorem NEM 419

This is a contradiction (we can't have $n<n!$) and so our assumption that some eigenspace had less than full dimension was false.

Example SEE 389, Example CAEHW 394, Example ESMS3 398, Example ESMS4 [400], Example DEMS5 [404, Archetype B 694], Archetype F 711, Archetype K| 733 and Archetype L [737] are all examples of matrices that are diagonalizable and that illustrate Theorem DMFE 431. While we have provided many examples of matrices that are diagonalizable, especially among the archetypes, there are many matrices that are not diagonalizable. Here's one now.

Example NDMS4

A non-diagonalizable matrix of size 4
In Example EMMS4 399 the matrix

$$
B=\left[\begin{array}{cccc}
-2 & 1 & -2 & -4 \\
12 & 1 & 4 & 9 \\
6 & 5 & -2 & -4 \\
3 & -4 & 5 & 10
\end{array}\right]
$$

was determined to have characteristic polynomial

$$
p_{B}(x)=(x-1)(x-2)^{3}
$$

and an eigenspace for $\lambda=2$ of

$$
\mathcal{E}_{B}(2)=\left\langle\left\{\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
1
\end{array}\right]\right\}\right\rangle
$$

So the geometric multiplicity of $\lambda=2$ is $\gamma_{B}(2)=1$, while the algebraic multiplicity is $\alpha_{B}(2)=3$. By Theorem DMFE 431, the matrix B is not diagonalizable.

Archetype A 689 is the lone archetype with a square matrix that is not diagonalizable, as the algebraic and geometric multiplicities of the eigenvalue $\lambda=0$ differ. Example HMEM5 401 is another example of a matrix that cannot be diagonalized due to the difference between the geometric and algebraic multiplicities of $\lambda=2$, as is Example CEMS6 402 which has two complex eigenvalues, each with differing multiplicities. Likewise, Example EMMS4 399] has an eigenvalue with different algebraic and geometric multiplicities and so cannot be diagonalized.

Theorem DED

Distinct Eigenvalues implies Diagonalizable

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.
Proof Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ denote the n distinct eigenvalues of A. Then by Theorem NEM 419 we have $n=\sum_{i=1}^{n} \alpha_{A}\left(\lambda_{i}\right)$, which implies that $\alpha_{A}\left(\lambda_{i}\right)=1,1 \leq i \leq n$. From Theorem ME 419] it follows that $\gamma_{A}\left(\lambda_{i}\right)=1,1 \leq i \leq n$. So $\gamma_{A}\left(\lambda_{i}\right)=\alpha_{A}\left(\lambda_{i}\right), 1 \leq i \leq n$ and Theorem DMFE 431] says A is diagonalizable.

Example DEHD

Distinct eigenvalues, hence diagonalizable

In Example DEMS5 404 the matrix

$$
H=\left[\begin{array}{ccccc}
15 & 18 & -8 & 6 & -5 \\
5 & 3 & 1 & -1 & -3 \\
0 & -4 & 5 & -4 & -2 \\
-43 & -46 & 17 & -14 & 15 \\
26 & 30 & -12 & 8 & -10
\end{array}\right]
$$

has characteristic polynomial

$$
p_{H}(x)=x(x-2)(x-1)(x+1)(x+3)
$$

and so is a 5×5 matrix with 5 distinct eigenvalues. By Theorem DED 433 we know H must be diagonalizable. But just for practice, we exhibit the diagonalization itself. The matrix S contains eigenvectors
of H as columns, one from each eigenspace, guaranteeing linear independent columns and thus the nonsingularity of S. The diagonal matrix has the eigenvalues of H in the same order that their respective eigenvectors appear as the columns of S. Notice that we are using the versions of the eigenvectors from Example DEMS5 404 that have integer entries.

$$
\begin{aligned}
& S^{-1} H S \\
& =\left[\begin{array}{ccccc}
2 & 1 & -1 & 1 & 1 \\
-1 & 0 & 2 & 0 & -1 \\
-2 & 0 & 2 & -1 & -2 \\
-4 & -1 & 0 & -2 & -1 \\
2 & 2 & 1 & 2 & 1
\end{array}\right]^{-1}\left[\begin{array}{ccccc}
15 & 18 & -8 & 6 & -5 \\
5 & 3 & 1 & -1 & -3 \\
0 & -4 & 5 & -4 & -2 \\
-43 & -46 & 17 & -14 & 15 \\
26 & 30 & -12 & 8 & -10
\end{array}\right]\left[\begin{array}{ccccc}
2 & 1 & -1 & 1 & 1 \\
-1 & 0 & 2 & 0 & -1 \\
-2 & 0 & 2 & -1 & -2 \\
-4 & -1 & 0 & -2 & -1 \\
2 & 2 & 1 & 2 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
-3 & -3 & 1 & -1 & 1 \\
-1 & -2 & 1 & 0 & 1 \\
-5 & -4 & 1 & -1 & 2 \\
10 & 10 & -3 & 2 & -4 \\
-7 & -6 & 1 & -1 & 3
\end{array}\right]\left[\begin{array}{ccccc}
15 & 18 & -8 & 6 & -5 \\
5 & 3 & 1 & -1 & -3 \\
0 & -4 & 5 & -4 & -2 \\
-43 & -46 & 17 & -14 & 15 \\
26 & 30 & -12 & 8 & -10
\end{array}\right]\left[\begin{array}{ccccc}
2 & 1 & -1 & 1 & 1 \\
-1 & 0 & 2 & 0 & -1 \\
-2 & 0 & 2 & -1 & -2 \\
-4 & -1 & 0 & -2 & -1 \\
2 & 2 & 1 & 2 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
-3 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

Archetype B 694 is another example of a matrix that has as many distinct eigenvalues as its size, and is hence diagonalizable by Theorem DED 433.

Powers of a diagonal matrix are easy to compute, and when a matrix is diagonalizable, it is almost as easy. We could state a theorem here perhaps, but we will settle instead for an example that makes the point just as well.

Example HPDM

High power of a diagonalizable matrix
Suppose that

$$
A=\left[\begin{array}{cccc}
19 & 0 & 6 & 13 \\
-33 & -1 & -9 & -21 \\
21 & -4 & 12 & 21 \\
-36 & 2 & -14 & -28
\end{array}\right]
$$

and we wish to compute A^{20}. Normally this would require 19 matrix multiplications, but since A is diagonalizable, we can simplify the computations substantially. First, we diagonalize A. With

$$
S=\left[\begin{array}{cccc}
1 & -1 & 2 & -1 \\
-2 & 3 & -3 & 3 \\
1 & 1 & 3 & 3 \\
-2 & 1 & -4 & 0
\end{array}\right]
$$

we find

$$
D=S^{-1} A S=\left[\begin{array}{cccc}
-6 & 1 & -3 & -6 \\
0 & 2 & -2 & -3 \\
3 & 0 & 1 & 2 \\
-1 & -1 & 1 & 1
\end{array}\right]\left[\begin{array}{cccc}
19 & 0 & 6 & 13 \\
-33 & -1 & -9 & -21 \\
21 & -4 & 12 & 21 \\
-36 & 2 & -14 & -28
\end{array}\right]\left[\begin{array}{cccc}
1 & -1 & 2 & -1 \\
-2 & 3 & -3 & 3 \\
1 & 1 & 3 & 3 \\
-2 & 1 & -4 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Now we find an alternate expression for A^{20},

$$
\begin{aligned}
A^{20} & =A A A \ldots A \\
& =I_{n} A I_{n} A I_{n} A I_{n} \ldots I_{n} A I_{n} \\
& =\left(S S^{-1}\right) A\left(S S^{-1}\right) A\left(S S^{-1}\right) A\left(S S^{-1}\right) \ldots\left(S S^{-1}\right) A\left(S S^{-1}\right) \\
& =S\left(S^{-1} A S\right)\left(S^{-1} A S\right)\left(S^{-1} A S\right) \ldots\left(S^{-1} A S\right) S^{-1} \\
& =S D D D \ldots D S^{-1} \\
& =S D^{20} S^{-1}
\end{aligned}
$$

and since D is a diagonal matrix, powers are much easier to compute,

$$
\begin{aligned}
& =S\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{20} S^{-1} \\
& =S\left[\begin{array}{cccc}
(-1)^{20} & 0 & 0 & 0 \\
0 & (0)^{20} & 0 & 0 \\
0 & 0 & (2)^{20} & 0 \\
0 & 0 & 0 & (1)^{20}
\end{array}\right] S^{-1} \\
& =\left[\begin{array}{cccc}
1 & -1 & 2 & -1 \\
-2 & 3 & -3 & 3 \\
1 & 1 & 3 & 3 \\
-2 & 1 & -4 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1048576 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-6 & 1 & -3 & -6 \\
0 & 2 & -2 & -3 \\
3 & 0 & 1 & 2 \\
-1 & -1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
6291451 & 2 & 2097148 & 4194297 \\
-9437175 & -5 & -3145719 & -6291441 \\
9437175 & -2 & 3145728 & 6291453 \\
-12582900 & -2 & -4194298 & -8388596
\end{array}\right]
\end{aligned}
$$

Notice how we effectively replaced the twentieth power of A by the twentieth power of D, and how a high power of a diagonal matrix is just a collection of powers of scalars on the diagonal. The price we pay for this simplification is the need to diagonalize the matrix (by computing eigenvalues and eigenvectors) and finding the inverse of the matrix of eigenvectors. And we still need to do two matrix products. But the higher the power, the greater the savings.

We close this section with a comment about an important theorem that we prove in one of the Topics sections. Every Hermitian matrix (Definition HM 200) is diagonalizable (Definition DZM 428), and the similarity transformation that accomplishes the diagonalization uses a unitary matrix (Definition UM 224). This means that for every Hermitian matrix of size n there is a basis of \mathbb{C}^{n} that is composed entirely of eigenvectors for the matrix and also forms an orthonormal set (Definition ONS 172). Notice that for matrices with only real entries, we only need the hypothesis that the matrix is symmetric (Definition SYM [181) to reach this conclusion (Example ESMS4 400). Can you imagine a prettier basis for use with a matrix? I can't. A precise statement of this result applies to a slightly broader class of matrices, known as "normal" matrices, see (link to definition here). With this expanded category of matrices, the result becomes an equivalence (Technique E 676). See (link to theorem here).

Subsection READ

Reading Questions

1. What is an equivalence relation?
2. State a condition that is equivalent to a matrix being diagonalizable, but is not the definition.
3. Find a diagonal matrix similar to

$$
A=\left[\begin{array}{ll}
-5 & 8 \\
-4 & 7
\end{array}\right]
$$

Subsection EXC
 Exercises

C20 Consider the matrix A below. First, show that A is diagonalizable by computing the geometric multiplicities of the eigenvalues and quoting the relevant theorem. Second, find a diagonal matrix D and a nonsingular matrix S so that $S^{-1} A S=D$. (See Exercise EE.C20 407 for some of the necessary computations.)

$$
A=\left[\begin{array}{cccc}
18 & -15 & 33 & -15 \\
-4 & 8 & -6 & 6 \\
-9 & 9 & -16 & 9 \\
5 & -6 & 9 & -4
\end{array}\right]
$$

Contributed by Robert Beezer Solution 438
C21 Determine if the matrix A below is diagonalizable. If the matrix is diagonalizable, then find a diagonal matrix D that is similar to A, and provide the invertible matrix S that perfoms the similarity transformation. You should use your calculator to find the eigenvalues of the matrix, but try only using the row-reducing function of your calculator to assist with finding eigenvectors.

$$
A=\left[\begin{array}{cccc}
1 & 9 & 9 & 24 \\
-3 & -27 & -29 & -68 \\
1 & 11 & 13 & 26 \\
1 & 7 & 7 & 18
\end{array}\right]
$$

Contributed by Robert Beezer Solution 438
C22 Consider the matrix A below. Find the eigenvalues of A using a calculator and use these to construct the characteristic polynomial of $A, p_{A}(x)$. State the algebraic multiplicity of each eigenvalue. Find all of the eigenspaces for A by computing expressions for null spaces, only using your calculator to row-reduce matrices. State the geometric multiplicity of each eigenvalue. Is A diagonalizable? If not, explain why. If so, find a diagonal matrix D that is similar to A.

$$
A=\left[\begin{array}{cccc}
19 & 25 & 30 & 5 \\
-23 & -30 & -35 & -5 \\
7 & 9 & 10 & 1 \\
-3 & -4 & -5 & -1
\end{array}\right]
$$

Contributed by Robert Beezer Solution 439
T15 Suppose that A and B are similar matrices. Prove that A^{3} and B^{3} are similar matrices. Generalize. Contributed by Robert Beezer Solution 440

T16 Suppose that A and B are similar matrices, with A nonsingular. Prove that B is nonsingular, and that A^{-1} is similar to B^{-1}.
Contributed by Robert Beezer
T17 Suppose that B is a nonsingular matrix. Prove that $A B$ is similar to $B A$.
Contributed by Robert Beezer Solution 440

Subsection SOL
 Solutions

C20 Contributed by Robert Beezer Statement 437
Using a calculator, we find that A has three distinct eigenvalues, $\lambda=3,2,-1$, with $\lambda=2$ having algebraic multiplicity two, $\alpha_{A}(2)=2$. The eigenvalues $\lambda=3,-1$ have algebraic multiplicity one, and so by Theorem ME 419 we can conclude that their geometric multiplicities are one as well. Together with the computation of the geometric multiplicity of $\lambda=2$ from Exercise EE.C20 407, we know

$$
\gamma_{A}(3)=\alpha_{A}(3)=1 \quad \gamma_{A}(2)=\alpha_{A}(2)=2 \quad \gamma_{A}(-1)=\alpha_{A}(-1)=1
$$

This satisfies the hypotheses of Theorem DMFE 431, and so we can conclude that A is diagonalizable.
A calculator will give us four eigenvectors of A, the two for $\lambda=2$ being linearly independent presumably. Or, by hand, we could find basis vectors for the three eigenspaces. For $\lambda=3,-1$ the eigenspaces have dimension one, and so any eigenvector for these eigenvalues will be multiples of the ones we use below. For $\lambda=2$ there are many different bases for the eigenspace, so your answer could vary. Our eigenvectors are the basis vectors we would have obtained if we had actually constructed a basis in Exercise EE.C20 407 rather than just computing the dimension.

By the construction in the proof of Theorem DC 429, the required matrix S has columns that are four linearly independent eigenvectors of A and the diagonal matrix has the eigenvalues on the diagonal (in the same order as the eigenvectors in S). Here are the pieces, "doing" the diagonalization,

$$
\left[\begin{array}{cccc}
-1 & 0 & -3 & 6 \\
-2 & -1 & -1 & 0 \\
0 & 0 & 1 & -3 \\
1 & 1 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cccc}
18 & -15 & 33 & -15 \\
-4 & 8 & -6 & 6 \\
-9 & 9 & -16 & 9 \\
5 & -6 & 9 & -4
\end{array}\right]\left[\begin{array}{cccc}
-1 & 0 & -3 & 6 \\
-2 & -1 & -1 & 0 \\
0 & 0 & 1 & -3 \\
1 & 1 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

C21 Contributed by Robert Beezer Statement 437
A calculator will provide the eigenvalues $\lambda=2,2,1,0$, so we can reconstruct the characteristic polynomial as

$$
p_{A}(x)=(x-2)^{2}(x-1) x
$$

so the algebraic multiplicities of the eigenvalues are

$$
\alpha_{A}(2)=2 \quad \alpha_{A}(1)=1 \quad \alpha_{A}(0)=1
$$

Now compute eigenspaces by hand, obtaining null spaces for each of the three eigenvalues by constructing the correct singular matrix (Theorem EMNS 398),

$$
\begin{aligned}
& A-2 I_{4}=\left[\begin{array}{cccc}
-1 & 9 & 9 & 24 \\
-3 & -29 & -29 & -68 \\
1 & 11 & 11 & 26 \\
1 & 7 & 7 & 16
\end{array}\right] \xrightarrow{\mathrm{RREF}}\left[\begin{array}{llll}
1 & 0 & 0 & -\frac{3}{2} \\
0 & 1 & 1 & \frac{5}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \left.\left.\mathcal{E}_{A}(2)=\mathcal{N}\left(A-2 I_{4}\right)=\left\langle\left\{\begin{array}{c}
\frac{3}{2} \\
-\frac{5}{2} \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\begin{array}{c}
3 \\
-5 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]\right\}\right\rangle \\
& A-1 I_{4}=\left[\begin{array}{cccc}
0 & 9 & 9 & 24 \\
-3 & -28 & -29 & -68 \\
1 & 11 & 12 & 26 \\
1 & 7 & 7 & 17
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{lllc}
1 & 0 & 0 & -\frac{5}{3} \\
0 & 1 & 0 & \frac{13}{3} \\
0 & 0 & 1 & -\frac{5}{3} \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{E}_{A}(1)=\mathcal{N}\left(A-I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
\frac{5}{3} \\
-\frac{13}{3} \\
\frac{5}{3} \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
5 \\
-13 \\
5 \\
3
\end{array}\right]\right\}\right\rangle \\
& A-0 I_{4}=\left[\begin{array}{cccc}
1 & 9 & 9 & 24 \\
-3 & -27 & -29 & -68 \\
1 & 11 & 13 & 26 \\
1 & 7 & 7 & 18
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{E}_{A}(0)=\mathcal{N}\left(A-I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
3 \\
-5 \\
2 \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

From this we can compute the dimensions of the eigenspaces to obtain the geometric multiplicities,

$$
\begin{array}{lll}
\gamma_{A}(2)=2 & \gamma_{A}(1)=1 & \gamma_{A}(0)=1
\end{array}
$$

For each eigenvalue, the algebraic and geometric multiplicities are equal and so by Theorem DMFE 431 we now know that A is diagonalizable. The construction in Theorem DC 429 suggests we form a matrix whose columns are eigenvectors of A

$$
S=\left[\begin{array}{cccc}
3 & 0 & 5 & 3 \\
-5 & -1 & -13 & -5 \\
0 & 1 & 5 & 2 \\
2 & 0 & 3 & 1
\end{array}\right]
$$

Since $\operatorname{det}(S)=-1 \neq 0$, we know that S is nonsingular (Theorem SMZD 383), so the columns of S are a set of 4 linearly independent eigenvectors of A. By the proof of Theorem SMZD 383 we know

$$
S^{-1} A S=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

a diagonal matrix with the eigenvalues of A along the diagonal, in the same order as the associated eigenvectors appear as columns of S.
C22 Contributed by Robert Beezer Statement 437
A calculator will report $\lambda=0$ as an eigenvalue of algebraic multiplicity of 2 , and $\lambda=-1$ as an eigenvalue of algebraic multiplicity 2 as well. Since eigenvalues are roots of the characteristic polynomial Theorem EMRCP 397) we have the factored version

$$
p_{A}(x)=(x-0)^{2}(x-(-1))^{2}=x^{2}\left(x^{2}+2 x+1\right)=x^{4}+2 x^{3}+x^{2}
$$

The eigenspaces are then

$$
\begin{aligned}
\lambda & =0 \\
A-(0) I_{4} & =\left[\begin{array}{cccc}
19 & 25 & 30 & 5 \\
-23 & -30 & -35 & -5 \\
7 & 9 & 10 & 1 \\
-3 & -4 & -5 & -1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & -5 \\
0 & 0 & 5
\end{array}\right.} & 4 \\
0 & 0 & 0 & 0 \\
0
\end{array}\right] \\
\mathcal{E}_{A}(0) & =\mathcal{N}\left(C-(0) I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
5 \\
-5 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
5 \\
-4 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\lambda & =-1 \\
A-(-1) I_{4} & =\left[\begin{array}{cccc}
20 & 25 & 30 & 5 \\
-23 & -29 & -35 & -5 \\
7 & 9 & 11 & 1 \\
-3 & -4 & -5 & 0
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & -1 & 4 \\
0 & 1 & 2 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{A}(-1) & =\mathcal{N}\left(C-(-1) I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
3 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

Each eigenspace above is described by a spanning set obtained through an application of Theorem BNS 138 and so is a basis for the eigenspace. In each case the dimension, and therefore the geometric multiplicity, is 2 .

For each of the two eigenvalues, the algebraic and geometric multiplicities are equal. Theorem DMFE 431 says that in this situation the matrix is diagonalizable. We know from Theorem DC 429 that when we diagonalize A the diagonal matrix will have the eigenvalues of A on the diagonal (in some order). So we can claim that

$$
D=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

T15 Contributed by Robert Beezer Statement 437
By Definition SIM 425 we know that there is a nonsingular matrix S so that $A=S^{-1} B S$. Then

$$
\begin{aligned}
A^{3} & =\left(S^{-1} B S\right)^{3} \\
& =\left(S^{-1} B S\right)\left(S^{-1} B S\right)\left(S^{-1} B S\right) \\
& =S^{-1} B\left(S S^{-1}\right) B\left(S S^{-1}\right) B S \\
& =S^{-1} B\left(I_{3}\right) B\left(I_{3}\right) B S \\
& =S^{-1} B B B S \\
& =S^{-1} B^{3} S
\end{aligned}
$$

$$
=S^{-1} B\left(I_{3}\right) B\left(I_{3}\right) B S \quad \text { Definition MI } 208
$$

$$
=S^{-1} B B B S \quad \text { Theorem MMIM } 195
$$

This equation says that A^{3} is similar to B^{3} (via the matrix S).
More generally, if A is similar to B, and m is a non-negative integer, then A^{m} is similar to B^{m}. This can be proved using induction Technique I 680).
T17 Contributed by Robert Beezer Statement 437
The nonsingular (invertible) matrix B will provide the desired similarity transformation,

$$
\begin{aligned}
B^{-1}(B A) B & =\left(B^{-1} B\right)(A B) & & \text { Theorem MMA 196 } \\
& =I_{n} A B & & \text { Definition MI 208 } \\
& =A B & & \text { Theorem MMIM 195 }
\end{aligned}
$$

Chapter LT Linear Transformations

In the next linear algebra course you take, the first lecture might be a reminder about what a vector space is Definition VS 275), their ten properties, basic theorems and then some examples. The second lecture would likely be all about linear transformations. While it may seem we have waited a long time to present what must be a central topic, in truth we have already been working with linear transformations for some time.

Functions are important objects in the study of calculus, but have been absent from this course until now (well, not really, it just seems that way). In your study of more advanced mathematics it is nearly impossible to escape the use of functions - they are as fundamental as sets are.

Section LT

Linear Transformations

Here comes a key definition.

Subsection LT
 Linear Transformations

Definition LT

Linear Transformation

A linear transformation, $T: U \mapsto V$, is a function that carries elements of the vector space U (called the domain) to the vector space V (called the codomain), and which has two additional properties

1. $T\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)=T\left(\mathbf{u}_{1}\right)+T\left(\mathbf{u}_{2}\right)$ for all $\mathbf{u}_{1}, \mathbf{u}_{2} \in U$
2. $T(\alpha \mathbf{u})=\alpha T(\mathbf{u})$ for all $\mathbf{u} \in U$ and all $\alpha \in \mathbb{C}$
(This definition contains Notation LT.)
The two defining conditions in the definition of a linear transformation should "feel linear," whatever that means. Conversely, these two conditions could be taken as a exactly what it means to be linear. As every vector space property derives from vector addition and scalar multiplication, so too, every property of a linear transformation derives from these two defining properties. While these conditions may be reminiscent of how we test subspaces, they really are quite different, so do not confuse the two.

Here are two diagrams that convey the essence of the two defining properties of a linear transformation. In each case, begin in the upper left-hand corner, and follow the arrows around the rectangle to the lowerright hand corner, taking two different routes and doing the indicated operations labeled on the arrows. There are two results there. For a linear transformation these two expressions are always equal.

A couple of words about notation. T is the name of the linear transformation, and should be used when we want to discuss the function as a whole. $T(\mathbf{u})$ is how we talk about the output of the function, it is a vector in the vector space V. When we write $T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$, the plus sign on the left is the operation of vector addition in the vector space U, since \mathbf{x} and \mathbf{y} are elements of U. The plus sign on the right is the operation of vector addition in the vector space V, since $T(\mathbf{x})$ and $T(\mathbf{y})$ are elements of the vector space V. These two instances of vector addition might be wildly different.

Let's examine several examples and begin to form a catalog of known linear transformations to work with.

Example ALT

A linear transformation
Define $T: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}$ by describing the output of the function for a generic input with the formula

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+x_{3} \\
-4 x_{2}
\end{array}\right]
$$

and check the two defining properties.

$$
\begin{aligned}
T(\mathbf{x}+\mathbf{y}) & =T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right) \\
& =T\left(\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
2\left(x_{1}+y_{1}\right)+\left(x_{3}+y_{3}\right) \\
-4\left(x_{2}+y_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 x_{1}+x_{3}\right)+\left(2 y_{1}+y_{3}\right) \\
-4 x_{2}+(-4) y_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 x_{1}+x_{3} \\
-4 x_{2}
\end{array}\right]+\left[\begin{array}{c}
2 y_{1}+y_{3} \\
-4 y_{2}
\end{array}\right] \\
& =T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)+T\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)
\end{aligned}
$$

$$
=T(\mathbf{x})+T(\mathbf{y})
$$

and

$$
\begin{aligned}
T(\alpha \mathbf{x}) & =T\left(\alpha\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) \\
& =T\left(\left[\begin{array}{l}
\alpha x_{1} \\
\alpha x_{2} \\
\alpha x_{3}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
2\left(\alpha x_{1}\right)+\left(\alpha x_{3}\right) \\
-4\left(\alpha x_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
\alpha\left(2 x_{1}+x_{3}\right) \\
\alpha\left(-4 x_{2}\right)
\end{array}\right] \\
& =\alpha\left[\begin{array}{c}
2 x_{1}+x_{3} \\
-4 x_{2}
\end{array}\right] \\
& =\alpha T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) \\
& =\alpha T(\mathbf{x})
\end{aligned}
$$

So by Definition LT 441, T is a linear transformation.
It can be just as instructive to look at functions that are not linear transformations. Since the defining conditions must be true for all vectors and scalars, it is enough to find just one situation where the properties fail.

Example NLT

Not a linear transformation

Define $S: \mathbb{C}^{3} \mapsto \mathbb{C}^{3}$ by

$$
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
4 x_{1}+2 x_{2} \\
0 \\
x_{1}+3 x_{3}-2
\end{array}\right]
$$

This function "looks" linear, but consider

$$
3 S\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)=3\left[\begin{array}{l}
8 \\
0 \\
8
\end{array}\right]=\left[\begin{array}{c}
24 \\
0 \\
24
\end{array}\right]
$$

while

$$
S\left(3\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)=S\left(\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]\right)=\left[\begin{array}{c}
24 \\
0 \\
28
\end{array}\right]
$$

So the second required property fails for the choice of $\alpha=3$ and $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and by Definition LT 441, S is not a linear transformation. It is just about as easy to find an example where the first defining property
fails (try it!). Notice that it is the "-2" in the third component of the definition of S that prevents the function from being a linear transformation.

Example LTPM

Linear transformation, polynomials to matrices

Define a linear transformation $T: P_{3} \mapsto M_{22}$ by

$$
T\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
a+b & a-2 c \\
d & b-d
\end{array}\right]
$$

We verify the two defining conditions of a linear transformations.

$$
\begin{aligned}
T(\mathbf{x}+\mathbf{y}) & =T\left(\left(a_{1}+b_{1} x+c_{1} x^{2}+d_{1} x^{3}\right)+\left(a_{2}+b_{2} x+c_{2} x^{2}+d_{2} x^{3}\right)\right) \\
& =T\left(\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) x+\left(c_{1}+c_{2}\right) x^{2}+\left(d_{1}+d_{2}\right) x^{3}\right) \\
& =\left[\begin{array}{cc}
\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) & \left(a_{1}+a_{2}\right)-2\left(c_{1}+c_{2}\right) \\
d_{1}+d_{2} & \left(b_{1}+b_{2}\right)-\left(d_{1}+d_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right) & \left(a_{1}-2 c_{1}\right)+\left(a_{2}-2 c_{2}\right) \\
d_{1}+d_{2} & \left(b_{1}-d_{1}\right)+\left(b_{2}-d_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{1}+b_{1} & a_{1}-2 c_{1} \\
d_{1} & b_{1}-d_{1}
\end{array}\right]+\left[\begin{array}{cc}
a_{2}+b_{2} & a_{2}-2 c_{2} \\
d_{2} & b_{2}-d_{2}
\end{array}\right] \\
& =T\left(a_{1}+b_{1} x+c_{1} x^{2}+d_{1} x^{3}\right)+T\left(a_{2}+b_{2} x+c_{2} x^{2}+d_{2} x^{3}\right) \\
& =T(\mathbf{x})+T(\mathbf{y})
\end{aligned}
$$

and

$$
\begin{aligned}
T(\alpha \mathbf{x}) & =T\left(\alpha\left(a+b x+c x^{2}+d x^{3}\right)\right) \\
& =T\left((\alpha a)+(\alpha b) x+(\alpha c) x^{2}+(\alpha d) x^{3}\right) \\
& =\left[\begin{array}{cc}
(\alpha a)+(\alpha b) & (\alpha a)-2(\alpha c) \\
\alpha d & (\alpha b)-(\alpha d)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha(a+b) & \alpha(a-2 c) \\
\alpha d & \alpha(b-d)
\end{array}\right] \\
& =\alpha\left[\begin{array}{cc}
a+b & a-2 c \\
d & b-d
\end{array}\right] \\
& =\alpha T\left(a+b x+c x^{2}+d x^{3}\right) \\
& =\alpha T(\mathbf{x})
\end{aligned}
$$

So by Definition LT 441, T is a linear transformation.

Example LTPP

Linear transformation, polynomials to polynomials

Define a function $S: P_{4} \mapsto P_{5}$ by

$$
S(p(x))=(x-2) p(x)
$$

Then

$$
\begin{aligned}
S(p(x)+q(x)) & =(x-2)(p(x)+q(x))=(x-2) p(x)+(x-2) q(x)=S(p(x))+S(q(x)) \\
S(\alpha p(x)) & =(x-2)(\alpha p(x))=(x-2) \alpha p(x)=\alpha(x-2) p(x)=\alpha S(p(x))
\end{aligned}
$$

So by Definition LT 441, S is a linear transformation.
Linear transformations have many amazing properties, which we will investigate through the next few sections. However, as a taste of things to come, here is a theorem we can prove now and put to use immediately.

Theorem LTTZZ

Linear Transformations Take Zero to Zero

Suppose $T: U \mapsto V$ is a linear transformation. Then $T(\mathbf{0})=\mathbf{0}$.
Proof The two zero vectors in the conclusion of the theorem are different. The first is from U while the second is from V. We will subscript the zero vectors in this proof to highlight the distinction. Think about your objects. (This proof is contributed by Mark Shoemaker).

$$
\begin{aligned}
T\left(\mathbf{0}_{U}\right) & =T\left(0 \mathbf{0}_{U}\right) & & \text { Theorem ZSSM 282 in } U \\
& =0 T\left(\mathbf{0}_{U}\right) & & \text { Definition LT 441 } \\
& =\mathbf{0}_{V} & & \text { Theorem ZSSM 282 in } V
\end{aligned}
$$

Return to Example NLT 443 and compute $S\left(\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}0 \\ 0 \\ -2\end{array}\right]$ to quickly see again that S is not a linear transformation, while in Example LTPM 444 and compute $S\left(0+0 x+0 x^{2}+0 x^{3}\right)=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ as an example of Theorem LTTZZ 445 at work.

Subsection MLT
 Matrices and Linear Transformations

If you give me a matrix, then I can quickly build you a linear transformation. Always. First a motivating example and then the theorem.

Example LTM

Linear transformation from a matrix

Let

$$
A=\left[\begin{array}{cccc}
3 & -1 & 8 & 1 \\
2 & 0 & 5 & -2 \\
1 & 1 & 3 & -7
\end{array}\right]
$$

and define a function $P: \mathbb{C}^{4} \mapsto \mathbb{C}^{3}$ by

$$
P(\mathrm{x})=A \mathrm{x}
$$

So we are using an old friend, the matrix-vector product (Definition MVP [189]) as a way to convert a vector with 4 components into a vector with 3 components. Applying Definition MVP 189 allows us to write the defining formula for P in a slightly different form,

$$
P(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{cccc}
3 & -1 & 8 & 1 \\
2 & 0 & 5 & -2 \\
1 & 1 & 3 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{1}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
8 \\
5 \\
3
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
-2 \\
-7
\end{array}\right]
$$

So we recognize the action of the function P as using the components of the vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ as scalars to form the output of P as a linear combination of the four columns of the matrix A, which are
all members of \mathbb{C}^{3}, so the result is a vector in \mathbb{C}^{3}. We can rearrange this expression further, using our definitions of operations in \mathbb{C}^{3} Section VO (79]).

$$
\begin{array}{rlrl}
P(\mathbf{x}) & =A \mathbf{x} & & \text { Definition of } P \\
& =x_{1}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
8 \\
5 \\
3
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
-2 \\
-7
\end{array}\right] & & \text { Definition MVP (189 } \\
& =\left[\begin{array}{c}
3 x_{1} \\
2 x_{1} \\
x_{1}
\end{array}\right]+\left[\begin{array}{c}
-x_{2} \\
0 \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
8 x_{3} \\
5 x_{3} \\
3 x_{3}
\end{array}\right]+\left[\begin{array}{c}
x_{4} \\
-2 x_{4} \\
-7 x_{4}
\end{array}\right] & & \text { Definition CVSM 81 } \\
& =\left[\begin{array}{c}
3 x_{1}-x_{2}+8 x_{3}+x_{4} \\
2 x_{1}+5 x_{3}-2 x_{4} \\
x_{1}+x_{2}+3 x_{3}-7 x_{4}
\end{array}\right] & \text { Definition CVA 80 }
\end{array}
$$

You might recognize this final expression as being similar in style to some previous examples Example ALT [442) and some linear transformations defined in the archetypes Archetype M 741 through Archetype $\mathrm{R}[756)$. But the expression that says the output of this linear transformation is a linear combination of the columns of A is probably the most powerful way of thinking about examples of this type.

Almost forgot - we should verify that P is indeed a linear transformation. This is easy with two matrix properties from Section MM 189.

$$
\begin{aligned}
P(\mathbf{x}+\mathbf{y}) & =A(\mathbf{x}+\mathbf{y}) & & \text { Definition of } P \\
& =A \mathbf{x}+A \mathbf{y} & & \text { Theorem MMDAA } \\
& =P(\mathbf{x})+P(\mathbf{y}) & & \text { Definition of } P
\end{aligned}
$$

and

$$
\begin{aligned}
P(\alpha \mathbf{x}) & =A(\alpha \mathbf{x}) & & \text { Definition of } P \\
& =\alpha(A \mathbf{x}) & & \text { Theorem MMSMM } 196 \\
& =\alpha P(\mathbf{x}) & & \text { Definition of } P
\end{aligned}
$$

So by Definition LT 441, P is a linear transformation.
So the multiplication of a vector by a matrix "transforms" the input vector into an output vector, possibly of a different size, by performing a linear combination. And this transformation happens in a "linear" fashion. This "functional" view of the matrix-vector product is the most important shift you can make right now in how you think about linear algebra. Here's the theorem, whose proof is very nearly an exact copy of the verification in the last example.

Theorem MBLT

Matrices Build Linear Transformations

Suppose that A is an $m \times n$ matrix. Define a function $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{m}$ by $T(\mathbf{x})=A \mathbf{x}$. Then T is a linear transformation.
Proof

$$
\begin{aligned}
T(\mathbf{x}+\mathbf{y}) & =A(\mathbf{x}+\mathbf{y}) & & \text { Definition of } T \\
& =A \mathbf{x}+A \mathbf{y} & & \text { Theorem MMDAA } 196 \\
& =T(\mathbf{x})+T(\mathbf{y}) & & \text { Definition of } T
\end{aligned}
$$

and

$$
T(\alpha \mathbf{x})=A(\alpha \mathbf{x}) \quad \text { Definition of } T
$$

$$
\begin{aligned}
& =\alpha(A \mathbf{x}) \\
& =\alpha T(\mathbf{x})
\end{aligned}
$$

Theorem MMSMM 196
Definition of T

So by Definition LT 441, T is a linear transformation.
So Theorem MBLT 446 gives us a rapid way to construct linear transformations. Grab an $m \times n$ matrix A, define $T(\mathbf{x})=A \mathbf{x}$ and Theorem MBLT 446 tells us that T is a linear transformation from \mathbb{C}^{n} to \mathbb{C}^{m}, without any further checking.

We can turn Theorem MBLT 446 around. You give me a linear transformation and I will give you a matrix.

Example MFLT

Matrix from a linear transformation

Define the function $R: \mathbb{C}^{3} \mapsto \mathbb{C}^{4}$ by

$$
R\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-3 x_{2}+4 x_{3} \\
x_{1}+x_{2}+x_{3} \\
-x_{1}+5 x_{2}-3 x_{3} \\
x_{2}-4 x_{3}
\end{array}\right]
$$

You could verify that R is a linear transformation by applying the definition, but we will instead massage the expression defining a typical output until we recognize the form of a known class of linear transformations.

$$
\begin{array}{rlrl}
R\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) & =\left[\begin{array}{c}
2 x_{1}-3 x_{2}+4 x_{3} \\
x_{1}+x_{2}+x_{3} \\
-x_{1}+5 x_{2}-3 x_{3} \\
x_{2}-4 x_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 x_{1} \\
x_{1} \\
-x_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 x_{2} \\
x_{2} \\
5 x_{2} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
4 x_{3} \\
x_{3} \\
-3 x_{3} \\
-4 x_{3}
\end{array}\right] & & \text { Definition CVA } 80 \\
& =x_{1}\left[\begin{array}{c}
2 \\
1 \\
-1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1 \\
5 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{c}
4 \\
1 \\
-3 \\
-4
\end{array}\right] & & \text { Definition CVSM 81 } \\
& =\left[\begin{array}{ccc}
2 & -3 & 4 \\
1 & 1 & 1 \\
-1 & 5 & -3 \\
0 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] & & \text { Definition MVP } 189
\end{array}
$$

So if we define the matrix

$$
B=\left[\begin{array}{ccc}
2 & -3 & 4 \\
1 & 1 & 1 \\
-1 & 5 & -3 \\
0 & 1 & -4
\end{array}\right]
$$

then $R(\mathbf{x})=B \mathbf{x}$. By Theorem MBLT 446, we can easily recognize R as a linear transformation since it has the form described in the hypothesis of the theorem.

Example MFLT 447 was not accident. Consider any one of the archetypes where both the domain and codomain are sets of column vectors Archetype M 741 through Archetype R 756) and you should be able to mimic the previous example. Here's the theorem, which is notable since it is our first occasion to use the full power of the defining properties of a linear transformation when our hypothesis includes a linear transformation.

Theorem MLTCV

Matrix of a Linear Transformation, Column Vectors

Suppose that $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{m}$ is a linear transformation. Then there is an $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$.
Proof The conclusion says a certain matrix exists. What better way to prove something exists than to actually build it? So our proof will be constructive, and the procedure that we will use abstractly in the proof can be used concretely in specific examples.

Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{n}$ be the columns of the identity matrix of size n, I_{n} Definition SUV 210). Evaluate the linear transformation T with each of these standard unit vectors as an input, and record the result. In other words, define n vectors in $\mathbb{C}^{m}, \mathbf{A}_{i}, 1 \leq i \leq n$ by

$$
\mathbf{A}_{i}=T\left(\mathbf{e}_{i}\right)
$$

Then package up these vectors as the columns of a matrix

$$
A=\left[\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \mathbf{A}_{3}|\ldots| \mathbf{A}_{n}\right]
$$

Does A have the desired properties? First, A is clearly an $m \times n$ matrix. Then

$$
\begin{aligned}
T(\mathbf{x}) & =T\left(I_{n} \mathbf{x}\right) \\
& =T\left(\left[\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \mathbf{e}_{3}|\ldots| \mathbf{e}_{n}\right] \mathbf{x}\right) \\
& =T\left([\mathbf{x}]_{1} \mathbf{e}_{1}+[\mathbf{x}]_{2} \mathbf{e}_{2}+[\mathbf{x}]_{3} \mathbf{e}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{e}_{n}\right) \\
& =T\left([\mathbf{x}]_{1} \mathbf{e}_{1}\right)+T\left([\mathbf{x}]_{2} \mathbf{e}_{2}\right)+T\left([\mathbf{x}]_{3} \mathbf{e}_{3}\right)+\cdots+T\left([\mathbf{x}]_{n} \mathbf{e}_{n}\right) \\
& =[\mathbf{x}]_{1} T\left(\mathbf{e}_{1}\right)+[\mathbf{x}]_{2} T\left(\mathbf{e}_{2}\right)+[\mathbf{x}]_{3} T\left(\mathbf{e}_{3}\right)+\cdots+[\mathbf{x}]_{n} T\left(\mathbf{e}_{n}\right) \\
& =[\mathbf{x}]_{1} \mathbf{A}_{1}+[\mathbf{x}]_{2} \mathbf{A}_{2}+[\mathbf{x}]_{3} \mathbf{A}_{3}+\cdots+[\mathbf{x}]_{n} \mathbf{A}_{n} \\
& =A \mathbf{x}
\end{aligned}
$$

Theorem MMIM 195]
Definition SUV 210
Definition MVP 189
Definition LT 441
Definition LT 441
Definition of \mathbf{A}_{i} Definition MVP 189
as desired.
So if we were to restrict our study of linear transformations to those where the domain and codomain are both vector spaces of column vectors (Definition VSCV (79), every matrix leads to a linear transformation of this type (Theorem MBLT [446), while every such linear transformation leads to a matrix Theorem MLTCV [448]). So matrices and linear transformations are fundamentally the same. We call the matrix A of Theorem MLTCV 448 the matrix representation of T.

We have defined linear transformations for more general vector spaces than just \mathbb{C}^{m}, can we extend this correspondence between linear transformations and matrices to more general linear transformations (more general domains and codomains)? Yes, and this is the main theme of Chapter R 513 . Stay tuned. For now, let's illustrate Theorem MLTCV 448 with an example.

Example MOLT

Matrix of a linear transformation
Suppose $S: \mathbb{C}^{3} \mapsto \mathbb{C}^{4}$ is defined by

$$
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
3 x_{1}-2 x_{2}+5 x_{3} \\
x_{1}+x_{2}+x_{3} \\
9 x_{1}-2 x_{2}+5 x_{3} \\
4 x_{2}
\end{array}\right]
$$

Then

$$
\mathbf{C}_{1}=S\left(\mathbf{e}_{1}\right)=S\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
1 \\
9 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{C}_{2}=S\left(\mathbf{e}_{2}\right)=S\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
1 \\
-2 \\
4
\end{array}\right] \\
& \mathbf{C}_{3}=S\left(\mathbf{e}_{\mathbf{3}}\right)=S\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
5 \\
1 \\
5 \\
0
\end{array}\right]
\end{aligned}
$$

so define

$$
C=\left[C_{1}\left|C_{2}\right| C_{3}\right]=\left[\begin{array}{ccc}
3 & -2 & 5 \\
1 & 1 & 1 \\
9 & -2 & 5 \\
0 & 4 & 0
\end{array}\right]
$$

and Theorem MLTCV 448 guarantees that $S(\mathbf{x})=C \mathbf{x}$.
As an illuminating exercise, let $\mathbf{z}=\left[\begin{array}{c}2 \\ -3 \\ 3\end{array}\right]$ and compute $S(\mathbf{z})$ two different ways. First, return to the definition of S and evaluate $S(\mathbf{z})$ directly. Then do the matrix-vector product $C \mathbf{z}$. In both cases you should obtain the vector $S(\mathbf{z})=\left[\begin{array}{c}27 \\ 2 \\ 39 \\ -12\end{array}\right]$.

Subsection LTLC
 Linear Transformations and Linear Combinations

It is the interaction between linear transformations and linear combinations that lies at the heart of many of the important theorems of linear algebra. The next theorem distills the essence of this. The proof is not deep, the result is hardly startling, but it will be referenced frequently. We have already passed by one occasion to employ it, in the proof of Theorem MLTCV 448. Paraphrasing, this theorem says that we can "push" linear transformations "down into" linear combinations, or "pull" linear transformations "up out" of linear combinations. We'll have opportunities to both push and pull.

Theorem LTLC

Linear Transformations and Linear Combinations

Suppose that $T: U \mapsto V$ is a linear transformation, $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}$ are vectors from U and $a_{1}, a_{2}, a_{3}, \ldots, a_{t}$ are scalars from \mathbb{C}. Then

$$
T\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t}\right)=a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{t} T\left(\mathbf{u}_{t}\right)
$$

Proof

$$
\begin{array}{rlrl}
T & \left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t}\right) & \\
& =T\left(a_{1} \mathbf{u}_{1}\right)+T\left(a_{2} \mathbf{u}_{2}\right)+T\left(a_{3} \mathbf{u}_{3}\right)+\cdots+T\left(a_{t} \mathbf{u}_{t}\right) & & \text { Definition LT 441 } \\
& =a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{t} T\left(\mathbf{u}_{t}\right) & & \text { Definition LT 441 }
\end{array}
$$

Our next theorem says, informally, that it is enough to know how a linear transformation behaves for inputs from a basis of the domain, and all other outputs are described by a linear combination of these
values. Again, the theorem and its proof are not remarkable, but the insight that goes along with it is fundamental.

Theorem LTDB

Linear Transformation Defined on a Basis

Suppose that $T: U \mapsto V$ is a linear transformation, $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a basis for U and \mathbf{w} is a vector from U. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be the scalars from \mathbb{C} such that

$$
\mathbf{w}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{n} \mathbf{u}_{n}
$$

Then

$$
T(\mathbf{w})=a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{n} T\left(\mathbf{u}_{n}\right)
$$

Proof For any $\mathbf{w} \in U$, Theorem VRRB 314 says there are (unique) scalars such that \mathbf{w} is a linear combination of the basis vectors in B. The result then follows from a straightforward application of Theorem LTLC 449 to the linear combination.

Example LTDB1

Linear transformation defined on a basis

Suppose you are told that $T: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}$ is a linear transformation and given the three values,

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
4
\end{array}\right] \quad T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Because

$$
B=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

is a basis for \mathbb{C}^{3} Theorem SUVB 321), Theorem LTDB 450 says we can compute any output of T with just this information. For example, consider,

$$
\mathbf{w}=\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]=(2)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+(-3)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+(1)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

so

$$
T(\mathbf{w})=(2)\left[\begin{array}{l}
2 \\
1
\end{array}\right]+(-3)\left[\begin{array}{c}
-1 \\
4
\end{array}\right]+(1)\left[\begin{array}{l}
6 \\
0
\end{array}\right]=\left[\begin{array}{c}
13 \\
-10
\end{array}\right]
$$

Doing it again,

$$
\mathbf{w}=\left[\begin{array}{c}
5 \\
2 \\
-3
\end{array}\right]=(5)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+(2)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+(-3)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

so

$$
T(\mathbf{w})=(5)\left[\begin{array}{l}
2 \\
1
\end{array}\right]+(2)\left[\begin{array}{c}
-1 \\
4
\end{array}\right]+(-3)\left[\begin{array}{l}
6 \\
0
\end{array}\right]=\left[\begin{array}{c}
-10 \\
13
\end{array}\right]
$$

Any other value of T could be computed in a similar manner. So rather than being given a formula for the outputs of T, the requirement that T behave as a linear transformation, along with its values on a handful
of vectors (the basis), are just as sufficient as a formula for computing any value of the function. You might notice some parallels between this example and Example MOLT 448 or Theorem MLTCV 448 . \boxtimes

Example LTDB2

Linear transformation defined on a basis

Suppose you are told that $R: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}$ is a linear transformation and given the three values,

$$
R\left(\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
5 \\
-1
\end{array}\right] \quad R\left(\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
4
\end{array}\right] \quad R\left(\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

You can check that

$$
D=\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]\right\}
$$

is a basis for \mathbb{C}^{3} (make the vectors the columns of a square matrix and check that the matrix is nonsingular, Theorem CNMB (326). By Theorem LTDB 450 we can compute any output of R with just this information. However, we have to work just a bit harder to take an input vector and express it as a linear combination of the vectors in D. For example, consider,

$$
\mathbf{y}=\left[\begin{array}{c}
8 \\
-3 \\
5
\end{array}\right]
$$

Then we must first write \mathbf{y} as a linear combination of the vectors in D and solve for the unknown scalars, to arrive at

$$
\mathbf{y}=\left[\begin{array}{c}
8 \\
-3 \\
5
\end{array}\right]=(3)\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+(-2)\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right]+(1)\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right]
$$

Then Theorem LTDB 450 gives us

$$
R(\mathbf{y})=(3)\left[\begin{array}{c}
5 \\
-1
\end{array}\right]+(-2)\left[\begin{array}{l}
0 \\
4
\end{array}\right]+(1)\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
17 \\
-8
\end{array}\right]
$$

Any other value of R could be computed in a similar manner.
Here is a third example of a linear transformation defined by its action on a basis, only with more abstract vector spaces involved.

Example LTDB3

Linear transformation defined on a basis

The set $W=\left\{p(x) \in P_{3} \mid p(1)=0, p(3)=0\right\} \subseteq P_{3}$ is a subspace of the vector space of polynomials P_{3}. This subspace has $C=\left\{3-4 x+x^{2}, 12-13 x+x^{3}\right\}$ as a basis (check this!). Suppose we define a linear transformation $S: P_{3} \mapsto M_{22}$ by the values

$$
S\left(3-4 x+x^{2}\right)=\left[\begin{array}{cc}
1 & -3 \\
2 & 0
\end{array}\right] \quad S\left(12-13 x+x^{3}\right)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

To illustrate a sample computation of S, consider $q(x)=9-6 x-5 x^{2}+2 x^{3}$. Verify that $q(x)$ is an element of W (does it have roots at $x=1$ and $x=3$?), then find the scalars needed to write it as a linear combination of the basis vectors in C. Because

$$
q(x)=9-6 x-5 x^{2}+2 x^{3}=(-5)\left(3-4 x+x^{2}\right)+(2)\left(12-13 x+x^{3}\right)
$$

Theorem LTDB 450 gives us

$$
S(q)=(-5)\left[\begin{array}{cc}
1 & -3 \\
2 & 0
\end{array}\right]+(2)\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-5 & 17 \\
-8 & 0
\end{array}\right]
$$

And all the other outputs of S could be computed in the same manner. Every output of S will have a zero in the second row, second column. Can you see why this is so?

Subsection PI
 Pre-Images

The definition of a function requires that for each input in the domain there is exactly one output in the codomain. However, the correspondence does not have to behave the other way around. A member of the codomain might have many inputs from the domain that create it, or it may have none at all. To formalize our discussion of this aspect of linear transformations, we define the pre-image.

Definition PI

Pre-Image

Suppose that $T: U \mapsto V$ is a linear transformation. For each \mathbf{v}, define the pre-image of \mathbf{v} to be the subset of U given by

$$
T^{-1}(\mathbf{v})=\{\mathbf{u} \in U \mid T(\mathbf{u})=\mathbf{v}\}
$$

In other words, $T^{-1}(\mathbf{v})$ is the set of all those vectors in the domain U that get "sent" to the vector \mathbf{v}. TODO: All preimages form a partition of U, an equivalence relation is about. Maybe to exercises.

Example SPIAS

Sample pre-images, Archetype S

Archetype S 759 is the linear transformation defined by

$$
T: \mathbb{C}^{3} \mapsto M_{22}, \quad T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{cc}
a-b & 2 a+2 b+c \\
3 a+b+c & -2 a-6 b-2 c
\end{array}\right]
$$

We could compute a pre-image for every element of the codomain M_{22}. However, even in a free textbook, we do not have the room to do that, so we will compute just two.

Choose

$$
\mathbf{v}=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right] \in M_{22}
$$

for no particular reason. What is $T^{-1}(\mathbf{v})$? Suppose $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right] \in T^{-1}(\mathbf{v})$. That $T(\mathbf{u})=\mathbf{v}$ becomes

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right]=\mathbf{v}=T(\mathbf{u})=T\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)=\left[\begin{array}{cc}
u_{1}-u_{2} & 2 u_{1}+2 u_{2}+u_{3} \\
3 u_{1}+u_{2}+u_{3} & -2 u_{1}-6 u_{2}-2 u_{3}
\end{array}\right]
$$

Using matrix equality Definition ME (177), we arrive at a system of four equations in the three unknowns u_{1}, u_{2}, u_{3} with an augmented matrix that we can row-reduce in the hunt for solutions,

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 2 \\
2 & 2 & 1 & 1 \\
3 & 1 & 1 & 3 \\
-2 & -6 & -2 & 2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 0 & \frac{1}{4} & \frac{5}{4} \\
0 & \begin{array}{|c}
1 \\
4
\end{array} & \frac{1}{4} & -\frac{3}{4} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We recognize this system as having infinitely many solutions described by the single free variable u_{3}. Eventually obtaining the vector form of the solutions (Theorem VFSLS [96]), we can describe the preimage precisely as,

$$
\begin{aligned}
T^{-1}(\mathbf{v}) & =\left\{\mathbf{u} \in \mathbb{C}^{3} \mid T(\mathbf{u})=\mathbf{v}\right\} \\
& =\left\{\left.\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \right\rvert\, u_{1}=\frac{5}{4}-\frac{1}{4} u_{3}, u_{2}=-\frac{3}{4}-\frac{1}{4} u_{3}\right\} \\
& =\left\{\left.\left[\begin{array}{c}
\frac{5}{4}-\frac{1}{4} u_{3} \\
-\frac{3}{4}-\frac{1}{4} u_{3} \\
u_{3}
\end{array}\right] \right\rvert\, u_{3} \in \mathbb{C}^{3}\right\} \\
& =\left\{\left.\left[\begin{array}{c}
\frac{5}{4} \\
-\frac{3}{4} \\
0
\end{array}\right]+u_{3}\left[\begin{array}{c}
-\frac{1}{4} \\
-\frac{1}{4} \\
1
\end{array}\right] \right\rvert\, u_{3} \in \mathbb{C}^{3}\right\} \\
& \left.=\left[\begin{array}{c}
\frac{5}{4} \\
-\frac{3}{4} \\
0
\end{array}\right]+\left\langle\left\{\begin{array}{c}
-\frac{1}{4} \\
-\frac{1}{4} \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

This last line is merely a suggestive way of describing the set on the previous line. You might create three or four vectors in the preimage, and evaluate T with each. Was the result what you expected? For a hint of things to come, you might try evaluating T with just the lone vector in the spanning set above. What was the result? Now take a look back at Theorem PSPHS 102. Hmmmm.

OK, let's compute another preimage, but with a different outcome this time. Choose

$$
\mathbf{v}=\left[\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right] \in M_{22}
$$

What is $T^{-1}(\mathbf{v})$? Suppose $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right] \in T^{-1}(\mathbf{v})$. That $T(\mathbf{u})=\mathbf{v}$ becomes

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right]=\mathbf{v}=T(\mathbf{u})=T\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)=\left[\begin{array}{cc}
u_{1}-u_{2} & 2 u_{1}+2 u_{2}+u_{3} \\
3 u_{1}+u_{2}+u_{3} & -2 u_{1}-6 u_{2}-2 u_{3}
\end{array}\right]
$$

Using matrix equality (Definition ME 177), we arrive at a system of four equations in the three unknowns u_{1}, u_{2}, u_{3} with an augmented matrix that we can row-reduce in the hunt for solutions,

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
2 & 2 & 1 & 1 \\
3 & 1 & 1 & 2 \\
-2 & -6 & -2 & 4
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 0 & \frac{1}{4} & 0 \\
0 & 1 & \frac{1}{4} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By Theorem RCLS 50 we recognize this system as inconsistent. So no vector \mathbf{u} is a member of $T^{-1}(\mathbf{v})$ and so

$$
T^{-1}(\mathbf{v})=\emptyset
$$

The preimage is just a set, it is almost never a subspace of U (you might think about just when $T^{-1}(\mathbf{v})$ is a subspace, see Exercise ILT.T10 475). We will describe its properties going forward, and it will be central to the main ideas of this chapter.

Subsection NLTFO
 New Linear Transformations From Old

We can combine linear transformations in natural ways to create new linear transformations. So we will define these combinations and then prove that the results really are still linear transformations. First the sum of two linear transformations.

Definition LTA

Linear Transformation Addition

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then their sum is the function $T+S: U \mapsto V$ whose outputs are defined by

$$
(T+S)(\mathbf{u})=T(\mathbf{u})+S(\mathbf{u})
$$

Notice that the first plus sign in the definition is the operation being defined, while the second one is the vector addition in V. (Vector addition in U will appear just now in the proof that $T+S$ is a linear transformation.) Definition LTA 454 only provides a function. It would be nice to know that when the constituents (T, S) are linear transformations, then so too is $T+S$.

Theorem SLTLT

Sum of Linear Transformations is a Linear Transformation

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are two linear transformations with the same domain and codomain. Then $T+S: U \mapsto V$ is a linear transformation.

Proof We simply check the defining properties of a linear transformation (Definition LT 441). This is a good place to consistently ask yourself which objects are being combined with which operations.

$$
\begin{aligned}
(T+S)(\mathbf{x}+\mathbf{y}) & =T(\mathbf{x}+\mathbf{y})+S(\mathbf{x}+\mathbf{y}) & & \text { Definition LTA 454 } \\
& =T(\mathbf{x})+T(\mathbf{y})+S(\mathbf{x})+S(\mathbf{y}) & & \text { Definition LT 441 } \\
& =T(\mathbf{x})+S(\mathbf{x})+T(\mathbf{y})+S(\mathbf{y}) & & \text { Property C 275 in } V \\
& =(T+S)(\mathbf{x})+(T+S)(\mathbf{y}) & & \text { Definition LTA 454 }
\end{aligned}
$$

and

$$
\begin{aligned}
(T+S)(\alpha \mathbf{x}) & =T(\alpha \mathbf{x})+S(\alpha \mathbf{x}) & & \text { Definition LTA 454 } \\
& =\alpha T(\mathbf{x})+\alpha S(\mathbf{x}) & & \text { Definition LT } 441 \\
& =\alpha(T(\mathbf{x})+S(\mathbf{x})) & & \text { Property DVA } 276 \text { in } V \\
& =\alpha(T+S)(\mathbf{x}) & & \text { Definition LTA } 454
\end{aligned}
$$

Example STLT

Sum of two linear transformations
Suppose that $T: \mathbb{C}^{2} \mapsto \mathbb{C}^{3}$ and $S: \mathbb{C}^{2} \mapsto \mathbb{C}^{3}$ are defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
3 x_{1}-4 x_{2} \\
5 x_{1}+2 x_{2}
\end{array}\right] \quad S\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
4 x_{1}-x_{2} \\
x_{1}+3 x_{2} \\
-7 x_{1}+5 x_{2}
\end{array}\right]
$$

Then by Definition LTA 454, we have

$$
(T+S)\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)+S\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
3 x_{1}-4 x_{2} \\
5 x_{1}+2 x_{2}
\end{array}\right]+\left[\begin{array}{c}
4 x_{1}-x_{2} \\
x_{1}+3 x_{2} \\
-7 x_{1}+5 x_{2}
\end{array}\right]=\left[\begin{array}{c}
5 x_{1}+x_{2} \\
4 x_{1}-x_{2} \\
-2 x_{1}+7 x_{2}
\end{array}\right]
$$

and by Theorem SLTLT 454 we know $T+S$ is also a linear transformation from \mathbb{C}^{2} to \mathbb{C}^{3}.

Definition LTSM

Linear Transformation Scalar Multiplication

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then the scalar multiple is the function $\alpha T: U \mapsto V$ whose outputs are defined by

$$
(\alpha T)(\mathbf{u})=\alpha T(\mathbf{u})
$$

Given that T is a linear transformation, it would be nice to know that αT is also a linear transformation.

Theorem MLTLT

Multiple of a Linear Transformation is a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation and $\alpha \in \mathbb{C}$. Then $(\alpha T): U \mapsto V$ is a linear transformation.

Proof We simply check the defining properties of a linear transformation (Definition LT 441). This is another good place to consistently ask yourself which objects are being combined with which operations.

$$
\begin{aligned}
(\alpha T)(\mathbf{x}+\mathbf{y}) & =\alpha(T(\mathbf{x}+\mathbf{y})) & & \text { Definition LTSM 455 } \\
& =\alpha(T(\mathbf{x})+T(\mathbf{y})) & & \text { Definition LT 441 } \\
& =\alpha T(\mathbf{x})+\alpha T(\mathbf{y}) & & \text { Property DVA 276 in } V \\
& =(\alpha T)(\mathbf{x})+(\alpha T)(\mathbf{y}) & & \text { Definition LTSM 455 }
\end{aligned}
$$

and

$$
\begin{aligned}
(\alpha T)(\beta \mathbf{x}) & =\alpha T(\beta \mathbf{x}) \\
& =\alpha(\beta T(\mathbf{x})) \\
& =(\alpha \beta) T(\mathbf{x}) \\
& =(\beta \alpha) T(\mathbf{x}) \\
& =\beta(\alpha T(\mathbf{x})) \\
& =\beta((\alpha T)(\mathbf{x}))
\end{aligned}
$$

Definition LTSM 455
Definition LT 441
Property SMA 276 in V
Commutativity in \mathbb{C}
Property SMA 276 in V
Definition LTSM 455

Example SMLT

Scalar multiple of a linear transformation

Suppose that $T: \mathbb{C}^{4} \mapsto \mathbb{C}^{3}$ is defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2}-x_{3}+2 x_{4} \\
x_{1}+5 x_{2}-3 x_{3}+x_{4} \\
-2 x_{1}+3 x_{2}-4 x_{3}+2 x_{4}
\end{array}\right]
$$

For the sake of an example, choose $\alpha=2$, so by Definition LTSM 455, we have

$$
\alpha T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=2 T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=2\left[\begin{array}{c}
x_{1}+2 x_{2}-x_{3}+2 x_{4} \\
x_{1}+5 x_{2}-3 x_{3}+x_{4} \\
-2 x_{1}+3 x_{2}-4 x_{3}+2 x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}+4 x_{2}-2 x_{3}+4 x_{4} \\
2 x_{1}+10 x_{2}-6 x_{3}+2 x_{4} \\
-4 x_{1}+6 x_{2}-8 x_{3}+4 x_{4}
\end{array}\right]
$$

and by Theorem MLTLT 455 we know $2 T$ is also a linear transformation from \mathbb{C}^{4} to \mathbb{C}^{3}.
Now, let's imagine we have two vector spaces, U and V, and we collect every possible linear transformation from U to V into one big set, and call it LT (U, V). Definition LTA 454 and Definition LTSM 455 tell us how we can "add" and "scalar multiply" two elements of LT (U, V). Theorem SLTLT 454 and Theorem MLTLT 455 tell us that if we do these operations, then the resulting functions are linear transformations that are also in $\operatorname{LT}(U, V)$. Hmmmm, sounds like a vector space to me! A set of objects, an addition and a scalar multiplication. Why not?

Theorem VSLT

Vector Space of Linear Transformations

Suppose that U and V are vector spaces. Then the set of all linear transformations from U to V, LT (U, V) is a vector space when the operations are those given in Definition LTA 454 and Definition LTSM 455.

Proof Theorem SLTLT 454 and Theorem MLTLT 455 provide two of the ten properties in Definition VS 275. However, we still need to verify the remaining eight properties. By and large, the proofs are straightforward and rely on concocting the obvious object, or by reducing the question to the same vector space property in the vector space V.

The zero vector is of some interest, though. What linear transformation would we add to any other linear transformation, so as to keep the second one unchanged? The answer is $Z: U \mapsto V$ defined by $Z(\mathbf{u})=\mathbf{0}_{V}$ for every $\mathbf{u} \in U$. Notice how we do not need to know any specifics about U and V to make this definition.

Definition LTC

Linear Transformation Composition

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then the composition of S and T is the function $(S \circ T): U \mapsto W$ whose outputs are defined by

$$
(S \circ T)(\mathbf{u})=S(T(\mathbf{u}))
$$

Given that T and S are linear transformations, it would be nice to know that $S \circ T$ is also a linear transformation.

Theorem CLTLT

Composition of Linear Transformations is a Linear Transformation

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then $(S \circ T): U \mapsto W$ is a linear transformation.

Proof We simply check the defining properties of a linear transformation (Definition LT 441).

$$
\begin{aligned}
(S \circ T)(\mathbf{x}+\mathbf{y}) & =S(T(\mathbf{x}+\mathbf{y})) \\
& =S(T(\mathbf{x})+T(\mathbf{y})) \\
& =S(T(\mathbf{x}))+S(T(\mathbf{y})) \\
& =(S \circ T)(\mathbf{x})+(S \circ T)(\mathbf{y})
\end{aligned}
$$

Definition LTC 456
Definition LT 441 for T
Definition LT 441 for S
Definition LTC 456
and

$$
\begin{aligned}
(S \circ T)(\alpha \mathbf{x}) & =S(T(\alpha \mathbf{x})) & & \text { Definition LTC 456 } \\
& =S(\alpha T(\mathbf{x})) & & \text { Definition LT 441 for } T \\
& =\alpha S(T(\mathbf{x})) & & \text { Definition LT 441 for } S \\
& =\alpha(S \circ T)(\mathbf{x}) & & \text { Definition LTC 456 }
\end{aligned}
$$

Example CTLT

Composition of two linear transformations

Suppose that $T: \mathbb{C}^{2} \mapsto \mathbb{C}^{4}$ and $S: \mathbb{C}^{4} \mapsto \mathbb{C}^{3}$ are defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
3 x_{1}-4 x_{2} \\
5 x_{1}+2 x_{2} \\
6 x_{1}-3 x_{2}
\end{array}\right]\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2}+x_{3}-x_{4} \\
5 x_{1}-3 x_{2}+8 x_{3}-2 x_{4} \\
-4 x_{1}+3 x_{2}-4 x_{3}+5 x_{4}
\end{array}\right]
$$

Then by Definition LTC 456

$$
\begin{aligned}
(S \circ T)\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) & =S\left(T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)\right) \\
& =S\left(\left[\begin{array}{c}
x_{1}+2 x_{2} \\
3 x_{1}-4 x_{2} \\
5 x_{1}+2 x_{2} \\
6 x_{1}-3 x_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
2\left(x_{1}+2 x_{2}\right)-\left(3 x_{1}-4 x_{2}\right)+\left(5 x_{1}+2 x_{2}\right)-\left(6 x_{1}-3 x_{2}\right) \\
5\left(x_{1}+2 x_{2}\right)-3\left(3 x_{1}-4 x_{2}\right)+8\left(5 x_{1}+2 x_{2}\right)-2\left(6 x_{1}-3 x_{2}\right) \\
-4\left(x_{1}+2 x_{2}\right)+3\left(3 x_{1}-4 x_{2}\right)-4\left(5 x_{1}+2 x_{2}\right)+5\left(6 x_{1}-3 x_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 x_{1}+13 x_{2} \\
24 x_{1}+44 x_{2} \\
15 x_{1}-43 x_{2}
\end{array}\right]
\end{aligned}
$$

and by Theorem CLTLT $456 S \circ T$ is a linear transformation from \mathbb{C}^{2} to \mathbb{C}^{3}.
Here is an interesting exercise that will presage an important result later. In Example STLT 454 compute (via Theorem MLTCV 448) the matrix of T, S and $T+S$. Do you see a relationship between these three matrices?

In Example SMLT 455 compute (via Theorem MLTCV 448) the matrix of T and $2 T$. Do you see a relationship between these two matrices?

Here's the tough one. In Example CTLT 457 compute (via Theorem MLTCV 448) the matrix of T, S and $S \circ T$. Do you see a relationship between these three matrices???

Subsection READ
 Reading Questions
 $\pi+$

1. Is the function below a linear transformation? Why or why not?

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
3 x_{1}-x_{2}+x_{3} \\
8 x_{2}-6
\end{array}\right]
$$

2. Determine the matrix representation of the linear transformation S below.

$$
S: \mathbb{C}^{2} \mapsto \mathbb{C}^{3}, \quad S\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
3 x_{1}+5 x_{2} \\
8 x_{1}-3 x_{2} \\
-4 x_{1}
\end{array}\right]
$$

3. Theorem LTLC 449 has a fairly simple proof. Yet the result itself is very powerful. Comment on why we might say this.

Subsection EXC
 Exercises

C15 The archetypes below are all linear transformations whose domains and codomains are vector spaces of column vectors (Definition VSCV 79]). For each one, compute the matrix representation described in the proof of Theorem MLTCV 448].
Archetype M [741]
Archetype N 744
Archetype O 747
Archetype P 750
Archetype Q 752
Archetype R 756
Contributed by Robert Beezer
C20 Let $\mathbf{w}=\left[\begin{array}{c}-3 \\ 1 \\ 4\end{array}\right]$. Referring to Example MOLT 448, compute $S(\mathbf{w})$ two different ways. First use the definition of S, then compute the matrix-vector product $C \mathbf{w}$ (Definition MVP (189).
Contributed by Robert Beezer Solution 461
C25 Define the linear transformation

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]
$$

Verify that T is a linear transformation.
Contributed by Robert Beezer Solution 461
C26 Verify that the function below is a linear transformation.

$$
T: P_{2} \mapsto \mathbb{C}^{2}, \quad T\left(a+b x+c x^{2}\right)=\left[\begin{array}{c}
2 a-b \\
b+c
\end{array}\right]
$$

Contributed by Robert Beezer Solution 461
C30 Define the linear transformation

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]
$$

Compute the preimages, $T^{-1}\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)$ and $T^{-1}\left(\left[\begin{array}{c}4 \\ -8\end{array}\right]\right)$.
Contributed by Robert Beezer Solution 461
C31 For the linear transformation S compute the pre-images.

$$
\begin{aligned}
S: \mathbb{C}^{3} \mapsto \mathbb{C}^{3}, \quad S\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)= & {\left[\begin{array}{c}
a-2 b-c \\
3 a-b+2 c \\
a+b+2 c
\end{array}\right] } \\
S^{-1}\left(\left[\begin{array}{c}
-2 \\
5 \\
3
\end{array}\right]\right) & S^{-1}\left(\left[\begin{array}{c}
-5 \\
5 \\
7
\end{array}\right]\right)
\end{aligned}
$$

Contributed by Robert Beezer Solution 462
M10 Define two linear transformations, $T: \mathbb{C}^{4} \mapsto \mathbb{C}^{3}$ and $S: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}$ by

$$
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-2 x_{2}+3 x_{3} \\
5 x_{1}+4 x_{2}+2 x_{3}
\end{array}\right] \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{c}
-x_{1}+3 x_{2}+x_{3}+9 x_{4} \\
2 x_{1}+x_{3}+7 x_{4} \\
4 x_{1}+2 x_{2}+x_{3}+2 x_{4}
\end{array}\right]
$$

Using the proof of Theorem MLTCV 448 compute the matrix representations of the three linear transformations T, S and $S \circ T$. Discover and comment on the relationship between these three matrices. Contributed by Robert Beezer Solution 463

Subsection SOL
 Solutions
 ${ }^{1}+$

C20 Contributed by Robert Beezer $\frac{\text { Statement } 459}{\left[\begin{array}{c}9 \\ 2 \\ -9 \\ 4\end{array}\right] .}$
In both cases the result will be $S(\mathbf{w})$
C25 Contributed by Robert Beezer Statement 459
We can rewrite T as follows:

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{c}
2 \\
-4
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{3}\left[\begin{array}{c}
5 \\
-10
\end{array}\right]=\left[\begin{array}{ccc}
2 & -1 & 5 \\
-4 & 2 & -10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

and Theorem MBLT 446 tell us that any function of this form is a linear transformation.
C26 Contributed by Robert Beezer Statement 459
Check the two conditions of Definition LT 441.

$$
\begin{aligned}
T(\mathbf{u}+\mathbf{v}) & =T\left(\left(a+b x+c x^{2}\right)+\left(d+e x+f x^{2}\right)\right) \\
& =T\left((a+d)+(b+e) x+(c+f) x^{2}\right) \\
& =\left[\begin{array}{c}
2(a+d)-(b+e) \\
(b+e)+(c+f)
\end{array}\right] \\
& =\left[\begin{array}{c}
(2 a-b)+(2 d-e) \\
(b+c)+(e+f)
\end{array}\right] \\
& =\left[\begin{array}{c}
2 a-b \\
b+c
\end{array}\right]+\left[\begin{array}{c}
2 d-e \\
e+f
\end{array}\right] \\
& =T(\mathbf{u})+T(\mathbf{v})
\end{aligned}
$$

and

$$
\begin{aligned}
T(\alpha \mathbf{u}) & =T\left(\alpha\left(a+b x+c x^{2}\right)\right) \\
& =T\left((\alpha a)+(\alpha b) x+(\alpha c) x^{2}\right) \\
& =\left[\begin{array}{c}
2(\alpha a)-(\alpha b) \\
(\alpha b)+(\alpha c)
\end{array}\right] \\
& =\left[\begin{array}{c}
\alpha(2 a-b) \\
\alpha(b+c)
\end{array}\right] \\
& =\alpha\left[\begin{array}{c}
2 a-b \\
b+c
\end{array}\right] \\
& =\alpha T(\mathbf{u})
\end{aligned}
$$

So T is indeed a linear transformation.
C30 Contributed by Robert Beezer Statement 459
For the first pre-image, we want $\mathbf{x} \in \mathbb{C}^{3}$ such that $T(\mathbf{x})=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. This becomes,

$$
\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Vector equality gives a system of two linear equations in three variables, represented by the augmented matrix

$$
\left[\begin{array}{cccc}
2 & -1 & 5 & 2 \\
-4 & 2 & -10 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{[1} & -\frac{1}{2} & \frac{5}{2} & 0 \\
0 & 0 & 0 & 1 \\
0
\end{array}\right]
$$

so the system is inconsistent and the pre-image is the empty set. For the second pre-image the same procedure leads to an augmented matrix with a different vector of constants

$$
\left[\begin{array}{cccc}
2 & -1 & 5 & 4 \\
-4 & 2 & -10 & -8
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{[1} & -\frac{1}{2} & \frac{5}{2} & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This system is consistent and has infinitely many solutions, as we can see from the presence of the two free variables (x_{2} and x_{3}) both to zero. We apply Theorem VFSLS 96 to obtain

$$
T^{-1}\left(\left[\begin{array}{c}
4 \\
-8
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-\frac{5}{2} \\
0 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \right\rvert\, x_{2}, x_{3} \in \mathbb{C}\right\}
$$

C31 Contributed by Robert Beezer Statement 459
We work from the definition of the pre-image, Definition PI 452. Setting

$$
S\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
5 \\
3
\end{array}\right]
$$

we arrive at a system of three equations in three variables, with an augmented matrix that we row-reduce in a search for solutions,

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & -2 \\
3 & -1 & 2 & 5 \\
1 & 1 & 2 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

With a leading 1 in the last column, this system is inconsistent Theorem RCLS 50), and there are no values of a, b and c that will create an element of the pre-image. So the preimage is the empty set.

We work from the definition of the pre-image, Definition PI 452 . Setting

$$
S\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{c}
-5 \\
5 \\
7
\end{array}\right]
$$

we arrive at a system of three equations in three variables, with an augmented matrix that we row-reduce in a search for solutions,

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
3 & -1 & 2 & 5 \\
1 & 1 & 2 & 7
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
0 & \boxed{1} & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The solution set to this system, which is also the desired pre-image, can be expressed using the vector form of the solutions (Theorem VFSLS 96)

$$
S^{-1}\left(\left[\begin{array}{c}
-5 \\
5 \\
7
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right]+c\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] \right\rvert\, c \in \mathbb{C}\right\}=\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right]+\left\langle\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]\right\}\right\rangle
$$

Does the final expression for this set remind you of Theorem KPI 470?

M10 Contributed by Robert Beezer Statement 460

$$
\left[\begin{array}{ccc}
1 & -2 & 3 \\
5 & 4 & 2
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & 1 & 9 \\
2 & 0 & 1 & 7 \\
4 & 2 & 1 & 2
\end{array}\right]=\left[\begin{array}{cccc}
7 & 9 & 2 & 1 \\
11 & 19 & 11 & 77
\end{array}\right]
$$

Section ILT
 Injective Linear Transformations

Some linear transformations possess one, or both, of two key properties, which go by the names injective and surjective. We will see that they are closely related to ideas like linear independence and spanning, and subspaces like the null space and the column space. In this section we will define an injective linear transformation and analyze the resulting consequences. The next section will do the same for the surjective property. In the final section of this chapter we will see what happens when we have the two properties simultaneously.

As usual, we lead with a definition.

Definition ILT

Injective Linear Transformation

Suppose $T: U \mapsto V$ is a linear transformation. Then T is injective if whenever $T(\mathbf{x})=T(\mathbf{y})$, then $\mathbf{x}=\mathbf{y}$.

Given an arbitrary function, it is possible for two different inputs to yield the same output (think about the function $f(x)=x^{2}$ and the inputs $x=3$ and $x=-3$). For an injective function, this never happens. If we have equal outputs $(T(\mathbf{x})=T(\mathbf{y}))$ then we must have achieved those equal outputs by employing equal inputs $(\mathbf{x}=\mathbf{y})$. Some authors prefer the term one-to-one where we use injective, and we will sometimes refer to an injective linear transformation as an injection.

Subsection EILT
 Examples of Injective Linear Transformations

It is perhaps most instructive to examine a linear transformation that is not injective first.

Example NIAQ

Not injective, Archetype Q
Archetype Q 752 is the linear transformation

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
-2 x_{1}+3 x_{2}+3 x_{3}-6 x_{4}+3 x_{5} \\
-16 x_{1}+9 x_{2}+12 x_{3}-28 x_{4}+28 x_{5} \\
-19 x_{1}+7 x_{2}+14 x_{3}-32 x_{4}+37 x_{5} \\
-21 x_{1}+9 x_{2}+15 x_{3}-35 x_{4}+39 x_{5} \\
-9 x_{1}+5 x_{2}+7 x_{3}-16 x_{4}+16 x_{5}
\end{array}\right]
$$

Notice that for

$$
\mathbf{x}=\left[\begin{array}{c}
1 \\
3 \\
-1 \\
2 \\
4
\end{array}\right]
$$

$$
\mathbf{y}=\left[\begin{array}{l}
4 \\
7 \\
0 \\
5 \\
7
\end{array}\right]
$$

we have

$$
T\left(\left[\begin{array}{c}
1 \\
3 \\
-1 \\
2 \\
4
\end{array}\right]\right)=\left[\begin{array}{c}
4 \\
55 \\
72 \\
77 \\
31
\end{array}\right]
$$

$$
T\left(\left[\begin{array}{l}
4 \\
7 \\
0 \\
5 \\
7
\end{array}\right]\right)=\left[\begin{array}{c}
4 \\
55 \\
72 \\
77 \\
31
\end{array}\right]
$$

So we have two vectors from the domain, $\mathbf{x} \neq \mathbf{y}$, yet $T(\mathbf{x})=T(\mathbf{y})$, in violation of Definition ILT 465. This is another example where you should not concern yourself with how \mathbf{x} and \mathbf{y} were selected, as this will be explained shortly. However, do understand why these two vectors provide enough evidence to conclude that T is not injective.

To show that a linear transformation is not injective, it is enough to find a single pair of inputs that get sent to the identical output, as in Example NIAQ 465 . However, to show that a linear transformation is injective we must establish that this coincidence of outputs never occurs. Here is an example that shows how to establish this.

Example IAR

Injective, Archetype R

Archetype R 756 is the linear transformation

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
-65 x_{1}+128 x_{2}+10 x_{3}-262 x_{4}+40 x_{5} \\
36 x_{1}-73 x_{2}-x_{3}+151 x_{4}-16 x_{5} \\
-44 x_{1}+88 x_{2}+5 x_{3}-180 x_{4}+24 x_{5} \\
34 x_{1}-68 x_{2}-3 x_{3}+140 x_{4}-18 x_{5} \\
12 x_{1}-24 x_{2}-x_{3}+49 x_{4}-5 x_{5}
\end{array}\right]
$$

To establish that R is injective we must begin with the assumption that $T(\mathbf{x})=T(\mathbf{y})$ and somehow arrive from this at the conclusion that $\mathbf{x}=\mathbf{y}$. Here we go,

$$
\begin{aligned}
& T(\mathbf{x})=T(\mathbf{y}) \\
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]\right) \\
& {\left[\begin{array}{c}
-65 x_{1}+128 x_{2}+10 x_{3}-262 x_{4}+40 x_{5} \\
36 x_{1}-73 x_{2}-x_{3}+151 x_{4}-16 x_{5} \\
-44 x_{1}+88 x_{2}+5 x_{3}-180 x_{4}+24 x_{5} \\
34 x_{1}-68 x_{2}-3 x_{3}+140 x_{4}-18 x_{5} \\
12 x_{1}-24 x_{2}-x_{3}+49 x_{4}-5 x_{5}
\end{array}\right]=\left[\begin{array}{c}
-65 y_{1}+128 y_{2}+10 y_{3}-262 y_{4}+40 y_{5} \\
36 y_{1}-73 y_{2}-y_{3}+151 y_{4}-16 y_{5} \\
-44 y_{1}+88 y_{2}+5 y_{3}-180 y_{4}+24 y_{5} \\
34 y_{1}-68 y_{2}-3 y_{3}+140 y_{4}-18 y_{5} \\
12 y_{1}-24 y_{2}-y_{3}+49 y_{4}-5 y_{5}
\end{array}\right]} \\
& {\left[\begin{array}{c}
-65 x_{1}+128 x_{2}+10 x_{3}-262 x_{4}+40 x_{5} \\
36 x_{1}-73 x_{2}-x_{3}+151 x_{4}-16 x_{5} \\
-44 x_{1}+88 x_{2}+5 x_{3}-180 x_{4}+24 x_{5} \\
34 x_{1}-68 x_{2}-3 x_{3}+140 x_{4}-18 x_{5} \\
12 x_{1}-24 x_{2}-x_{3}+49 x_{4}-5 x_{5}
\end{array}\right]-\left[\begin{array}{c}
-65 y_{1}+128 y_{2}+10 y_{3}-262 y_{4}+40 y_{5} \\
36 y_{1}-73 y_{2}-y_{3}+151 y_{4}-16 y_{5} \\
-44 y_{1}+88 y_{2}+5 y_{3}-180 y_{4}+24 y_{5} \\
34 y_{1}-68 y_{2}-3 y_{3}+140 y_{4}-18 y_{5} \\
12 y_{1}-24 y_{2}-y_{3}+49 y_{4}-5 y_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{c}
-65\left(x_{1}-y_{1}\right)+128\left(x_{2}-y_{2}\right)+10\left(x_{3}-y_{3}\right)-262\left(x_{4}-y_{4}\right)+40\left(x_{5}-y_{5}\right) \\
36\left(x_{1}-y_{1}\right)-73\left(x_{2}-y_{2}\right)-\left(x_{3}-y_{3}\right)+151\left(x_{4}-y_{4}\right)-16\left(x_{5}-y_{5}\right) \\
-44\left(x_{1}-y_{1}\right)+88\left(x_{2}-y_{2}\right)+5\left(x_{3}-y_{3}\right)-180\left(x_{4}-y_{4}\right)+24\left(x_{5}-y_{5}\right) \\
34\left(x_{1}-y_{1}\right)-68\left(x_{2}-y_{2}\right)-3\left(x_{3}-y_{3}\right)+140\left(x_{4}-y_{4}\right)-18\left(x_{5}-y_{5}\right) \\
12\left(x_{1}-y_{1}\right)-24\left(x_{2}-y_{2}\right)-\left(x_{3}-y_{3}\right)+49\left(x_{4}-y_{4}\right)-5\left(x_{5}-y_{5}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
-65 & 128 & 10 & -262 & 40 \\
36 & -73 & -1 & 151 & -16 \\
-44 & 88 & 5 & -180 & 24 \\
34 & -68 & -3 & 140 & -18 \\
12 & -24 & -1 & 49 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1}-y_{1} \\
x_{2}-y_{2} \\
x_{3}-y_{3} \\
x_{4}-y_{4} \\
x_{5}-y_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Now we recognize that we have a homogeneous system of 5 equations in 5 variables (the terms $x_{i}-y_{i}$ are
the variables), so we row-reduce the coefficient matrix to

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}\right]
$$

So the only solution is the trivial solution

$$
\begin{array}{cccc}
x_{1}-y_{1}=0 & x_{2}-y_{2}=0 & x_{3}-y_{3}=0 & x_{4}-y_{4}=0
\end{array} x_{5}-y_{5}=0
$$

and we conclude that indeed $\mathbf{x}=\mathbf{y}$. By Definition ILT 465, T is injective.
Let's now examine an injective linear transformation between abstract vector spaces.

Example IAV

Injective, Archetype V

Archetype V 766 is defined by

$$
T: P_{3} \mapsto M_{22}, \quad T\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
a+b & a-2 c \\
d & b-d
\end{array}\right]
$$

To establish that the linear transformation is injective, begin by supposing that two polynomial inputs yield the same output matrix,

$$
T\left(a_{1}+b_{1} x+c_{1} x^{2}+d_{1} x^{3}\right)=T\left(a_{2}+b_{2} x+c_{2} x^{2}+d_{2} x^{3}\right)
$$

Then

$$
\begin{array}{rlrl}
\mathcal{O} & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] & \\
& =T\left(a_{1}+b_{1} x+c_{1} x^{2}+d_{1} x^{3}\right)-T\left(a_{2}+b_{2} x+c_{2} x^{2}+d_{2} x^{3}\right) & & \text { Hypothesis } \\
& =T\left(\left(a_{1}+b_{1} x+c_{1} x^{2}+d_{1} x^{3}\right)-\left(a_{2}+b_{2} x+c_{2} x^{2}+d_{2} x^{3}\right)\right) & & \text { Definition LT 441 } \\
& =T\left(\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) x+\left(c_{1}-c_{2}\right) x^{2}+\left(d_{1}-d_{2}\right) x^{3}\right) & & \text { Operations in } P_{3} \\
& =\left[\begin{array}{cc}
\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) & \left(a_{1}-a_{2}\right)-2\left(c_{1}-c_{2}\right) \\
\left(d_{1}-d_{2}\right) & \left(b_{1}-b_{2}\right)-\left(d_{1}-d_{2}\right)
\end{array}\right] & & \text { Definition of } T
\end{array}
$$

This single matrix equality translates to the homogeneous system of equations in the variables $a_{i}-b_{i}$,

$$
\begin{aligned}
\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) & =0 \\
\left(a_{1}-a_{2}\right)-2\left(c_{1}-c_{2}\right) & =0 \\
\left(d_{1}-d_{2}\right) & =0 \\
\left(b_{1}-b_{2}\right)-\left(d_{1}-d_{2}\right) & =0
\end{aligned}
$$

This system of equations can be rewritten as the matrix equation

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
\left(a_{1}-a_{2}\right) \\
\left(b_{1}-b_{2}\right) \\
\left(c_{1}-c_{2}\right) \\
\left(d_{1}-d_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Since the coefficient matrix is nonsingular (check this) the only solution is trivial, i.e.

$$
\begin{array}{clll}
a_{1}-a_{2}=0 & b_{1}-b_{2}=0 & c_{1}-c_{2}=0 & d_{1}-d_{2}=0
\end{array}
$$

so that

$$
\begin{array}{llll}
a_{1}=a_{2} & b_{1}=b_{2} & c_{1}=c_{2} & d_{1}=d_{2}
\end{array}
$$

so the two inputs must be equal polynomials. By Definition ILT 465, T is injective.

Subsection KLT

Kernel of a Linear Transformation

For a linear transformation $T: U \mapsto V$, the kernel is a subset of the domain U. Informally, it is the set of all inputs that the transformation sends to the zero vector of the codomain. It will have some natural connections with the null space of a matrix, so we will keep the same notation, and if you think about your objects, then there should be little confusion. Here's the careful definition.

Definition KLT

Kernel of a Linear Transformation

Suppose $T: U \mapsto V$ is a linear transformation. Then the kernel of T is the set

$$
\mathcal{K}(T)=\{\mathbf{u} \in U \mid T(\mathbf{u})=\mathbf{0}\}
$$

(This definition contains Notation KLT.)
Notice that the kernel of T is just the preimage of $\mathbf{0}, T^{-1}(\mathbf{0})$ Definition PI 452). Here's an example.

Example NKAO

Nontrivial kernel, Archetype O
Archetype O 747 is the linear transformation

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
-x_{1}+x_{2}-3 x_{3} \\
-x_{1}+2 x_{2}-4 x_{3} \\
x_{1}+x_{2}+x_{3} \\
2 x_{1}+3 x_{2}+x_{3} \\
x_{1}+2 x_{3}
\end{array}\right]
$$

To determine the elements of \mathbb{C}^{3} in $\mathcal{K}(T)$, find those vectors \mathbf{u} such that $T(\mathbf{u})=\mathbf{0}$, that is,

$$
\begin{aligned}
T(\mathbf{u}) & =\mathbf{0} \\
{\left[\begin{array}{c}
-u_{1}+u_{2}-3 u_{3} \\
-u_{1}+2 u_{2}-4 u_{3} \\
u_{1}+u_{2}+u_{3} \\
2 u_{1}+3 u_{2}+u_{3} \\
u_{1}+2 u_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Vector equality Definition CVE 80) leads us to a homogeneous system of 5 equations in the variables u_{i},

$$
\begin{aligned}
-u_{1}+u_{2}-3 u_{3} & =0 \\
-u_{1}+2 u_{2}-4 u_{3} & =0 \\
u_{1}+u_{2}+u_{3} & =0 \\
2 u_{1}+3 u_{2}+u_{3} & =0 \\
u_{1}+2 u_{3} & =0
\end{aligned}
$$

Row-reducing the coefficient matrix gives

$$
\left[\begin{array}{ccc}
{[1} & 0 & 2 \\
0 & \boxed{1} & -1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The kernel of T is the set of solutions to this homogeneous system of equations, which by Theorem BNS 138 can be expressed as

$$
\mathcal{K}(T)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\}\right\rangle
$$

We know that the span of a set of vectors is always a subspace (Theorem SSS 295), so the kernel computed in Example NKAO 468 is also a subspace. This is no accident, the kernel of a linear transformation is always a subspace.

Theorem KLTS

Kernel of a Linear Transformation is a Subspace

Suppose that $T: U \mapsto V$ is a linear transformation. Then the kernel of $T, \mathcal{K}(T)$, is a subspace of U.
Proof We can apply the three-part test of Theorem TSS 290. First $T\left(\mathbf{0}_{U}\right)=\mathbf{0}_{V}$ by Theorem LTTZZ 445, so $\mathbf{0}_{U} \in \mathcal{K}(T)$ and we know that the kernel is non-empty.

Suppose we assume that $\mathbf{x}, \mathbf{y} \in \mathcal{K}(T)$. Is $\mathbf{x}+\mathbf{y} \in \mathcal{K}(T)$?

$$
\begin{aligned}
T(\mathbf{x}+\mathbf{y}) & =T(\mathbf{x})+T(\mathbf{y}) & & \text { Definition LT } 441 \\
& =\mathbf{0}+\mathbf{0} & & \mathbf{x}, \mathbf{y} \in \mathcal{K}(T) \\
& =\mathbf{0} & & \text { Property Z } 276
\end{aligned}
$$

This qualifies $\mathbf{x}+\mathbf{y}$ for membership in $\mathcal{K}(T)$. So we have additive closure.
Suppose we assume that $\alpha \in \mathbb{C}$ and $\mathbf{x} \in \mathcal{K}(T)$. Is $\alpha \mathbf{x} \in \mathcal{K}(T)$?

$$
\begin{aligned}
T(\alpha \mathbf{x}) & =\alpha T(\mathbf{x}) & & \text { Definition LT 441 } \\
& =\alpha \mathbf{0} & & \mathbf{x} \in \mathcal{K}(T) \\
& =\mathbf{0} & & \text { Theorem ZVSM } 282
\end{aligned}
$$

This qualifies $\alpha \mathbf{x}$ for membership in $\mathcal{K}(T)$. So we have scalar closure and Theorem TSS 290 tells us that $\mathcal{K}(T)$ is a subspace of U.

Let's compute another kernel, now that we know in advance that it will be a subspace.

Example TKAP

Trivial kernel, Archetype P

Archetype P 750 is the linear transformation

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
-x_{1}+x_{2}+x_{3} \\
-x_{1}+2 x_{2}+2 x_{3} \\
x_{1}+x_{2}+3 x_{3} \\
2 x_{1}+3 x_{2}+x_{3} \\
-2 x_{1}+x_{2}+3 x_{3}
\end{array}\right]
$$

To determine the elements of \mathbb{C}^{3} in $\mathcal{K}(T)$, find those vectors \mathbf{u} such that $T(\mathbf{u})=\mathbf{0}$, that is,

$$
\begin{aligned}
T(\mathbf{u}) & =\mathbf{0} \\
{\left[\begin{array}{c}
-u_{1}+u_{2}+u_{3} \\
-u_{1}+2 u_{2}+2 u_{3} \\
u_{1}+u_{2}+3 u_{3} \\
2 u_{1}+3 u_{2}+u_{3} \\
-2 u_{1}+u_{2}+3 u_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Vector equality (Definition CVE 80) leads us to a homogeneous system of 5 equations in the variables u_{i},

$$
\begin{aligned}
-u_{1}+u_{2}+u_{3} & =0 \\
-u_{1}+2 u_{2}+2 u_{3} & =0 \\
u_{1}+u_{2}+3 u_{3} & =0 \\
2 u_{1}+3 u_{2}+u_{3} & =0 \\
-2 u_{1}+u_{2}+3 u_{3} & =0
\end{aligned}
$$

Row-reducing the coefficient matrix gives

$$
\left[\begin{array}{ccc}
\boxed{1} & 0 & 0 \\
0 & \boxed{1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The kernel of T is the set of solutions to this homogeneous system of equations, which is simply the trivial solution $\mathbf{u}=\mathbf{0}$, so

$$
\mathcal{K}(T)=\{\mathbf{0}\}=\langle\{ \}\rangle
$$

Our next theorem says that if a preimage is a non-empty set then we can construct it by picking any one element and adding on elements of the kernel.

Theorem KPI

Kernel and Pre-Image

Suppose $T: U \mapsto V$ is a linear transformation and $\mathbf{v} \in V$. If the preimage $T^{-1}(\mathbf{v})$ is non-empty, and $\mathbf{u} \in T^{-1}(\mathbf{v})$ then

$$
T^{-1}(\mathbf{v})=\{\mathbf{u}+\mathbf{z} \mid \mathbf{z} \in \mathcal{K}(T)\}=\mathbf{u}+\mathcal{K}(T)
$$

Proof Let $M=\{\mathbf{u}+\mathbf{z} \mid \mathbf{z} \in \mathcal{K}(T)\}$. First, we show that $M \subseteq T^{-1}(\mathbf{v})$. Suppose that $\mathbf{w} \in M$, so \mathbf{w} has the form $\mathbf{w}=\mathbf{u}+\mathbf{z}$, where $\mathbf{z} \in \mathcal{K}(T)$. Then

$$
\begin{array}{rlrl}
T(\mathbf{w}) & =T(\mathbf{u}+\mathbf{z}) & \\
& =T(\mathbf{u})+T(\mathbf{z}) & & \text { Definition LT 441 } \\
& =\mathbf{v}+\mathbf{0} & & \mathbf{u} \in T^{-1}(\mathbf{v}), \mathbf{z} \in \mathcal{K}(T) \\
& =\mathbf{v} & & \text { Property Z } 276
\end{array}
$$

which qualifies \mathbf{w} for membership in the preimage of $\mathbf{v}, \mathbf{w} \in T^{-1}(\mathbf{v})$.
For the opposite inclusion, suppose $\mathbf{x} \in T^{-1}(\mathbf{v})$. Then,

$$
T(\mathbf{x}-\mathbf{u})=T(\mathbf{x})-T(\mathbf{u}) \quad \text { Definition LT } 441
$$

$$
\begin{aligned}
& =\mathbf{v}-\mathbf{v} \quad \mathbf{x}, \mathbf{u} \in T^{-1}(\mathbf{v}) \\
& =\mathbf{0}
\end{aligned}
$$

This qualifies $\mathbf{x}-\mathbf{u}$ for membership in the kernel of $T, \mathcal{K}(T)$. So there is a vector $\mathbf{z} \in \mathcal{K}(T)$ such that $\mathbf{x}-\mathbf{u}=\mathbf{z}$. Rearranging this equation gives $\mathbf{x}=\mathbf{u}+\mathbf{z}$ and so $\mathbf{x} \in M$. So $T^{-1}(\mathbf{v}) \subseteq M$ and we see that $M=T^{-1}(\mathbf{v})$, as desired.

This theorem, and its proof, should remind you very much of Theorem PSPHS 102. Additionally, you might go back and review Example SPIAS 452. Can you tell now which is the only preimage to be a subspace?

The next theorem is one we will cite frequently, as it characterizes injections by the size of the kernel.

Theorem KILT

Kernel of an Injective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is injective if and only if the kernel of T is trivial, $\mathcal{K}(T)=\{\mathbf{0}\}$.

Proof (\Rightarrow) Suppose $\mathbf{x} \in \mathcal{K}(T)$. Then by Definition KLT [468, $T(\mathbf{x})=\mathbf{0}$. By Theorem LTTZZ 445], $T(\mathbf{0})=\mathbf{0}$. Now, since $T(\mathbf{x})=T(\mathbf{0})$, we can apply Definition ILT 465 to conclude that $\mathbf{x}=\mathbf{0}$. Therefore $\mathcal{K}(T)=\{\mathbf{0}\}$.
(\Leftarrow) To establish that T is injective, appeal to Definition ILT 465 and begin with the assumption that $T(\mathbf{x})=T(\mathbf{y})$. Then

$$
\begin{aligned}
\mathbf{0} & =T(\mathbf{x})-T(\mathbf{y}) & & \text { Hypothesis } \\
& =T(\mathbf{x}-\mathbf{y}) & & \text { Definition LT } 441
\end{aligned}
$$

so by Definition KLT 468 and the hypothesis that the kernel is trivial,

$$
\mathbf{x}-\mathbf{y} \in \mathcal{K}(T)=\{\mathbf{0}\}
$$

which means that

$$
\begin{aligned}
& \mathbf{0}=\mathbf{x}-\mathbf{y} \\
& \mathbf{x}=\mathbf{y}
\end{aligned}
$$

thus establishing that T is injective.

Example NIAQR

Not injective, Archetype Q, revisited

We are now in a position to revisit our first example in this section, Example NIAQ 465. In that example, we showed that Archetype Q 752 is not injective by constructing two vectors, which when used to evaluate the linear transformation provided the same output, thus violating Definition ILT [465]. Just where did those two vectors come from?

The key is the vector

$$
\mathbf{z}=\left[\begin{array}{l}
3 \\
4 \\
1 \\
3 \\
3
\end{array}\right]
$$

which you can check is an element of $\mathcal{K}(T)$ for Archetype Q 752. Choose a vector \mathbf{x} at random, and then compute $\mathbf{y}=\mathbf{x}+\mathbf{z}$ (verify this computation back in Example NIAQ 465). Then

$$
T(\mathbf{y})=T(\mathbf{x}+\mathbf{z})
$$

$$
\begin{array}{ll}
=T(\mathbf{x})+T(\mathbf{z}) & \\
=T(\mathbf{x})+\mathbf{0} & \\
=T(\mathbf{x}) &
\end{array}
$$

Whenever the kernel of a linear transformation is non-trivial, we can employ this device and conclude that the linear transformation is not injective. This is another way of viewing Theorem KILT 471. For an injective linear transformation, the kernel is trivial and our only choice for \mathbf{z} is the zero vector, which will not help us create two different inputs for T that yield identical outputs. For every one of the archetypes that is not injective, there is an example presented of exactly this form.

Example NIAO

Not injective, Archetype O
In Example NKAO 468 the kernel of Archetype O 747 was determined to be

$$
\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\}\right\rangle
$$

a subspace of \mathbb{C}^{3} with dimension 1 . Since the kernel is not trivial, Theorem KILT 471 tells us that T is not injective.

Example IAP

Injective, Archetype \mathbf{P}
In Example TKAP 469 it was shown that the linear transformation in Archetype P 750 has a trivial kernel. So by Theorem KILT 471, T is injective.

Subsection ILTLI Injective Linear Transformations and Linear Independence

There is a connection between injective linear transformations and linear independent sets that we will make precise in the next two theorems. However, more informally, we can get a feel for this connection when we think about how each property is defined. A set of vectors is linearly independent if the only relation of linear dependence is the trivial one. A linear transformation is injective if the only way two input vectors can produce the same output is if the trivial way, when both input vectors are equal.

Theorem ILTLI

Injective Linear Transformations and Linear Independence

Suppose that $T: U \mapsto V$ is an injective linear transformation and $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$ is a linearly independent subset of U. Then $R=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{t}\right)\right\}$ is a linearly independent subset of V.

Proof Begin with a relation of linear dependence on R (Definition RLD 305, Definition LI 305),

$$
\begin{array}{rlrl}
a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\ldots+a_{t} T\left(\mathbf{u}_{t}\right) & =\mathbf{0} & & \\
T\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t}\right) & =\mathbf{0} & & \text { Theorem LTLC 449 } \\
a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t} \in \mathcal{K}(T) & & \text { Definition KLT 468 } \\
a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t} \in\{\mathbf{0}\} & & \text { Theorem KILT 471 } \\
a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t}=\mathbf{0} & &
\end{array}
$$

Since this is a relation of linear dependence on the linearly independent set S, we can conclude that

$$
\begin{array}{ccccc}
a_{1}=0 & a_{2}=0 & a_{3}=0 & \ldots & a_{t}=0
\end{array}
$$

and this establishes that R is a linearly independent set.

Theorem ILTB

Injective Linear Transformations and Bases

Suppose that $T: U \mapsto V$ is a linear transformation and $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}$ is a basis of U. Then T is injective if and only if $C=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{m}\right)\right\}$ is a linearly independent subset of V.

Proof (\Rightarrow) Assume T is injective. Since B is a basis, we know B is linearly independent Definition B [321). Then Theorem ILTLI 472 says that C is a linearly independent subset of V.
(\Leftarrow) Assume that C is linearly independent. To establish that T is injective, we will show that the kernel of T is trivial Theorem KILT 471). Suppose that $\mathbf{u} \in \mathcal{K}(T)$. As an element of U, we can write \mathbf{u} as a linear combination of the basis vectors in B (uniquely). So there are are scalars, $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$, such that

$$
\mathbf{u}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{m} \mathbf{u}_{m}
$$

Then,

$$
\begin{aligned}
\mathbf{0} & =T(\mathbf{u}) & & \mathbf{u} \in \mathcal{K}(T) \\
& =T\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{m} \mathbf{u}_{m}\right) & & B \text { spans } U \\
& =a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{m} T\left(\mathbf{u}_{m}\right) & & \text { Theorem LTLC 449 }
\end{aligned}
$$

This is a relation of linear dependence (Definition RLD (305) on the linearly independent set C, so the scalars are all zero: $a_{1}=a_{2}=a_{3}=\cdots=a_{m}=0$. Then

$$
\begin{aligned}
\mathbf{u} & =a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{m} \mathbf{u}_{m} \\
& =0 \mathbf{u}_{1}+0 \mathbf{u}_{2}+0 \mathbf{u}_{3}+\cdots+0 \mathbf{u}_{m} \\
& =\mathbf{0}+\mathbf{0}+\mathbf{0}+\cdots+\mathbf{0} \\
& =\mathbf{0}
\end{aligned}
$$

Theorem ZSSM	282
Theorem ZSSM	282
Property Z 276	

Since \mathbf{u} was chosen as an arbitrary vector from $\mathcal{K}(T)$, we have $\mathcal{K}(T)=\{\mathbf{0}\}$ and Theorem KILT 471 tells us that T is injective.

Subsection ILTD

Injective Linear Transformations and Dimension

Theorem ILTD

Injective Linear Transformations and Dimension

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then $\operatorname{dim}(U) \leq \operatorname{dim}(V)$.
Proof Suppose to the contrary that $m=\operatorname{dim}(U)>\operatorname{dim}(V)=t$. Let B be a basis of U, which will then contain m vectors. Apply T to each element of B to form a set C that is a subset of V. By Theorem ILTB 473, C is linearly independent and therefore must contain m distinct vectors. So we have found a set of m linearly independent vectors in V, a vector space of dimension t, with $m>t$. However, this contradicts Theorem G 349, so our assumption is false and $\operatorname{dim}(U) \leq \operatorname{dim}(V)$.

Example NIDAU

Not injective by dimension, Archetype U

The linear transformation in Archetype U 764 is

$$
T: M_{23} \mapsto \mathbb{C}^{4}, \quad T\left(\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\right)=\left[\begin{array}{c}
a+2 b+12 c-3 d+e+6 f \\
2 a-b-c+d-11 f \\
a+b+7 c+2 d+e-3 f \\
a+2 b+12 c+5 e-5 f
\end{array}\right]
$$

Since $\operatorname{dim}\left(M_{23}\right)=6>4=\operatorname{dim}\left(\mathbb{C}^{4}\right), T$ cannot be injective for then T would violate Theorem ILTD 473.
Notice that the previous example made no use of the actual formula defining the function. Merely a comparison of the dimensions of the domain and codomain are enough to conclude that the linear transformation is not injective. Archetype M 741 and Archetype N 744 are two more examples of linear transformations that have "big" domains and "small" codomains, resulting in "collisions" of outputs and thus are non-injective linear transformations.

Subsection CILT
 Composition of Injective Linear Transformations

In Subsection LT.NLTFO 454 we saw how to combine linear transformations to build new linear transformations, specifically, how to build the composition of two linear transformations (Definition LTC 456). It will be useful later to know that the composition of injective linear transformations is again injective, so we prove that here.

Theorem CILTI

Composition of Injective Linear Transformations is Injective

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are injective linear transformations. Then $(S \circ T): U \mapsto W$ is an injective linear transformation.
Proof That the composition is a linear transformation was established in Theorem CLTLT 456, so we need only establish that the composition is injective. Applying Definition ILT 465], choose \mathbf{x}, \mathbf{y} from U. Then

$$
\begin{array}{rlrlrl}
\text { Assume } & & (S \circ T)(\mathbf{x}) & =(S \circ T)(\mathbf{y}) & & \\
& & & \text { Definition LTC } 456 \\
\Rightarrow & & S(\mathbf{x})) & =S(T(\mathbf{y})) & & \text { Definition ILT } 465 \text { for } S \\
\Rightarrow & & T(\mathbf{x}) & =T(\mathbf{y}) & & \text { Definition ILT } 465 \text { for } T
\end{array}
$$

Subsection READ
 Reading Questions

1. Suppose $T: \mathbb{C}^{8} \mapsto \mathbb{C}^{5}$ is a linear transformation. Why can't T be injective?
2. Describe the kernel of an injective linear transformation.
3. Theorem KPI 470 should remind you of Theorem PSPHS 102. Why do we say this?

Subsection EXC
 Exercises

C10 Each archetype below is a linear transformation. Compute the kernel for each.
Archetype M 741
Archetype N 744
Archetype O 747
Archetype P 750
Archetype Q 752
Archetype R 756
Archetype S 759]
Archetype T 762
Archetype U 764

Archetype V	766

Archetype W 768
Archetype X 770
Contributed by Robert Beezer
C20 The linear transformation $T: \mathbb{C}^{4} \mapsto \mathbb{C}^{3}$ is not injective. Find two inputs $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{4}$ that yield the same output (that is $T(\mathbf{x})=T(\mathbf{y})$.)

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+x_{2}+x_{3} \\
-x_{1}+3 x_{2}+x_{3}-x_{4} \\
3 x_{1}+x_{2}+2 x_{3}-2 x_{4}
\end{array}\right]
$$

Contributed by Robert Beezer Solution 477
C25 Define the linear transformation

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]
$$

Find a basis for the kernel of $T, \mathcal{K}(T)$. Is T injective?
Contributed by Robert Beezer Solution 477
C40 Show that the linear transformation R is not injective by finding two different elements of the domain, \mathbf{x} and \mathbf{y}, such that $R(\mathbf{x})=R(\mathbf{y})$. (S_{22} is the vector space of symmetric 2×2 matrices.)

$$
R: S_{22} \mapsto P_{1} \quad R\left(\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\right)=(2 a-b+c)+(a+b+2 c) x
$$

Contributed by Robert Beezer Solution 478
T10 Suppose $T: U \mapsto V$ is a linear transformation. For which vectors $\mathbf{v} \in V$ is $T^{-1}(\mathbf{v})$ a subspace of of U?
Contributed by Robert Beezer
T15 Suppose that that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Prove the following relationship between null spaces.

$$
\mathcal{K}(T) \subseteq \mathcal{K}(S \circ T)
$$

Contributed by Robert Beezer Solution 478
T20 Suppose that A is an $m \times n$ matrix. Define the linear transformation T by

$$
T: \mathbb{C}^{n} \mapsto \mathbb{C}^{m}, \quad T(\mathbf{x})=A \mathbf{x}
$$

Prove that the kernel of T equals the null space of $A, \mathcal{K}(T)=\mathcal{N}(A)$. Contributed by Andy Zimmer Solution 478

Subsection SOL
 Solutions

C20 Contributed by Robert Beezer Statement 475
A linear transformation that is not injective will have a non-trivial kernel (Theorem KILT 471), and this is the key to finding the desired inputs. We need one non-trivial element of the kernel, so suppose that $\mathbf{z} \in \mathbb{C}^{4}$ is an element of the kernel,

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\mathbf{0}=T(\mathbf{z})=\left[\begin{array}{c}
2 z_{1}+z_{2}+z_{3} \\
-z_{1}+3 z_{2}+z_{3}-z_{4} \\
3 z_{1}+z_{2}+2 z_{3}-2 z_{4}
\end{array}\right]
$$

Vector equality Definition CVE 80 leads to the homogeneous system of three equations in four variables,

$$
\begin{array}{r}
2 z_{1}+z_{2}+z_{3}=0 \\
-z_{1}+3 z_{2}+z_{3}-z_{4}=0 \\
3 z_{1}+z_{2}+2 z_{3}-2 z_{4}=0
\end{array}
$$

The coefficient matrix of this system row-reduces as

$$
\left[\begin{array}{cccc}
2 & 1 & 1 & 0 \\
-1 & 3 & 1 & -1 \\
3 & 1 & 2 & -2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\boxed{1} & 0 & 0 & 1 \\
0 & \boxed{1} & 0 & 1 \\
0 & 0 & \boxed{1} & -3
\end{array}\right]
$$

From this we can find a solution (we only need one), that is an element of $\mathcal{K}(T)$,

$$
\mathbf{z}=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
1
\end{array}\right]
$$

Now, we choose a vector \mathbf{x} at random and set $\mathbf{y}=\mathbf{x}+\mathbf{z}$,

$$
\mathbf{x}=\left[\begin{array}{c}
2 \\
3 \\
4 \\
-2
\end{array}\right] \quad \mathbf{y}=\mathbf{x}+\mathbf{z}=\left[\begin{array}{c}
2 \\
3 \\
4 \\
-2
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
7 \\
-1
\end{array}\right]
$$

and you can check that

$$
T(\mathbf{x})=\left[\begin{array}{l}
11 \\
13 \\
21
\end{array}\right]=T(\mathbf{y})
$$

A quicker solution is to take two elements of the kernel (in this case, scalar multiples of \mathbf{z}) which both get sent to $\mathbf{0}$ by T. Quicker yet, take $\mathbf{0}$ and \mathbf{z} as \mathbf{x} and \mathbf{y}, which also both get sent to $\mathbf{0}$ by T.

C25 Contributed by Robert Beezer Statement 475
To find the kernel, we require all $\mathbf{x} \in \mathbb{C}^{3}$ such that $T(\mathbf{x})=\mathbf{0}$. This condition is

$$
\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

This leads to a homogeneous system of two linear equations in three variables, whose coefficient matrix row-reduces to

$$
\left[\begin{array}{ccc}
\boxed{1} & -\frac{1}{2} & \frac{5}{2} \\
0 & 0 & 0
\end{array}\right]
$$

With two free variables Theorem BNS 138 yields the basis for the null space

$$
\left\{\left[\begin{array}{c}
-\frac{5}{2} \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right]\right\}
$$

With $n(T) \neq 0, \mathcal{K}(T) \neq\{\mathbf{0}\}$, so Theorem KILT 471 says T is not injective.
C40 Contributed by Robert Beezer Statement 475
We choose \mathbf{x} to be any vector we like. A particularly cocky choice would be to choose $\mathbf{x}=\mathbf{0}$, but we will instead choose

$$
\mathbf{x}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 4
\end{array}\right]
$$

Then $R(\mathbf{x})=9+9 x$. Now compute the kernel of R, which by Theorem KILT 471 we expect to be nontrivial. Setting $R\left(\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]\right)$ equal to the zero vector, $\mathbf{0}=0+0 x$, and equating coefficients leads to a homogenous system of equations. Row-reducing the coefficient matrix of this system will allow us to determine the values of a, b and c that create elements of the null space of R,

$$
\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 1 & 2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
\hline 1 & 0 & 1 \\
0 & \boxed{1} & 1
\end{array}\right]
$$

We only need a single element of the null space of this coefficient matrix, so we will not compute a precise description of the whole null space. Instead, choose the free variable $c=2$. Then

$$
\mathbf{z}=\left[\begin{array}{cc}
-2 & -2 \\
-2 & 2
\end{array}\right]
$$

is the corresponding element of the kernel. We compute the desired \mathbf{y} as

$$
\mathbf{y}=\mathbf{x}+\mathbf{z}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 4
\end{array}\right]+\left[\begin{array}{cc}
-2 & -2 \\
-2 & 2
\end{array}\right]=\left[\begin{array}{cc}
0 & -3 \\
-3 & 6
\end{array}\right]
$$

Then check that $R(\mathbf{y})=9+9 x$.
T15 Contributed by Robert Beezer Statement 475
We are asked to prove that $\mathcal{K}(T)$ is a subset of $\mathcal{K}(S \circ T)$. Employing Definition SSET 669, choose $\mathbf{x} \in \mathcal{K}(T)$. Then we know that $T(\mathbf{x})=\mathbf{0}$. So

$$
\begin{aligned}
(S \circ T)(\mathbf{x}) & =S(T(\mathbf{x})) \\
& =S(\mathbf{0}) \\
& =\mathbf{0}
\end{aligned}
$$

$$
\text { Definition LTC } 456
$$

$\mathbf{x} \in \mathcal{K}(T)$
Theorem LTTZZ 445

This qualifies \mathbf{x} for membership in $\mathcal{K}(S \circ T)$.
T20 Contributed by Andy Zimmer Statement 476
This is an equality of sets, so we want to establish two subset conditions (Definition SE 670).
First, show $\mathcal{N}(A) \subseteq \mathcal{K}(T)$. Choose $\mathbf{x} \in \mathcal{N}(A)$. Check to see if $\mathbf{x} \in \mathcal{K}(T)$,

$$
\begin{aligned}
T(\mathbf{x}) & =A \mathbf{x} & & \text { Definition of } T \\
& =\mathbf{0} & & \mathbf{x} \in \mathcal{N}(A)
\end{aligned}
$$

So by Definition KLT 468, $\mathrm{x} \in \mathcal{K}(T)$ and thus $\mathcal{N}(A) \subseteq \mathcal{N}(T)$.
Now, show $\mathcal{K}(T) \subseteq \mathcal{N}(A)$. Choose $\mathbf{x} \in \mathcal{K}(T)$. Check to see if $\mathbf{x} \in \mathcal{N}(A)$,

$$
\begin{aligned}
A \mathbf{x} & =T(\mathbf{x}) & & \text { Definition of } T \\
& =\mathbf{0} & & \mathbf{x} \in \mathcal{K}(T)
\end{aligned}
$$

So by Definition NSM 59, $\mathrm{x} \in \mathcal{N}(A)$ and thus $\mathcal{N}(T) \subseteq \mathcal{N}(A)$.

Section SLT
 Surjective Linear Transformations

The companion to an injection is a surjection. Surjective linear transformations are closely related to spanning sets and ranges. So as you read this section reflect back on Section ILT 465 and note the parallels and the contrasts. In the next section, Section IVLT 495, we will combine the two properties.

As usual, we lead with a definition.

Definition SLT
 Surjective Linear Transformation

Suppose $T: U \mapsto V$ is a linear transformation. Then T is surjective if for every $\mathbf{v} \in V$ there exists a $\mathbf{u} \in U$ so that $T(\mathbf{u})=\mathbf{v}$.

Given an arbitrary function, it is possible for there to be an element of the codomain that is not an output of the function (think about the function $y=f(x)=x^{2}$ and the codomain element $y=-3$). For a surjective function, this never happens. If we choose any element of the codomain $(\mathbf{v} \in V)$ then there must be an input from the domain $(\mathbf{u} \in U)$ which will create the output when used to evaluate the linear transformation $(T(\mathbf{u})=\mathbf{v})$. Some authors prefer the term onto where we use surjective, and we will sometimes refer to a surjective linear transformation as a surjection.

Subsection ESLT
 Examples of Surjective Linear Transformations

It is perhaps most instructive to examine a linear transformation that is not surjective first.

Example NSAQ

Not surjective, Archetype Q
Archetype Q 752 is the linear transformation

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
-2 x_{1}+3 x_{2}+3 x_{3}-6 x_{4}+3 x_{5} \\
-16 x_{1}+9 x_{2}+12 x_{3}-28 x_{4}+28 x_{5} \\
-19 x_{1}+7 x_{2}+14 x_{3}-32 x_{4}+37 x_{5} \\
-21 x_{1}+9 x_{2}+15 x_{3}-35 x_{4}+39 x_{5} \\
-9 x_{1}+5 x_{2}+7 x_{3}-16 x_{4}+16 x_{5}
\end{array}\right]
$$

We will demonstrate that

$$
\mathbf{v}=\left[\begin{array}{c}
-1 \\
2 \\
3 \\
-1 \\
4
\end{array}\right]
$$

is an unobtainable element of the codomain. Suppose to the contrary that \mathbf{u} is an element of the domain such that $T(\mathbf{u})=\mathbf{v}$. Then

$$
\left[\begin{array}{c}
-1 \\
2 \\
3 \\
-1 \\
4
\end{array}\right]=\mathbf{v}=T(\mathbf{u})=T\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right]\right)
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
-2 u_{1}+3 u_{2}+3 u_{3}-6 u_{4}+3 u_{5} \\
-16 u_{1}+9 u_{2}+12 u_{3}-28 u_{4}+28 u_{5} \\
-19 u_{1}+7 u_{2}+14 u_{3}-32 u_{4}+37 u_{5} \\
-21 u_{1}+9 u_{2}+15 u_{3}-35 u_{4}+39 u_{5} \\
-9 u_{1}+5 u_{2}+7 u_{3}-16 u_{4}+16 u_{5}
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
-2 & 3 & 3 & -6 & 3 \\
-16 & 9 & 12 & -28 & 28 \\
-19 & 7 & 14 & -32 & 37 \\
-21 & 9 & 15 & -35 & 39 \\
-9 & 5 & 7 & -16 & 16
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right]
\end{aligned}
$$

Now we recognize the appropriate input vector \mathbf{u} as a solution to a linear system of equations. Form the augmented matrix of the system, and row-reduce to

$$
\left[\begin{array}{cccccc}
{[1 \mid} & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & -\frac{4}{3} & 0 \\
0 & 0 & 1 & 0 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}\right]
$$

With a leading 1 in the last column, Theorem RCLS 50 tells us the system is inconsistent. From the absence of any solutions we conclude that no such vector \mathbf{u} exists, and by Definition SLT 479, T is not surjective.

Again, do not concern yourself with how \mathbf{v} was selected, as this will be explained shortly. However, do understand why this vector provides enough evidence to conclude that T is not surjective.

To show that a linear transformation is not surjective, it is enough to find a single element of the codomain that is never created by any input, as in Example NSAQ 479. However, to show that a linear transformation is surjective we must establish that every element of the codomain occurs as an output of the linear transformation for some appropriate input.

Example SAR

Surjective, Archetype R

Archetype R 756 is the linear transformation

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
-65 x_{1}+128 x_{2}+10 x_{3}-262 x_{4}+40 x_{5} \\
36 x_{1}-73 x_{2}-x_{3}+151 x_{4}-16 x_{5} \\
-44 x_{1}+88 x_{2}+5 x_{3}-180 x_{4}+24 x_{5} \\
34 x_{1}-68 x_{2}-3 x_{3}+140 x_{4}-18 x_{5} \\
12 x_{1}-24 x_{2}-x_{3}+49 x_{4}-5 x_{5}
\end{array}\right]
$$

To establish that R is surjective we must begin with a totally arbitrary element of the codomain, \mathbf{v} and somehow find an input vector \mathbf{u} such that $T(\mathbf{u})=\mathbf{v}$. We desire,

$$
\begin{aligned}
T(\mathbf{u}) & =\mathbf{v} \\
{\left[\begin{array}{c}
-65 u_{1}+128 u_{2}+10 u_{3}-262 u_{4}+40 u_{5} \\
36 u_{1}-73 u_{2}-u_{3}+151 u_{4}-16 u_{5} \\
-44 u_{1}+88 u_{2}+5 u_{3}-180 u_{4}+24 u_{5} \\
34 u_{1}-68 u_{2}-3 u_{3}+140 u_{4}-18 u_{5} \\
12 u_{1}-24 u_{2}-u_{3}+49 u_{4}-5 u_{5}
\end{array}\right] } & =\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right] \\
{\left[\begin{array}{ccccc}
-65 & 128 & 10 & -262 & 40 \\
36 & -73 & -1 & 151 & -16 \\
-44 & 88 & 5 & -180 & 24 \\
34 & -68 & -3 & 140 & -18 \\
12 & -24 & -1 & 49 & -5
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right] } & =\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]
\end{aligned}
$$

Version 1.05

We recognize this equation as a system of equations in the variables u_{i}, but our vector of constants contains symbols. In general, we would have to row-reduce the augmented matrix by hand, due to the symbolic final column. However, in this particular example, the 5×5 coefficient matrix is nonsingular and so has an inverse Theorem NI 223, Definition MI 208).

$$
\left[\begin{array}{ccccc}
-65 & 128 & 10 & -262 & 40 \\
36 & -73 & -1 & 151 & -16 \\
-44 & 88 & 5 & -180 & 24 \\
34 & -68 & -3 & 140 & -18 \\
12 & -24 & -1 & 49 & -5
\end{array}\right]^{-1}=\left[\begin{array}{ccccc}
-47 & 92 & 1 & -181 & -14 \\
27 & -55 & \frac{7}{2} & \frac{221}{2} & 11 \\
-32 & 64 & -1 & -126 & -12 \\
25 & -50 & \frac{3}{2} & \frac{199}{2} & 9 \\
9 & -18 & \frac{1}{2} & \frac{71}{2} & 4
\end{array}\right]
$$

so we find that

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right] } & =\left[\begin{array}{ccccc}
-47 & 92 & \frac{1}{c} & -181 & -14 \\
27 & -55 & \frac{7}{2} & \frac{221}{2} & 11 \\
-32 & 64 & -1 & -126 & -12 \\
25 & -50 & \frac{3}{2} & \frac{199}{2} & 9 \\
9 & -18 & \frac{1}{2} & \frac{71}{2} & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
-47 v_{1}+92 v_{2}+v_{3}-181 v_{4}-14 v_{5} \\
27 v_{1}-55 v_{2}+\frac{7}{2} v_{3}+\frac{221}{2} v_{4}+11 v_{5} \\
-32 v_{1}+64 v_{2}-v_{3}-126 v_{4}-12 v_{5} \\
25 v_{1}-50 v_{2}+\frac{3}{2} v_{3}+\frac{199}{2} v_{4}+9 v_{5} \\
9 v_{1}-18 v_{2}+\frac{1}{2} v_{3}+\frac{71}{2} v_{4}+4 v_{5}
\end{array}\right]
\end{aligned}
$$

This establishes that if we are given any output vector \mathbf{v}, we can use its components in this final expression to formulate a vector \mathbf{u} such that $T(\mathbf{u})=\mathbf{v}$. So by Definition SLT 479 we now know that T is surjective. You might try to verify this condition in its full generality (i.e. evaluate T with this final expression and see if you get \mathbf{v} as the result), or test it more specifically for some numerical vector \mathbf{v} (see Exercise SLT.C20 491).

Let's now examine a surjective linear transformation between abstract vector spaces.

Example SAV

Surjective, Archetype V

Archetype V 766 is defined by

$$
T: P_{3} \mapsto M_{22}, \quad T\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
a+b & a-2 c \\
d & b-d
\end{array}\right]
$$

To establish that the linear transformation is surjective, begin by choosing an arbitrary output. In this example, we need to choose an arbitrary 2×2 matrix, say

$$
\mathbf{v}=\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]
$$

and we would like to find an input polynomial

$$
\mathbf{u}=a+b x+c x^{2}+d x^{3}
$$

so that $T(\mathbf{u})=\mathbf{v}$. So we have,

$$
\begin{aligned}
{\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] } & =\mathbf{v} \\
& =T(\mathbf{u})
\end{aligned}
$$

$$
\begin{aligned}
& =T\left(a+b x+c x^{2}+d x^{3}\right) \\
& =\left[\begin{array}{cc}
a+b & a-2 c \\
d & b-d
\end{array}\right]
\end{aligned}
$$

Matrix equality leads us to the system of four equations in the four unknowns, x, y, z, w,

$$
\begin{aligned}
a+b & =x \\
a-2 c & =y \\
d & =z \\
b-d & =w
\end{aligned}
$$

which can be rewritten as a matrix equation,

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

The coefficient matrix is nonsingular, hence it has an inverse,

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0-1 &]^{-1}=\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 0 & 1 & 1 \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 1 & 0
\end{array}\right], ~\right]
\end{array}\right.
$$

so we have

$$
\begin{aligned}
{\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] } & =\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 0 & 1 & 1 \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \\
& =\left[\begin{array}{c}
x-z-w \\
z+w \\
\frac{1}{2}(x-y-z-w) \\
z
\end{array}\right]
\end{aligned}
$$

So the input polynomial $\mathbf{u}=(x-z-w)+(z+w) x+\frac{1}{2}(x-y-z-w) x^{2}+z x^{3}$ will yield the output matrix \mathbf{v}, no matter what form \mathbf{v} takes. This means by Definition SLT 479 that T is surjective. All the same, let's do a concrete demonstration and evaluate T with \mathbf{u},

$$
\begin{aligned}
T(\mathbf{u}) & =T\left(\begin{array}{cc}
\left.(x-z-w)+(z+w) x+\frac{1}{2}(x-y-z-w) x^{2}+z x^{3}\right) \\
& =\left[\begin{array}{cc}
(x-z-w)+(z+w) & (x-z-w)-2\left(\frac{1}{2}(x-y-z-w)\right) \\
z & (z+w)-z
\end{array}\right] \\
& =\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right] \\
& =\mathbf{v}
\end{array}\right.
\end{aligned}
$$

Subsection RLT
 Range of a Linear Transformation

For a linear transformation $T: U \mapsto V$, the range is a subset of the codomain V. Informally, it is the set of all outputs that the transformation creates when fed every possible input from the domain. It will have some natural connections with the column space of a matrix, so we will keep the same notation, and if you think about your objects, then there should be little confusion. Here's the careful definition.

Definition RLT

Range of a Linear Transformation

Suppose $T: U \mapsto V$ is a linear transformation. Then the range of T is the set

$$
\mathcal{R}(T)=\{T(\mathbf{u}) \mid \mathbf{u} \in U\}
$$

(This definition contains Notation RLT.)

Example RAO

Range, Archetype 0
Archetype O 747 is the linear transformation

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
-x_{1}+x_{2}-3 x_{3} \\
-x_{1}+2 x_{2}-4 x_{3} \\
x_{1}+x_{2}+x_{3} \\
2 x_{1}+3 x_{2}+x_{3} \\
x_{1}+2 x_{3}
\end{array}\right]
$$

To determine the elements of \mathbb{C}^{5} in $\mathcal{R}(T)$, find those vectors \mathbf{v} such that $T(\mathbf{u})=\mathbf{v}$ for some $\mathbf{u} \in \mathbb{C}^{3}$,

$$
\begin{aligned}
\mathbf{v} & =T(\mathbf{u}) \\
& =\left[\begin{array}{c}
-u_{1}+u_{2}-3 u_{3} \\
-u_{1}+2 u_{2}-4 u_{3} \\
u_{1}+u_{2}+u_{3} \\
2 u_{1}+3 u_{2}+u_{3} \\
u_{1}+2 u_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
-u_{1} \\
-u_{1} \\
u_{1} \\
2 u_{1} \\
u_{1}
\end{array}\right]+\left[\begin{array}{c}
u_{2} \\
2 u_{2} \\
u_{2} \\
3 u_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 u_{3} \\
-4 u_{3} \\
u_{3} \\
u_{3} \\
2 u_{3}
\end{array}\right] \\
& =u_{1}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
2 \\
1
\end{array}\right]+u_{2}\left[\begin{array}{l}
1 \\
2 \\
1 \\
3 \\
0
\end{array}\right]+u_{3}\left[\begin{array}{c}
-3 \\
-4 \\
1 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

This says that every output of $T(\mathbf{v})$ can be written as a linear combination of the three vectors

$$
\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
2 \\
1
\end{array}\right]
$$

$\left[\begin{array}{c}-3 \\ -4 \\ 1 \\ 1 \\ 2\end{array}\right]$
using the scalars u_{1}, u_{2}, u_{3}. Furthermore, since \mathbf{u} can be any element of \mathbb{C}^{3}, every such linear combination is an output. This means that

$$
\mathcal{R}(T)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
-4 \\
1 \\
1 \\
2
\end{array}\right]\right\}\right\rangle
$$

The three vectors in this spanning set for $\mathcal{R}(T)$ form a linearly dependent set (check this!). So we can find a more economical presentation by any of the various methods from Section CRS 231 and Section FS 253. We will place the vectors into a matrix as rows, row-reduce, toss out zero rows and appeal to Theorem BRS 240, so we can describe the range of T with a basis,

$$
\mathcal{R}(T)=\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
-3 \\
-7 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
5 \\
1
\end{array}\right]\right\}\right\rangle
$$

We know that the span of a set of vectors is always a subspace Theorem SSS 295), so the range computed in Example RAO 483 is also a subspace. This is no accident, the range of a linear transformation is always a subspace.

Theorem RLTS

Range of a Linear Transformation is a Subspace

Suppose that $T: U \mapsto V$ is a linear transformation. Then the range of $T, \mathcal{R}(T)$, is a subspace of V.
Proof We can apply the three-part test of Theorem TSS 290. First, $\mathbf{0}_{U} \in U$ and $T\left(\mathbf{0}_{U}\right)=\mathbf{0}_{V}$ by Theorem LTTZZ 445, so $0_{V} \in \mathcal{R}(T)$ and we know that the range is non-empty.

Suppose we assume that $\mathbf{x}, \mathbf{y} \in \mathcal{R}(T)$. Is $\mathbf{x}+\mathbf{y} \in \mathcal{R}(T)$? If $\mathbf{x}, \mathbf{y} \in \mathcal{R}(T)$ then we know there are vectors $\mathbf{w}, \mathbf{z} \in U$ such that $T(\mathbf{w})=\mathbf{x}$ and $T(\mathbf{z})=\mathbf{y}$. Because U is a vector space, additive closure Property AC (275) implies that $\mathbf{w}+\mathbf{z} \in U$. Then

$$
\begin{aligned}
T(\mathbf{w}+\mathbf{z}) & =T(\mathbf{w})+T(\mathbf{z}) & & \text { Definition LT 441 } \\
& =\mathbf{x}+\mathbf{y} & & \text { Definition of } \mathbf{w} \text { and } \mathbf{z}
\end{aligned}
$$

So we have found an input, $\mathbf{w}+\mathbf{z}$, which when fed into T creates $\mathbf{x}+\mathbf{y}$ as an output. This qualifies $\mathbf{x}+\mathbf{y}$ for membership in $\mathcal{R}(T)$. So we have additive closure.

Suppose we assume that $\alpha \in \mathbb{C}$ and $\mathbf{x} \in \mathcal{R}(T)$. Is $\alpha \mathbf{x} \in \mathcal{R}(T)$? If $\mathbf{x} \in \mathcal{R}(T)$, then there is a vector $\mathbf{w} \in U$ such that $T(\mathbf{w})=\mathbf{x}$. Because U is a vector space, scalar closure implies that $\alpha \mathbf{w} \in U$. Then

$$
\begin{aligned}
T(\alpha \mathbf{w}) & =\alpha T(\mathbf{w}) & & \text { Definition LT 441 } \\
& =\alpha \mathbf{x} & & \text { Definition of } \mathbf{w}
\end{aligned}
$$

So we have found an input ($\alpha \mathbf{w}$) which when fed into T creates $\alpha \mathbf{x}$ as an output. This qualifies $\alpha \mathbf{x}$ for membership in $\mathcal{R}(T)$. So we have scalar closure and Theorem TSS 290 tells us that $\mathcal{R}(T)$ is a subspace of V.

Let's compute another range, now that we know in advance that it will be a subspace.

Example FRAN
 Full range, Archetype N

Archetype N 744 is the linear transformation

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{3}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+x_{2}+3 x_{3}-4 x_{4}+5 x_{5} \\
x_{1}-2 x_{2}+3 x_{3}-9 x_{4}+3 x_{5} \\
3 x_{1}+4 x_{3}-6 x_{4}+5 x_{5}
\end{array}\right]
$$

To determine the elements of \mathbb{C}^{3} in $\mathcal{R}(T)$, find those vectors \mathbf{v} such that $T(\mathbf{u})=\mathbf{v}$ for some $\mathbf{u} \in \mathbb{C}^{5}$,

$$
\begin{aligned}
\mathbf{v} & =T(\mathbf{u}) \\
& =\left[\begin{array}{c}
2 u_{1}+u_{2}+3 u_{3}-4 u_{4}+5 u_{5} \\
u_{1}-2 u_{2}+3 u_{3}-9 u_{4}+3 u_{5} \\
3 u_{1}+4 u_{3}-6 u_{4}+5 u_{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 u_{1} \\
u_{1} \\
3 u_{1}
\end{array}\right]+\left[\begin{array}{c}
u_{2} \\
-2 u_{2} \\
0
\end{array}\right]+\left[\begin{array}{l}
3 u_{3} \\
3 u_{3} \\
4 u_{3}
\end{array}\right]+\left[\begin{array}{l}
-4 u_{4} \\
-9 u_{4} \\
-6 u_{4}
\end{array}\right]+\left[\begin{array}{l}
5 u_{5} \\
3 u_{5} \\
5 u_{5}
\end{array}\right] \\
& =u_{1}\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]+u_{2}\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right]+u_{3}\left[\begin{array}{l}
3 \\
3 \\
4
\end{array}\right]+u_{4}\left[\begin{array}{c}
-4 \\
-9 \\
-6
\end{array}\right]+u_{5}\left[\begin{array}{l}
5 \\
3 \\
5
\end{array}\right]
\end{aligned}
$$

This says that every output of $T(\mathbf{v})$ can be written as a linear combination of the five vectors

$$
\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
3 \\
3 \\
4
\end{array}\right] \quad\left[\begin{array}{l}
-4 \\
-9 \\
-6
\end{array}\right] \quad\left[\begin{array}{l}
5 \\
3 \\
5
\end{array}\right]
$$

using the scalars $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$. Furthermore, since \mathbf{u} can be any element of \mathbb{C}^{5}, every such linear combination is an output. This means that

$$
\mathcal{R}(T)=\left\langle\left\{\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
-4 \\
-9 \\
-6
\end{array}\right],\left[\begin{array}{l}
5 \\
3 \\
5
\end{array}\right]\right\}\right\rangle
$$

The five vectors in this spanning set for $\mathcal{R}(T)$ form a linearly dependent set Theorem MVSLD 136). So we can find a more economical presentation by any of the various methods from Section CRS 231 and Section FS [253]. We will place the vectors into a matrix as rows, row-reduce, toss out zero rows and appeal to Theorem BRS 240, so we can describe the range of T with a (nice) basis,

$$
\mathcal{R}(T)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle=\mathbb{C}^{3}
$$

In contrast to injective linear transformations having small (trivial) kernels (Theorem KILT 471), surjective linear transformations have large ranges, as indicated in the next theorem.

Theorem RSLT

Range of a Surjective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then T is surjective if and only if the range of T equals the codomain, $\mathcal{R}(T)=V$.
Proof (\Rightarrow) By Definition RLT 483, we know that $\mathcal{R}(T) \subseteq V$. To establish the reverse inclusion, assume $\mathbf{v} \in V$. Then since T is surjective (Definition SLT 479]), there exists a vector $\mathbf{u} \in U$ so that $T(\mathbf{u})=\mathbf{v}$. However, the existence of \mathbf{u} gains \mathbf{v} membership in $\mathcal{R}(T)$, so $V \subseteq \mathcal{R}(T)$. Thus, $\mathcal{R}(T)=V$.
(\Leftarrow) To establish that T is surjective, choose $\mathbf{v} \in V$. Since we are assuming that $\mathcal{R}(T)=V, \mathbf{v} \in \mathcal{R}(T)$. This says there is a vector $\mathbf{u} \in U$ so that $T(\mathbf{u})=\mathbf{v}$, i.e. T is surjective.

Example NSAQR

Not surjective, Archetype Q, revisited

We are now in a position to revisit our first example in this section, Example NSAQ 479. In that example, we showed that Archetype Q 752 is not surjective by constructing a vector in the codomain where no element of the domain could be used to evaluate the linear transformation to create the output, thus violating Definition SLT 479. Just where did this vector come from?

The short answer is that the vector

$$
\mathbf{v}=\left[\begin{array}{c}
-1 \\
2 \\
3 \\
-1 \\
4
\end{array}\right]
$$

was constructed to lie outside of the range of T. How was this accomplished? First, the range of T is given by

$$
\mathcal{R}(T)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right]\right\}\right\rangle
$$

Suppose an element of the range \mathbf{v}^{*} has its first 4 components equal to $-1,2,3,-1$, in that order. Then to be an element of $\mathcal{R}(T)$, we would have

$$
\mathbf{v}^{*}=(-1)\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]+(2)\left[\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
-1
\end{array}\right]+(3)\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-1
\end{array}\right]+(-1)\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
3 \\
-1 \\
-8
\end{array}\right]
$$

So the only vector in the range with these first four components specified, must have -8 in the fifth component. To set the fifth component to any other value (say, 4) will result in a vector (\mathbf{v} in Example NSAQ (479) outside of the range. Any attempt to find an input for T that will produce \mathbf{v} as an output will be doomed to failure.

Whenever the range of a linear transformation is not the whole codomain, we can employ this device and conclude that the linear transformation is not surjective. This is another way of viewing Theorem RSLT 485. For a surjective linear transformation, the range is all of the codomain and there is no choice for a vector \mathbf{v} that lies in V, yet not in the range. For every one of the archetypes that is not surjective, there is an example presented of exactly this form.

Example NSAO

Not surjective, Archetype O
In Example RAO 483 the range of Archetype O 747 was determined to be

$$
\mathcal{R}(T)=\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
-3 \\
-7 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
5 \\
1
\end{array}\right]\right\}\right\rangle
$$

a subspace of dimension 2 in \mathbb{C}^{5}. Since $\mathcal{R}(T) \neq \mathbb{C}^{5}$, Theorem RSLT 485 says T is not surjective.

Example SAN

Surjective, Archetype N

The range of Archetype N 744 was computed in Example FRAN 484 to be

$$
\mathcal{R}(T)=\left\{\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}\right\}
$$

Since the basis for this subspace is the set of standard unit vectors for \mathbb{C}^{3} Theorem SUVB 321), we have $\mathcal{R}(T)=\mathbb{C}^{3}$ and by Theorem RSLT 485, T is surjective.

Subsection SSSLT
 Spanning Sets and Surjective Linear Transformations

Just as injective linear transformations are allied with linear independence Theorem ILTLI 472, Theorem ILTB (473), surjective linear transformations are allied with spanning sets.

Theorem SSRLT

Spanning Set for Range of a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation and $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{t}\right\}$ spans U. Then

$$
R=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{t}\right)\right\}
$$

spans $\mathcal{R}(T)$.
Proof We need to establish that $\mathcal{R}(T)=\langle R\rangle$, a set equality. First we establish that $\mathcal{R}(T) \subseteq\langle R\rangle$. To this end, choose $\mathbf{v} \in \mathcal{R}(T)$. Then there exists a vector $\mathbf{u} \in U$, such that $T(\mathbf{u})=\mathbf{v}$ (Definition RLT 483). Because S spans U there are scalars, $a_{1}, a_{2}, a_{3}, \ldots, a_{t}$, such that

$$
\mathbf{u}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t}
$$

Then

$$
\begin{aligned}
\mathbf{v} & =T(\mathbf{u}) \\
& =T\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{t} \mathbf{u}_{t}\right) \\
& =a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\ldots+a_{t} T\left(\mathbf{u}_{t}\right)
\end{aligned}
$$

Definition RLT 483
Definition TSVS 310
Theorem LTLC 449
which establishes that $\mathbf{v} \in\langle R\rangle$ Definition SS 295). So $\mathcal{R}(T) \subseteq\langle R\rangle$.
To establish the opposite inclusion, choose an element of the span of R, say $\mathbf{v} \in\langle R\rangle$. Then there are scalars $b_{1}, b_{2}, b_{3}, \ldots, b_{t}$ so that

$$
\begin{aligned}
\mathbf{v} & =b_{1} T\left(\mathbf{u}_{1}\right)+b_{2} T\left(\mathbf{u}_{2}\right)+b_{3} T\left(\mathbf{u}_{3}\right)+\cdots+b_{t} T\left(\mathbf{u}_{t}\right) \\
& =T\left(b_{1} \mathbf{u}_{1}+b_{2} \mathbf{u}_{2}+b_{3} \mathbf{u}_{3}+\cdots+b_{t} \mathbf{u}_{t}\right)
\end{aligned}
$$

$$
\text { Definition SS } 295
$$

Theorem LTLC 449
This demonstrates that \mathbf{v} is an output of the linear transformation T, so $\mathbf{v} \in \mathcal{R}(T)$. Therefore $\langle R\rangle \subseteq \mathcal{R}(T)$, so we have the set equality $\mathcal{R}(T)=\langle R\rangle$ Definition SE 670). In other words, R spans $\mathcal{R}(T)$ Definition TSVS (310).

Theorem SSRLT 487 provides an easy way to begin the construction of a basis for the range of a linear transformation, since the construction of a spanning set requires simply evaluating the linear transformation
on a spanning set of the domain. In practice the best choice for a spanning set of the domain would be as small as possible, in other words, a basis. The resulting spanning set for the codomain may not be linearly independent, so to find a basis for the range might require tossing out redundant vectors from the spanning set. Here's an example.

Example BRLT

A basis for the range of a linear transformation

Define the linear transformation $T: M_{22} \mapsto P_{2}$ by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+2 b+8 c+d)+(-3 a+2 b+5 d) x+(a+b+5 c) x^{2}
$$

A convenient spanning set for M_{22} is the basis

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

So by Theorem SSRLT 487, a spanning set for $\mathcal{R}(T)$ is

$$
\begin{aligned}
R & =\left\{T\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right), T\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right), T\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right), T\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)\right\} \\
& =\left\{1-3 x+x^{2}, 2+2 x+x^{2}, 8+5 x^{2}, 1+5 x\right\}
\end{aligned}
$$

The set R is not linearly independent, so if we desire a basis for $\mathcal{R}(T)$, we need to eliminate some redundant vectors. Two particular relations of linear dependence on R are

$$
\begin{aligned}
(-2)\left(1-3 x+x^{2}\right)+(-3)\left(2+2 x+x^{2}\right)+\left(8+5 x^{2}\right) & =0+0 x+0 x^{2}
\end{aligned}=\mathbf{0}, ~ \begin{aligned}
\left(1-3 x+x^{2}\right)+(-1)\left(2+2 x+x^{2}\right)+(1+5 x) & =0+0 x+0 x^{2}
\end{aligned}=\mathbf{0}
$$

These, individually, allow us to remove $8+5 x^{2}$ and $1+5 x$ from R with out destroying the property that R spans $\mathcal{R}(T)$. The two remaining vectors are linearly independent (check this!), so we can write

$$
\mathcal{R}(T)=\left\langle\left\{1-3 x+x^{2}, 2+2 x+x^{2}\right\}\right\rangle
$$

and see that $\operatorname{dim}(\mathcal{R}(T))=2$.
Elements of the range are precisely those elements of the codomain with non-empty preimages.

Theorem RPI

Range and Pre-Image

Suppose that $T: U \mapsto V$ is a linear transformation. Then

$$
\mathbf{v} \in \mathcal{R}(T) \text { if and only if } T^{-1}(\mathbf{v}) \neq \emptyset
$$

Proof (\Rightarrow) If $\mathbf{v} \in \mathcal{R}(T)$, then there is a vector $\mathbf{u} \in U$ such that $T(\mathbf{u})=\mathbf{v}$. This qualifies \mathbf{u} for membership in $T^{-1}(\mathbf{v})$, and thus the preimage of \mathbf{v} is not empty.
(\Leftarrow) Suppose the preimage of \mathbf{v} is not empty, so we can choose a vector $\mathbf{u} \in U$ such that $T(\mathbf{u})=\mathbf{v}$. Then $\mathbf{v} \in \mathcal{R}(T)$.

Theorem SLTB

Surjective Linear Transformations and Bases

Suppose that $T: U \mapsto V$ is a linear transformation and $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}$ is a basis of U. Then T is surjective if and only if $C=\left\{T\left(\mathbf{u}_{1}\right), T\left(\mathbf{u}_{2}\right), T\left(\mathbf{u}_{3}\right), \ldots, T\left(\mathbf{u}_{m}\right)\right\}$ is a spanning set for V.
Proof (\Rightarrow) Assume T is surjective. Since B is a basis, we know B is a spanning set of U Definition B (321). Then Theorem SSRLT 487] says that C spans $\mathcal{R}(T)$. But the hypothesis that T is surjective means $V=\mathcal{R}(T)$ Theorem RSLT 485), so C spans V.
(\Leftarrow) Assume that C spans V. To establish that T is surjective, we will show that every element of V is an output of T for some input (Definition SLT [479]). Suppose that $\mathbf{v} \in V$. As an element of V, we can write \mathbf{v} as a linear combination of the spanning set C. So there are are scalars, $b_{1}, b_{2}, b_{3}, \ldots, b_{m}$, such that

$$
\mathbf{v}=b_{1} T\left(\mathbf{u}_{1}\right)+b_{2} T\left(\mathbf{u}_{2}\right)+b_{3} T\left(\mathbf{u}_{3}\right)+\cdots+b_{m} T\left(\mathbf{u}_{m}\right)
$$

Now define the vector $\mathbf{u} \in U$ by

$$
\mathbf{u}=b_{1} \mathbf{u}_{1}+b_{2} \mathbf{u}_{2}+b_{3} \mathbf{u}_{3}+\cdots+b_{m} \mathbf{u}_{m}
$$

Then

$$
\begin{aligned}
T(\mathbf{u}) & =T\left(b_{1} \mathbf{u}_{1}+b_{2} \mathbf{u}_{2}+b_{3} \mathbf{u}_{3}+\cdots+b_{m} \mathbf{u}_{m}\right) \\
& =b_{1} T\left(\mathbf{u}_{1}\right)+b_{2} T\left(\mathbf{u}_{2}\right)+b_{3} T\left(\mathbf{u}_{3}\right)+\cdots+ \\
& =\mathbf{v}
\end{aligned}
$$

$$
=b_{1} T\left(\mathbf{u}_{1}\right)+b_{2} T\left(\mathbf{u}_{2}\right)+b_{3} T\left(\mathbf{u}_{3}\right)+\cdots+b_{m} T\left(\mathbf{u}_{m}\right) \quad \text { Theorem LTLC } 449
$$

So, given any choice of a vector $\mathbf{v} \in V$, we can design an input $\mathbf{u} \in U$ to produce \mathbf{v} as an output of T. Thus, by Definition SLT 479, T is surjective.

Subsection SLTD
 Surjective Linear Transformations and Dimension

Theorem SLTD

Surjective Linear Transformations and Dimension

Suppose that $T: U \mapsto V$ is a surjective linear transformation. Then $\operatorname{dim}(U) \geq \operatorname{dim}(V)$.
Proof Suppose to the contrary that $m=\operatorname{dim}(U)<\operatorname{dim}(V)=t$. Let B be a basis of U, which will then contain m vectors. Apply T to each element of B to form a set C that is a subset of V. By Theorem SLTB 488, C is spanning set of V with m or fewer vectors. So we have a set of m or fewer vectors that span V, a vector space of dimension t, with $m<t$. However, this contradicts Theorem G 349, so our assumption is false and $\operatorname{dim}(U) \geq \operatorname{dim}(V)$.

Example NSDAT

Not surjective by dimension, Archetype T

The linear transformation in Archetype T 762 is

$$
T: P_{4} \mapsto P_{5}, \quad T(p(x))=(x-2) p(x)
$$

Since $\operatorname{dim}\left(P_{4}\right)=5<6=\operatorname{dim}\left(P_{5}\right), T$ cannot be surjective for then it would violate Theorem SLTD 489. .

Notice that the previous example made no use of the actual formula defining the function. Merely a comparison of the dimensions of the domain and codomain are enough to conclude that the linear transformation is not surjective. Archetype O 747 and Archetype P 750 are two more examples of linear transformations that have "small" domains and "big" codomains, resulting in an inability to create all possible outputs and thus they are non-surjective linear transformations.

Subsection CSLT
 Composition of Surjective Linear Transformations

In Subsection LT.NLTFO 454 we saw how to combine linear transformations to build new linear transformations, specifically, how to build the composition of two linear transformations (Definition LTC 456). It will be useful later to know that the composition of surjective linear transformations is again surjective, so we prove that here.

Theorem CSLTS

Composition of Surjective Linear Transformations is Surjective
Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are surjective linear transformations. Then $(S \circ T): U \mapsto W$ is a surjective linear transformation.
Proof That the composition is a linear transformation was established in Theorem CLTLT 456, so we need only establish that the composition is surjective. Applying Definition SLT 479, choose w $\in W$.

Because S is surjective, there must be a vector $\mathbf{v} \in V$, such that $S(\mathbf{v})=\mathbf{w}$. With the existence of \mathbf{v} established, that T is surjective guarantees a vector $\mathbf{u} \in U$ such that $T(\mathbf{u})=\mathbf{v}$. Now,

$$
\begin{aligned}
(S \circ T)(\mathbf{u}) & =S(T(\mathbf{u})) & & \text { Definition LTC 456 } \\
& =S(\mathbf{v}) & & \text { Definition of } \mathbf{u} \\
& =\mathbf{w} & & \text { Definition of } \mathbf{v}
\end{aligned}
$$

This establishes that any element of the codomain (w) can be created by evaluating $S \circ T$ with the right input (u). Thus, by Definition SLT 479, $S \circ T$ is surjective.

Subsection READ
 Reading Questions
 $\boldsymbol{\pi}$

1. Suppose $T: \mathbb{C}^{5} \mapsto \mathbb{C}^{8}$ is a linear transformation. Why can't T be surjective?
2. What is the relationship between a surjective linear transformation and its range?
3. Compare and contrast injective and surjective linear transformations.

Subsection EXC
 Exercises

C10 Each archetype below is a linear transformation. Compute the range for each.
Archetype M 741
Archetype N 744
Archetype O 747
Archetype P 750
Archetype Q 752
Archetype R 756
Archetype S 759
Archetype T 762
Archetype U 764
Archetype V 766
Archetype W 768
Archetype X 770
Contributed by Robert Beezer
C20 Example SAR 480 concludes with an expression for a vector $\mathbf{u} \in \mathbb{C}^{5}$ that we believe will create the vector $\mathbf{v} \in \mathbb{C}^{5}$ when used to evaluate T. That is, $T(\mathbf{u})=\mathbf{v}$. Verify this assertion by actually evaluating T with \mathbf{u}. If you don't have the patience to push around all these symbols, try choosing a numerical instance of \mathbf{v}, compute \mathbf{u}, and then compute $T(\mathbf{u})$, which should result in \mathbf{v}.
Contributed by Robert Beezer
C22 The linear transformation $S: \mathbb{C}^{4} \mapsto \mathbb{C}^{3}$ is not surjective. Find an output $\mathbf{w} \in \mathbb{C}^{3}$ that has an empty pre-image (that is $S^{-1}(\mathbf{w})=\emptyset$.)

$$
S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{l}
2 x_{1}+x_{2}+3 x_{3}-4 x_{4} \\
x_{1}+3 x_{2}+4 x_{3}+3 x_{4} \\
-x_{1}+2 x_{2}+x_{3}+7 x_{4}
\end{array}\right]
$$

Contributed by Robert Beezer Solution 493
C25 Define the linear transformation

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{2}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2}+5 x_{3} \\
-4 x_{1}+2 x_{2}-10 x_{3}
\end{array}\right]
$$

Find a basis for the range of $T, \mathcal{R}(T)$. Is T surjective?
Contributed by Robert Beezer Solution 493
$\mathbf{C 4 0}$ Show that the linear transformation T is not surjective by finding an element of the codomain, \mathbf{v}, such that there is no vector \mathbf{u} with $T(\mathbf{u})=\mathbf{v}$. (15 points)

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{3}, \quad T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{c}
2 a+3 b-c \\
2 b-2 c \\
a-b+2 c
\end{array}\right]
$$

Contributed by Robert Beezer

T15 Suppose that that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Prove the following relationship between ranges. (15 points)

$$
\mathcal{R}(S \circ T) \subseteq \mathcal{R}(S)
$$

Contributed by Robert Beezer Solution 494
T20 Suppose that A is an $m \times n$ matrix. Define the linear transformation T by

$$
T: \mathbb{C}^{n} \mapsto \mathbb{C}^{m}, \quad T(\mathbf{x})=A \mathbf{x}
$$

Prove that the range of T equals the column space of $A, \mathcal{R}(T)=\mathcal{C}(A)$. Contributed by Andy Zimmer Solution 494

Subsection SOL
 Solutions

51

C22 Contributed by Robert Beezer Statement 491
To find an element of \mathbb{C}^{3} with an empty pre-image, we will compute the range of the linear transformation $\mathcal{R}(S)$ and then find an element outside of this set.

By Theorem SSRLT 487 we can evaluate S with the elements of a spanning set of the domain and create a spanning set for the range.

$$
S\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] \quad S\left(\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \quad S\left(\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right] \quad S\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-4 \\
3 \\
7
\end{array}\right]
$$

So

$$
\mathcal{R}(S)=\left\langle\left\{\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right],\left[\begin{array}{c}
-4 \\
3 \\
7
\end{array}\right]\right\}\right\rangle
$$

This spanning set is obviously linearly dependent, so we can reduce it to a basis for $\mathcal{R}(S)$ using Theorem BRS 240, where the elements of the spanning set are placed as the rows of a matrix. The result is that

$$
\mathcal{R}(S)=\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}\right\rangle
$$

Therefore, the unique vector in $\mathcal{R}(S)$ with a first slot equal to 6 and a second slot equal to 15 will be the linear combination

$$
6\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+15\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
15 \\
9
\end{array}\right]
$$

So, any vector with first two components equal to 6 and 15 , but with a third component different from 9 , such as

$$
\mathbf{w}=\left[\begin{array}{c}
6 \\
15 \\
-63
\end{array}\right]
$$

will not be an element of the range of S and will therefore have an empty pre-image. Another strategy on this problem is to guess. Almost any vector will lie outside the range of T, you have to be unlucky to randomly choose an element of the range. This is because the codomain has dimension 3, while the range is "much smaller" at a dimension of 2 . You still need to check that your guess lies outside of the range, which generally will involve solving a system of equations that turns out to be inconsistent.

C25 Contributed by Robert Beezer Statement 491
To find the range of T, apply T to the elements of a spanning set for \mathbb{C}^{3} as suggested in Theorem SSRLT 487. We will use the standard basis vectors (Theorem SUVB 321).

$$
\mathcal{R}(T)=\left\langle\left\{T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
2 \\
-4
\end{array}\right],\left[\begin{array}{c}
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
5 \\
-10
\end{array}\right]\right\}\right\rangle
$$

Each of these vectors is a scalar multiple of the others, so we can toss two of them in reducing the spanning set to a linearly independent set (or be more careful and apply Theorem BCS 234 on a matrix with these three vectors as columns). The result is the basis of the range,

$$
\left\{\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right\}
$$

With $r(T) \neq 2, \mathcal{R}(T) \neq \mathbb{C}^{2}$, so Theorem RSLT 485 says T is not surjective.
C40 Contributed by Robert Beezer Statement 491
We wish to find an output vector \mathbf{v} that has no associated input. This is the same as requiring that there is no solution to the equality

$$
\mathbf{v}=T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{c}
2 a+3 b-c \\
2 b-2 c \\
a-b+2 c
\end{array}\right]=a\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+b\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]+c\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right]
$$

In other words, we would like to find an element of \mathbb{C}^{3} not in the set

$$
Y=\left\langle\left\{\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right]\right\}\right\rangle
$$

If we make these vectors the rows of a matrix, and row-reduce, Theorem BRS 240 provides an alternate description of Y,

$$
Y=\left\langle\left\{\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
4 \\
-5
\end{array}\right]\right\}\right\rangle
$$

If we add these vectors together, and then change the third component of the result, we will create a vector that lies outside of Y, say $\mathbf{v}=\left[\begin{array}{l}2 \\ 4 \\ 9\end{array}\right]$.
T15 Contributed by Robert Beezer Statement 492
This question asks us to establish that one set $(\mathcal{R}(S \circ T))$ is a subset of another $(\mathcal{R}(S))$. Choose an element in the "smaller" set, say $\mathbf{w} \in \mathcal{R}(S \circ T)$. Then we know that there is a vector $\mathbf{u} \in U$ such that

$$
\mathbf{w}=(S \circ T)(\mathbf{u})=S(T(\mathbf{u}))
$$

Now define $\mathbf{v}=T(\mathbf{u})$, so that then

$$
S(\mathbf{v})=S(T(\mathbf{u}))=\mathbf{w}
$$

This statement is sufficient to show that $\mathbf{w} \in \mathcal{R}(S)$, so \mathbf{w} is an element of the "larger" set, and $\mathcal{R}(S \circ T) \subseteq$ $\mathcal{R}(S)$.
T20 Contributed by Andy Zimmer Statement 492
This is an equality of sets, so we want to establish two subset conditions (Definition SE 670).
First, show $\mathcal{C}(A) \subseteq \mathcal{R}(T)$. Choose $\mathbf{y} \in \mathcal{C}(A)$. Then by Definition CSM 231 and Definition MVP 189 there is a vector $\mathbf{x} \in \mathbb{C}^{n}$ such that $A \mathbf{x}=\mathbf{y}$. Then

$$
\begin{aligned}
T(\mathbf{x}) & =A \mathbf{x} & \text { Definition of } T \\
& =\mathbf{y} &
\end{aligned}
$$

This statement qualifies \mathbf{y} as a member of $\mathcal{R}(T)$ (Definition RLT 483), so $\mathcal{C}(A) \subseteq \mathcal{R}(T)$.
Now, show $\mathcal{R}(T) \subseteq \mathcal{C}(A)$. Choose $\mathbf{y} \in \mathcal{R}(T)$. Then by Definition RLT 483, there is a vector \mathbf{x} in \mathbb{C}^{n} such that $T(\mathbf{x})=\mathbf{y}$. Then

$$
\begin{array}{rlr}
A \mathbf{x} & =T(\mathbf{x}) & \text { Definition of } T \\
& =\mathbf{y} &
\end{array}
$$

So by Definition CSM 231 and Definition MVP 189, y qualifies for membership in $\mathcal{C}(A)$ and so $\mathcal{R}(T) \subseteq$ $\mathcal{C}(A)$.

Section IVLT
 Invertible Linear Transformations
 "

In this section we will conclude our introduction to linear transformations by bringing together the twin properties of injectivity and surjectivity and consider linear transformations with both of these properties.

Subsection IVLT
 Invertible Linear Transformations

One preliminary definition, and then we will have our main definition for this section.

Definition IDLT

Identity Linear Transformation

The identity linear transformation on the vector space W is defined as

$$
I_{W}: W \mapsto W, \quad I_{W}(\mathbf{w})=\mathbf{w}
$$

Informally, I_{W} is the "do-nothing" function. You should check that I_{W} is really a linear transformation, as claimed, and then compute its kernel and range to see that it is both injective and surjective. All of these facts should be straightforward to verify (Exercise IVLT.T05 509]). With this in hand we can make our main definition.

Definition IVLT

Invertible Linear Transformations

Suppose that $T: U \mapsto V$ is a linear transformation. If there is a function $S: V \mapsto U$ such that

$$
S \circ T=I_{U} \quad T \circ S=I_{V}
$$

then T is invertible. In this case, we call S the inverse of T and write $S=T^{-1}$.
Informally, a linear transformation T is invertible if there is a companion linear transformation, S, which "undoes" the action of T. When the two linear transformations are applied consecutively (composition), in either order, the result is to have no real effect. It is entirely analogous to squaring a positive number and then taking its (positive) square root.

Here is an example of a linear transformation that is invertible. As usual at the beginning of a section, do not be concerned with where S came from, just understand how it illustrates Definition IVLT 495.

Example AIVLT

An invertible linear transformation

Archetype V 766 is the linear transformation

$$
T: P_{3} \mapsto M_{22}, \quad T\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
a+b & a-2 c \\
d & b-d
\end{array}\right]
$$

Define the function $S: M_{22} \mapsto P_{3}$ defined by

$$
S\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a-c-d)+(c+d) x+\frac{1}{2}(a-b-c-d) x^{2}+c x^{3}
$$

Then

$$
\begin{aligned}
(T \circ S)\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) & =T\left(S\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right) \\
& =T\left((a-c-d)+(c+d) x+\frac{1}{2}(a-b-c-d) x^{2}+c x^{3}\right) \\
& =\left[\begin{array}{cc}
(a-c-d)+(c+d) & (a-c-d)-2\left(\frac{1}{2}(a-b-c-d)\right) \\
c
\end{array}\right] \\
& =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& =I_{M_{22}}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)
\end{aligned}
$$

And

$$
\begin{aligned}
(S \circ T)\left(a+b x+c x^{2}+d x^{3}\right)= & S\left(T\left(a+b x+c x^{2}+d x^{3}\right)\right) \\
= & S\left(\left[\begin{array}{cc}
a+b & a-2 c \\
d & b-d
\end{array}\right]\right) \\
= & ((a+b)-d-(b-d))+(d+(b-d)) x \\
& +\left(\frac{1}{2}((a+b)-(a-2 c)-d-(b-d))\right) x^{2}+(d) x^{3} \\
= & a+b x+c x^{2}+d x^{3} \\
= & I_{P_{3}}\left(a+b x+c x^{2}+d x^{3}\right)
\end{aligned}
$$

For now, understand why these computations show that T is invertible, and that $S=T^{-1}$. Maybe even be amazed by how S works so perfectly in concert with T ! We will see later just how to arrive at the correct form of S (when it is possible).

It can be as instructive to study a linear transformation that is not invertible.

Example ANILT

A non-invertible linear transformation

Consider the linear transformation $T: \mathbb{C}^{3} \mapsto M_{22}$ defined by

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{cc}
a-b & 2 a+2 b+c \\
3 a+b+c & -2 a-6 b-2 c
\end{array}\right]
$$

Suppose we were to search for an inverse function $S: M_{22} \mapsto \mathbb{C}^{3}$.
First verify that the 2×2 matrix $A=\left[\begin{array}{ll}5 & 3 \\ 8 & 2\end{array}\right]$ is not in the range of T. This will amount to finding an input to $T,\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$, such that

$$
\begin{array}{r}
a-b=5 \\
2 a+2 b+c=3 \\
3 a+b+c=8 \\
-2 a-6 b-2 c=2
\end{array}
$$

As this system of equations is inconsistent, there is no input column vector, and $A \notin \mathcal{R}(T)$. How should we define $S(A)$? Note that

$$
T(S(A))=(T \circ S)(A)=I_{M_{22}}(A)=A
$$

So any definition we would provide for $S(A)$ must then be a column vector that T sends to A and we would have $A \in \mathcal{R}(T)$, contrary to the definition of T. This is enough to see that there is no function S that will allow us to conclude that T is invertible, since we cannot provide a consistent definition for $S(A)$ if we assume T is invertible.

Even though we now know that T is not invertible, let's not leave this example just yet. Check that

$$
T\left(\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 2 \\
5 & 2
\end{array}\right]=B \quad T\left(\left[\begin{array}{c}
0 \\
-3 \\
8
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 2 \\
5 & 2
\end{array}\right]=B
$$

How would we define $S(B)$?

$$
S(B)=S\left(T\left(\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]\right)\right)=(S \circ T)\left(\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]\right)=I_{\mathbb{C}^{3}}\left(\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]
$$

or

$$
S(B)=S\left(T\left(\left[\begin{array}{c}
0 \\
-3 \\
8
\end{array}\right]\right)\right)=(S \circ T)\left(\left[\begin{array}{c}
0 \\
-3 \\
8
\end{array}\right]\right)=I_{\mathbb{C}^{3}}\left(\left[\begin{array}{c}
0 \\
-3 \\
8
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-3 \\
8
\end{array}\right]
$$

Which definition should we provide for $S(B)$? Both are necessary. But then S is not a function. So we have a second reason to know that there is no function S that will allow us to conclude that T is invertible. It happens that there are infinitely many column vectors that S would have to take to B. Construct the kernel of T,

$$
\mathcal{K}(T)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
-1 \\
4
\end{array}\right]\right\}\right\rangle
$$

Now choose either of the two inputs used above for T and add to it a scalar multiple of the basis vector for the kernel of T. For example,

$$
\mathbf{x}=\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]+(-2)\left[\begin{array}{c}
-1 \\
-1 \\
4
\end{array}\right]=\left[\begin{array}{c}
3 \\
0 \\
-4
\end{array}\right]
$$

then verify that $T(\mathbf{x})=B$. Practice creating a few more inputs for T that would be sent to B, and see why it is hopeless to think that we could ever provide a reasonable definition for $S(B)$! There is a "whole subspace's worth" of values that $S(B)$ would have to take on.

In Example ANILT 496 you may have noticed that T is not surjective, since the matrix A was not in the range of T. And T is not injective since there are two different input column vectors that T sends to the matrix B. Linear transformations T that are not surjective lead to putative inverse functions S that are undefined on inputs outside of the range of T. Linear transformations T that are not injective lead to putative inverse functions S that are multiply-defined on each of their inputs. We will formalize these ideas in Theorem ILTIS 498.

But first notice in Definition IVLT 495 that we only require the inverse (when it exists) to be a function. When it does exist, it too is a linear transformation.

Theorem ILTLT

Inverse of a Linear Transformation is a Linear Transformation

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then the function $T^{-1}: V \mapsto U$ is a linear transformation.

Proof We work through verifying Definition LT 441 for T^{-1}, using the fact that T is a linear transformation to obtain the second equality in each half of the proof. To this end, suppose $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{C}$.

$$
\begin{aligned}
T^{-1}(\mathbf{x}+\mathbf{y}) & =T^{-1}\left(T\left(T^{-1}(\mathbf{x})\right)+T\left(T^{-1}(\mathbf{y})\right)\right) & & \text { Definition IVLT 495 } \\
& =T^{-1}\left(T\left(T^{-1}(\mathbf{x})+T^{-1}(\mathbf{y})\right)\right) & & \text { Definition LT } 441 \\
& =T^{-1}(\mathbf{x})+T^{-1}(\mathbf{y}) & & \text { Definition IVLT 495 }
\end{aligned}
$$

Now check the second defining property of a linear transformation for T^{-1},

$$
\begin{aligned}
T^{-1}(\alpha \mathbf{x}) & =T^{-1}\left(\alpha T\left(T^{-1}(\mathbf{x})\right)\right) & & \text { Definition IVLT 495 } \\
& =T^{-1}\left(T\left(\alpha T^{-1}(\mathbf{x})\right)\right) & & \text { Definition LT } 441 \\
& =\alpha T^{-1}(\mathbf{x}) & & \text { Definition IVLT 495 }
\end{aligned}
$$

So T^{-1} fulfills the requirements of Definition LT 441 and is therefore a linear transformation. So when T has an inverse, T^{-1} is also a linear transformation. Additionally, T^{-1} is invertible and its inverse is what you might expect.

Theorem IILT

Inverse of an Invertible Linear Transformation

Suppose that $T: U \mapsto V$ is an invertible linear transformation. Then T^{-1} is an invertible linear transformation and $\left(T^{-1}\right)^{-1}=T$.
Proof Because T is invertible, Definition IVLT 495 tells us there is a function $T^{-1}: V \mapsto U$ such that

$$
T^{-1} \circ T=I_{U} \quad T \circ T^{-1}=I_{V}
$$

Additionally, Theorem ILTLT 498 tells us that T^{-1} is more than just a function, it is a linear transformation. Now view these two statements as properties of the linear transformation T^{-1}. In light of Definition IVLT 495, they together say that T^{-1} is invertible (let T play the role of S in the statement of the definition). Furthermore, the inverse of T^{-1} is then T, i.e. $\left(T^{-1}\right)^{-1}=T$.

Subsection IV
 Invertibility

We now know what an inverse linear transformation is, but just which linear transformations have inverses? Here is a theorem we have been preparing for all chapter long.

Theorem ILTIS

Invertible Linear Transformations are Injective and Surjective
Suppose $T: U \mapsto V$ is a linear transformation. Then T is invertible if and only if T is injective and surjective.

Proof (\Rightarrow) Since T is presumed invertible, we can employ its inverse, T^{-1} Definition IVLT 495). To see that T is injective, suppose $\mathbf{x}, \mathbf{y} \in U$ and assume that $T(\mathbf{x})=T(\mathbf{y})$,

$$
\mathbf{x}=I_{U}(\mathbf{x})
$$

Definition IDLT 495

$$
\begin{aligned}
& =\left(T^{-1} \circ T\right)(\mathbf{x}) \\
& =T^{-1}(T(\mathbf{x})) \\
& =T^{-1}(T(\mathbf{y})) \\
& =\left(T^{-1} \circ T\right)(\mathbf{y}) \\
& =I_{U}(\mathbf{y}) \\
& =\mathbf{y}
\end{aligned}
$$

Definition IVLT 495
Definition LTC 456
Definition ILT 465
Definition LTC 456
Definition IVLT 495
Definition IDLT 495

So by Definition ILT $465 T$ is injective. To check that T is surjective, suppose $\mathbf{v} \in V$. Then $T^{-1}(\mathbf{v})$ is a vector in U. Compute

$$
\begin{aligned}
T\left(T^{-1}(\mathbf{v})\right) & =\left(T \circ T^{-1}\right)(\mathbf{v}) & & \text { Definition LTC 456 } \\
& =I_{V}(\mathbf{v}) & & \text { Definition IVLT 495 } \\
& =\mathbf{v} & & \text { Definition IDLT } 495
\end{aligned}
$$

So there is an element from U, when used as an input to T (namely $T^{-1}(\mathbf{v})$) that produces the desired output, \mathbf{v}, and hence T is surjective by Definition SLT 479.
(\Leftarrow) Now assume that T is both injective and surjective. We will build a function $S: V \mapsto U$ that will establish that T is invertible. To this end, choose any $\mathbf{v} \in V$. Since T is surjective, Theorem RSLT 485 says $\mathcal{R}(T)=V$, so we have $\mathbf{v} \in \mathcal{R}(T)$. Theorem RPI 488 says that the pre-image of $\mathbf{v}, T^{-1}(\mathbf{v})$, is nonempty. So we can choose a vector from the pre-image of \mathbf{v}, say \mathbf{u}. In other words, there exists $\mathbf{u} \in T^{-1}(\mathbf{v})$.

Since $T^{-1}(\mathbf{v})$ is non-empty, Theorem KPI 470 then says that

$$
T^{-1}(\mathbf{v})=\{\mathbf{u}+\mathbf{z} \mid \mathbf{z} \in \mathcal{K}(T)\}
$$

However, because T is injective, by Theorem KILT 471 the kernel is trivial, $\mathcal{K}(T)=\{\mathbf{0}\}$. So the pre-image is a set with just one element, $T^{-1}(\mathbf{v})=\{\mathbf{u}\}$. Now we can define S by $S(\mathbf{v})=\mathbf{u}$. This is the key to this half of this proof. Normally the preimage of a vector from the codomain might be an empty set, or an infinite set. But surjectivity requires that the preimage not be empty, and then injectivity limits the preimage to a singleton. Since our choice of \mathbf{v} was arbitrary, we know that every pre-image for T is a set with a single element. This allows us to construct S as a function. Now that it is defined, verifying that it is the inverse of T will be easy. Here we go.

Choose $\mathbf{u} \in U$. Define $\mathbf{v}=T(\mathbf{u})$. Then $T^{-1}(\mathbf{v})=\{\mathbf{u}\}$, so that $S(\mathbf{v})=\mathbf{u}$ and,

$$
(S \circ T)(\mathbf{u})=S(T(\mathbf{u}))=S(\mathbf{v})=\mathbf{u}=I_{U}(\mathbf{u})
$$

and since our choice of \mathbf{u} was arbitrary we have function equality, $S \circ T=I_{U}$.
Now choose $\mathbf{v} \in V$. Define \mathbf{u} to be the single vector in the set $T^{-1}(\mathbf{v})$, in other words, $\mathbf{u}=S(\mathbf{v})$. Then $T(\mathbf{u})=\mathbf{v}$, so

$$
(T \circ S)(\mathbf{v})=T(S(\mathbf{v}))=T(\mathbf{u})=\mathbf{v}=I_{V}(\mathbf{v})
$$

and since our choice of \mathbf{v} was arbitary we have function equality, $T \circ S=I_{V}$.

We will make frequent use of this characterization of invertible linear transformations. The next theorem is a good example of this, and we will use it often, too.

Theorem CIVLT

Composition of Invertible Linear Transformations

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then the composition, $(S \circ T): U \mapsto W$ is an invertible linear transformation.
Proof Since S and T are both linear transformations, $S \circ T$ is also a linear transformation by Theorem CLTLT 456. Since S and T are both invertible, Theorem ILTIS 498 says that S and T are both injective
and surjective. Then Theorem CILTI 474 says $S \circ T$ is injective, and Theorem CSLTS 490 says $S \circ T$ is surjective. Now apply the "other half" of Theorem ILTIS 498 and conclude that $S \circ T$ is invertible.

When a composition is invertible, the inverse is easy to construct.

Theorem ICLT

Inverse of a Composition of Linear Transformations

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are invertible linear transformations. Then $S \circ T$ is invertible and $(S \circ T)^{-1}=T^{-1} \circ S^{-1}$.

Proof Compute, for all $\mathbf{w} \in W$

$$
\begin{aligned}
\left((S \circ T) \circ\left(T^{-1} \circ S^{-1}\right)\right)(\mathbf{w}) & =S\left(T\left(T^{-1}\left(S^{-1}(\mathbf{w})\right)\right)\right) \\
& =S\left(I_{V}\left(S^{-1}(\mathbf{w})\right)\right) \\
& =S\left(S^{-1}(\mathbf{w})\right) \\
& =\mathbf{w} \\
& =I_{W}(\mathbf{w})
\end{aligned}
$$

$$
\text { Definition IVLT } 495
$$

$$
\text { Definition IDLT } 495
$$

$$
\text { Definition IVLT } 495
$$

$$
\text { Definition IDLT } 495
$$

so $(S \circ T) \circ\left(T^{-1} \circ S^{-1}\right)=I_{W}$ and also

$$
\begin{aligned}
\left(\left(T^{-1} \circ S^{-1}\right) \circ(S \circ T)\right)(\mathbf{u}) & =T^{-1}\left(S^{-1}(S(T(\mathbf{u})))\right) \\
& =T^{-1}\left(I_{V}(T(\mathbf{u}))\right) \\
& =T^{-1}(T(\mathbf{u})) \\
& =\mathbf{u} \\
& =I_{U}(\mathbf{u})
\end{aligned}
$$

$$
\text { Definition IVLT } 495
$$

$$
\text { Definition IDLT } 495
$$

$$
\text { Definition IVLT } 495
$$

$$
\text { Definition IDLT } 495
$$

so $\left(T^{-1} \circ S^{-1}\right) \circ(S \circ T)=I_{U}$. By Definition IVLT 495, $S \circ T$ is invertible and $(S \circ T)^{-1}=T^{-1} \circ S^{-1}$.
Notice that this theorem not only establishes what the inverse of $S \circ T$ is, it also duplicates the conclusion of Theorem CIVLT 499 and also establishes the invertibility of $S \circ T$. But somehow, the proof of Theorem CIVLT 499) is nicer way to get this property.

Does Theorem ICLT 500 remind you of the flavor of any theorem we have seen about matrices? (Hint: Think about getting dressed.) Hmmmm.

Subsection SI
 Structure and Isomorphism

A vector space is defined (Definition VS 275) as a set of objects ("vectors") endowed with a definition of vector addition (+) and a definition of scalar multiplication (written with juxtaposition). Many of our definitions about vector spaces involve linear combinations (Definition LC (294), such as the span of a set (Definition SS 295) and linear independence Definition LI (305). Other definitions are built up from these ideas, such as bases (Definition B 321) and dimension (Definition D 335). The defining properties of a linear transformation require that a function "respect" the operations of the two vector spaces that are the domain and the codomain (Definition LT 441). Finally, an invertible linear transformation is one that can be "undone" - it has a companion that reverses its effect. In this subsection we are going to begin to roll all these ideas into one.

A vector space has "structure" derived from definitions of the two operations and the requirement that these operations interact in ways that satisfy the ten properties of Definition VS 275. When two different vector spaces have an invertible linear transformation defined between them, then we can translate questions about linear combinations (spans, linear independence, bases, dimension) from the first vector
space to the second. The answers obtained in the second vector space can then be translated back, via the inverse linear transformation, and interpreted in the setting of the first vector space. We say that these invertible linear transformations "preserve structure." And we say that the two vector spaces are "structurally the same." The precise term is "isomorphic," from Greek meaning "of the same form." Let's begin to try to understand this important concept.

Definition IVS

Isomorphic Vector Spaces

Two vector spaces U and V are isomorphic if there exists an invertible linear transformation T with domain U and codomain $V, T: U \mapsto V$. In this case, we write $U \cong V$, and the linear transformation T is known as an isomorphism between U and V.

A few comments on this definition. First, be careful with your language Technique L 674). Two vector spaces are isomorphic, or not. It is a yes/no situation and the term only applies to a pair of vector spaces. Any invertible linear transformation can be called an isomorphism, it is a term that applies to functions. Second, a given pair of vector spaces there might be several different isomorphisms between the two vector spaces. But it only takes the existence of one to call the pair isomorphic. Third, U isomorphic to V, or V isomorphic to U ? Doesn't matter, since the inverse linear transformation will provide the needed isomorphism in the "opposite" direction. Being "isomorphic to" is an equivalence relation on the set of all vector spaces (see Theorem SER 426 for a reminder about equivalence relations).

Example IVSAV

Isomorphic vector spaces, Archetype V
Archetype V 766 is a linear transformation from P_{3} to M_{22},

$$
T: P_{3} \mapsto M_{22}, \quad T\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
a+b & a-2 c \\
d & b-d
\end{array}\right]
$$

Since it is injective and surjective, Theorem ILTIS 498 tells us that it is an invertible linear transformation. By Definition IVS 501 we say P_{3} and M_{22} are isomorphic.

At a basic level, the term "isomorphic" is nothing more than a codeword for the presence of an invertible linear transformation. However, it is also a description of a powerful idea, and this power only becomes apparent in the course of studying examples and related theorems. In this example, we are led to believe that there is nothing "structurally" different about P_{3} and M_{22}. In a certain sense they are the same. Not equal, but the same. One is as good as the other. One is just as interesting as the other.

Here is an extremely basic application of this idea. Suppose we want to compute the following linear combination of polynomials in P_{3},

$$
5\left(2+3 x-4 x^{2}+5 x^{3}\right)+(-3)\left(3-5 x+3 x^{2}+x^{3}\right)
$$

Rather than doing it straight-away (which is very easy), we will apply the transformation T to convert into a linear combination of matrices, and then compute in M_{22} according to the definitions of the vector space operations there Example VSM 277),

$$
\begin{array}{ll}
T\left(5\left(2+3 x-4 x^{2}+5 x^{3}\right)+(-3)\left(3-5 x+3 x^{2}+x^{3}\right)\right) & \\
=5 T\left(2+3 x-4 x^{2}+5 x^{3}\right)+(-3) T\left(3-5 x+3 x^{2}+x^{3}\right) & \\
=5\left[\begin{array}{cc}
5 & 10 \\
5 & -2
\end{array}\right]+(-3)\left[\begin{array}{cc}
-2 & -3 \\
1 & -6
\end{array}\right] & \text { Definition of } T \\
=\left[\begin{array}{cc}
31 & 59 \\
22 & 8
\end{array}\right] &
\end{array}
$$

Now we will translate our answer back to P_{3} by applying T^{-1}, which we found in Example AIVLT 495,

$$
T^{-1}: M_{22} \mapsto P_{3}, \quad T^{-1}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a-c-d)+(c+d) x+\frac{1}{2}(a-b-c-d) x^{2}+c x^{3}
$$

We compute,

$$
T^{-1}\left(\left[\begin{array}{cc}
31 & 59 \\
22 & 8
\end{array}\right]\right)=1+30 x-29 x^{2}+22 x^{3}
$$

which is, as expected, exactly what we would have computed for the original linear combination had we just used the definitions of the operations in P_{3} Example VSP 277). Notice this is meant only as an illustration and not a suggested route for doing this particular computation.

Checking the dimensions of two vector spaces can be a quick way to establish that they are not isomorphic. Here's the theorem.

Theorem IVSED

Isomorphic Vector Spaces have Equal Dimension

Suppose U and V are isomorphic vector spaces. Then $\operatorname{dim}(U)=\operatorname{dim}(V)$.
Proof If U and V are isomorphic, there is an invertible linear transformation $T: U \mapsto V$ Definition IVS 501). T is injective by Theorem ILTIS 498 and so by Theorem ILTD 473, $\operatorname{dim}(U) \leq \operatorname{dim}(V)$. Similarly, T is surjective by Theorem ILTIS 498 and so by Theorem SLTD 489, $\operatorname{dim}(U) \geq \operatorname{dim}(V)$. The net effect of these two inequalities is that $\operatorname{dim}(U)=\operatorname{dim}(V)$.

The contrapositive of Theorem IVSED 502 says that if U and V have different dimensions, then they are not isomorphic. Dimension is the simplest "structural" characteristic that will allow you to distinguish non-isomorphic vector spaces. For example P_{6} is not isomorphic to M_{34} since their dimensions (7 and 12, respectively) are not equal. With tools developed in Section VR 513 we will be able to establish that the converse of Theorem IVSED 502 is true. Think about that one for a moment.

Subsection RNLT
 Rank and Nullity of a Linear Transformation

Just as a matrix has a rank and a nullity, so too do linear transformations. And just like the rank and nullity of a matrix are related (they sum to the number of columns, Theorem RPNC 342) the rank and nullity of a linear transformation are related. Here are the definitions and theorems, see the Archetypes Appendix A 685) for loads of examples.

Definition ROLT

Rank Of a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then the rank of $T, r(T)$, is the dimension of the range of T,

$$
r(T)=\operatorname{dim}(\mathcal{R}(T))
$$

(This definition contains Notation ROLT.)

Definition NOLT

Nullity Of a Linear Transformation
Suppose that $T: U \mapsto V$ is a linear transformation. Then the nullity of $T, n(T)$, is the dimension of the kernel of T,

$$
n(T)=\operatorname{dim}(\mathcal{K}(T))
$$

(This definition contains Notation NOLT.)
Here are two quick theorems.

Theorem ROSLT

Rank Of a Surjective Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation. Then the rank of T is the dimension of $V, r(T)=$ $\operatorname{dim}(V)$, if and only if T is surjective.
Proof By Theorem RSLT 485, T is surjective if and only if $\mathcal{R}(T)=V$. Applying Definition ROLT 502, $\mathcal{R}(T)=V$ if and only if $r(T)=\operatorname{dim}(\mathcal{R}(T))=\operatorname{dim}(V)$.

Theorem NOILT

Nullity Of an Injective Linear Transformation

Suppose that $T: U \mapsto V$ is an injective linear transformation. Then the nullity of T is zero, $n(T)=0$, if and only if T is injective.

Proof By Theorem KILT 471, T is injective if and only if $\mathcal{K}(T)=\{\mathbf{0}\}$. Applying Definition NOLT 502, $\mathcal{K}(T)=\{0\}$ if and only if $n(T)=0$.

Just as injectivity and surjectivity come together in invertible linear transformations, there is a clear relationship between rank and nullity of a linear transformation. If one is big, the other is small.

Theorem RPNDD

Rank Plus Nullity is Domain Dimension

Suppose that $T: U \mapsto V$ is a linear transformation. Then

$$
r(T)+n(T)=\operatorname{dim}(U)
$$

Proof Let $r=r(T)$ and $s=n(T)$. Suppose that $R=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{r}\right\} \subseteq V$ is a basis of the range of $T, \mathcal{R}(T)$, and $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{s}\right\} \subseteq U$ is a basis of the kernel of $T, \mathcal{K}(T)$. Note that R and S are possibly empty, which means that some of the sums in this proof are "empty" and are equal to the zero vector.

Because the elements of R are all in the range of T, each must have a non-empty pre-image by Theorem RPI 488. Choose vectors $\mathbf{w}_{i} \in U, 1 \leq i \leq r$ such that $\mathbf{w}_{i} \in T^{-1}\left(\mathbf{v}_{i}\right)$. So $T\left(\mathbf{w}_{i}\right)=\mathbf{v}_{i}, 1 \leq i \leq r$. Consider the set

$$
B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{s}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \ldots, \mathbf{w}_{r}\right\}
$$

We claim that B is a basis for U.
To establish linear independence for B, begin with a relation of linear dependence on B. So suppose there are scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{s}$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{r}$

$$
\mathbf{0}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{s} \mathbf{u}_{s}+b_{1} \mathbf{w}_{1}+b_{2} \mathbf{w}_{2}+b_{3} \mathbf{w}_{3}+\cdots+b_{r} \mathbf{w}_{r}
$$

Then

$$
\begin{aligned}
\mathbf{0}= & T(\mathbf{0}) & & \text { Theorem LTTZZ 445 } \\
& =T\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{s} \mathbf{u}_{s}+\right. & & \\
& \left.b_{1} \mathbf{w}_{1}+b_{2} \mathbf{w}_{2}+b_{3} \mathbf{w}_{3}+\cdots+b_{r} \mathbf{w}_{r}\right) & & \text { Definition LI 305 } \\
& =a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{s} T\left(\mathbf{u}_{s}\right)+ & & \\
& b_{1} T\left(\mathbf{w}_{1}\right)+b_{2} T\left(\mathbf{w}_{2}\right)+b_{3} T\left(\mathbf{w}_{3}\right)+\cdots+b_{r} T\left(\mathbf{w}_{r}\right) & & \text { Theorem LTLC 449 } \\
= & a_{1} \mathbf{0}+a_{2} \mathbf{0}+a_{3} \mathbf{0}+\cdots+a_{s} \mathbf{0}+ & & \\
& b_{1} T\left(\mathbf{w}_{1}\right)+b_{2} T\left(\mathbf{w}_{2}\right)+b_{3} T\left(\mathbf{w}_{3}\right)+\cdots+b_{r} T\left(\mathbf{w}_{r}\right) & & \text { Definition KLT 468 } \\
= & \mathbf{0}+\mathbf{0}+\mathbf{0}+\cdots+\mathbf{0}+ & & \\
& b_{1} T\left(\mathbf{w}_{1}\right)+b_{2} T\left(\mathbf{w}_{2}\right)+b_{3} T\left(\mathbf{w}_{3}\right)+\cdots+b_{r} T\left(\mathbf{w}_{r}\right) & & \text { Theorem ZVSM 282 }
\end{aligned}
$$

$$
\begin{align*}
& =b_{1} T\left(\mathbf{w}_{1}\right)+b_{2} T\left(\mathbf{w}_{2}\right)+b_{3} T\left(\mathbf{w}_{3}\right)+\cdots+b_{r} T\left(\mathbf{w}_{r}\right) \\
& =b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+b_{3} \mathbf{v}_{3}+\cdots+b_{r} \mathbf{v}_{r}
\end{align*}
$$

Definition PI 452
This is a relation of linear dependence on R (Definition RLD 305), and since R is a linearly independent set Definition LI 305), we see that $b_{1}=b_{2}=b_{3}=\ldots=b_{r}=0$. Then the original relation of linear dependence on B becomes

$$
\begin{aligned}
\mathbf{0} & =a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{s} \mathbf{u}_{s}+0 \mathbf{w}_{1}+0 \mathbf{w}_{2}+\ldots+0 \mathbf{w}_{r} \\
& =a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{s} \mathbf{u}_{s}+\mathbf{0}+\mathbf{0}+\ldots+\mathbf{0} \\
& =a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{s} \mathbf{u}_{s}
\end{aligned}
$$

$$
\text { Theorem ZSSM } 282
$$

$$
\text { Property Z } 276
$$

But this is again a relation of linear independence (Definition RLD (305), now on the set S. Since S is linearly independent (Definition LI 305), we have $a_{1}=a_{2}=a_{3}=\ldots=a_{r}=0$. Since we now know that all the scalars in the relation of linear dependence on B must be zero, we have established the linear independence of S through Definition LI 305 .

To now establish that B spans U, choose an arbitrary vector $\mathbf{u} \in U$. Then $T(\mathbf{u}) \in R(T)$, so there are scalars $c_{1}, c_{2}, c_{3}, \ldots, c_{r}$ such that

$$
T(\mathbf{u})=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+\cdots+c_{r} \mathbf{v}_{r}
$$

Use the scalars $c_{1}, c_{2}, c_{3}, \ldots, c_{r}$ to define a vector $\mathbf{y} \in U$,

$$
\mathbf{y}=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+c_{3} \mathbf{w}_{3}+\cdots+c_{r} \mathbf{w}_{r}
$$

Then

$$
\begin{aligned}
T(\mathbf{u}-\mathbf{y}) & =T(\mathbf{u})-T(\mathbf{y}) & & \text { Theorem LTLC } 449 \\
& =T(\mathbf{u})-T\left(c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+c_{3} \mathbf{w}_{3}+\cdots+c_{r} \mathbf{w}_{r}\right) & & \text { Substitution } \\
& =T(\mathbf{u})-\left(c_{1} T\left(\mathbf{w}_{1}\right)+c_{2} T\left(\mathbf{w}_{2}\right)+\cdots+c_{r} T\left(\mathbf{w}_{r}\right)\right) & & \text { Theorem LTLC 449 } \\
& =T(\mathbf{u})-\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+\cdots+c_{r} \mathbf{v}_{r}\right) & & \mathbf{w}_{i} \in T^{-1}\left(\mathbf{v}_{i}\right) \\
& =T(\mathbf{u})-T(\mathbf{u}) & & \text { Substitution } \\
& =\mathbf{0} & & \text { Property AI 276 }
\end{aligned}
$$

So the vector $\mathbf{u}-\mathbf{y}$ is sent to the zero vector by T and hence is an element of the kernel of T. As such it can be written as a linear combination of the basis vectors for $\mathcal{K}(T)$, the elements of the set S. So there are scalars $d_{1}, d_{2}, d_{3}, \ldots, d_{s}$ such that

$$
\mathbf{u}-\mathbf{y}=d_{1} \mathbf{u}_{1}+d_{2} \mathbf{u}_{2}+d_{3} \mathbf{u}_{3}+\cdots+d_{s} \mathbf{u}_{s}
$$

Then

$$
\begin{aligned}
\mathbf{u} & =(\mathbf{u}-\mathbf{y})+\mathbf{y} \\
& =d_{1} \mathbf{u}_{1}+d_{2} \mathbf{u}_{2}+d_{3} \mathbf{u}_{3}+\cdots+d_{s} \mathbf{u}_{s}+c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+c_{3} \mathbf{w}_{3}+\cdots+c_{r} \mathbf{w}_{r}
\end{aligned}
$$

This says that for any vector, \mathbf{u}, from U, there exist scalars $\left(d_{1}, d_{2}, d_{3}, \ldots, d_{s}, c_{1}, c_{2}, c_{3}, \ldots, c_{r}\right)$ that form \mathbf{u} as a linear combination of the vectors in the set B. In other words, B spans U (Definition SS 295).

So B is a basis (Definition B 321) of U with $s+r$ vectors, and thus

$$
\operatorname{dim}(U)=s+r=n(T)+r(T)
$$

as desired.
Theorem RPNC 342] said that the rank and nullity of a matrix sum to the number of columns of the matrix. This result is now an easy consequence of Theorem RPNDD 503 when we consider the linear
transformation $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{m}$ defined with the $m \times n$ matrix A by $T(\mathbf{x})=A \mathbf{x}$. The range and kernel of T are identical to the column space and null space of the matrix A Exercise ILT.T20 476, Exercise SLT.T20 492), so the rank and nullity of the matrix A are identical to the rank and nullity of the linear transformation T. The dimension of the domain of T is the dimension of \mathbb{C}^{n}, exactly the number of columns for the matrix A.

This theorem can be especially useful in determining basic properties of linear transformations. For example, suppose that $T: \mathbb{C}^{6} \mapsto \mathbb{C}^{6}$ is a linear transformation and you are able to quickly establish that the kernel is trivial. Then $n(T)=0$. First this means that T is injective by Theorem NOILT 503. Also, Theorem RPNDD 503 becomes

$$
6=\operatorname{dim}\left(\mathbb{C}^{6}\right)=r(T)+n(T)=r(T)+0=r(T)
$$

So the rank of T is equal to the rank of the codomain, and by Theorem ROSLT 503 we know T is surjective. Finally, we know T is invertible by Theorem ILTIS 498. So from the determination that the kernel is trivial, and consideration of various dimensions, the theorems of this section allow us to conclude the existence of an inverse linear transformation for T.

Similarly, Theorem RPNDD 503 can be used to provide alternative proofs for Theorem ILTD 473, Theorem SLTD 489 and Theorem IVSED 502. It would be an interesting exercise to construct these proofs.

It would be instructive to study the archetypes that are linear transformations and see how many of their properties can be deduced just from considering only the dimensions of the domain and codomain. Then add in just knowlege of either the nullity or rank, and so how much more you can learn about the linear transformation. The table preceding all of the archetypes Appendix A 685) could be a good place to start this analysis.

Subsection SLELT
 Systems of Linear Equations and Linear Transformations

This subsection does not really belong in this section, or any other section, for that matter. It is just the right time to have a discussion about the connections between the central topic of linear algebra, linear transformations, and our motivating topic from Chapter SLE 3, systems of linear equations. We will discuss several theorems we have seen already, but we will also make some forward-looking statements that will be justified in Chapter R 513 .

Archetype D 703 and Archetype E 707 are ideal examples to illustrate connections with linear transformations. Both have the same coefficient matrix,

$$
D=\left[\begin{array}{cccc}
2 & 1 & 7 & -7 \\
-3 & 4 & -5 & -6 \\
1 & 1 & 4 & -5
\end{array}\right]
$$

To apply the theory of linear transformations to these two archetypes, employ matrix multiplication Definition MM 192) and define the linear transformation,

$$
T: \mathbb{C}^{4} \mapsto \mathbb{C}^{3}, \quad T(\mathbf{x})=D \mathbf{x}=x_{1}\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{c}
7 \\
-5 \\
4
\end{array}\right]+x_{4}\left[\begin{array}{l}
-7 \\
-6 \\
-5
\end{array}\right]
$$

Theorem MBLT 446 tells us that T is indeed a linear transformation. Archetype D 703 asks for solutions to $\mathcal{L S}(D, \mathbf{b})$, where $\mathbf{b}=\left[\begin{array}{c}8 \\ -12 \\ -4\end{array}\right]$. In the language of linear transformations this is equivalent to asking for
$T^{-1}(\mathbf{b})$. In the language of vectors and matrices it asks for a linear combination of the four columns of D that will equal \mathbf{b}. One solution listed is $\mathbf{w}=\left[\begin{array}{l}7 \\ 8 \\ 1 \\ 3\end{array}\right]$. With a non-empty preimage, Theorem KPI 470 tells us that the complete solution set of the linear system is the preimage of \mathbf{b},

$$
\mathbf{w}+\mathcal{K}(T)=\{\mathbf{w}+\mathbf{z} \mid \mathbf{z} \in \mathcal{K}(T)\}
$$

The kernel of the linear transformation T is exactly the null space of the matrix D (see Exercise ILT.T20 (476), so this approach to the solution set should be reminiscent of Theorem PSPHS 102. The kernel of the linear transformation is the preimage of the zero vector, exactly equal to the solution set of the homogeneous system $\mathcal{L} \mathcal{S}(D, \mathbf{0})$. Since D has a null space of dimension two, every preimage (and in particular the preimage of \mathbf{b}) is as "big" as a subspace of dimension two (but is not a subspace).

Archetype $\mathrm{E}\left[707\right.$ is identical to Archetype D 703 but with a different vector of constants, $\mathbf{d}=\left[\begin{array}{l}2 \\ 3 \\ 2\end{array}\right]$.
We can use the same linear transformation T to discuss this system of equations since the coefficient matrix is identical. Now the set of solutions to $\mathcal{L S}(D, \mathbf{d})$ is the pre-image of $\mathbf{d}, T^{-1}(\mathbf{d})$. However, the vector \mathbf{d} is not in the range of the linear transformation (nor is it in the column space of the matrix, since these two sets are equal by Exercise SLT.T20 492). So the empty pre-image is equivalent to the inconsistency of the linear system.

These two archetypes each have three equations in four variables, so either the resulting linear systems are inconsistent, or they are consistent and application of Theorem CMVEI 52 tells us that the system has infinitely many solutions. Considering these same parameters for the linear transformation, the dimension of the domain, \mathbb{C}^{4}, is four, while the codomain, \mathbb{C}^{3}, has dimension three. Then

$$
\begin{aligned}
n(T) & =\operatorname{dim}\left(\mathbb{C}^{4}\right)-r(T) \\
& =4-\operatorname{dim}(\mathcal{R}(T)) \\
& \geq 4-3 \\
& =1
\end{aligned}
$$

So the kernel of T is nontrivial simply by considering the dimensions of the domain (number of variables) and the codomain (number of equations). Pre-images of elements of the codomain that are not in the range of T are empty (inconsistent systems). For elements of the codomain that are in the range of T (consistent systems), Theorem KPI 470 tells us that the pre-images are built from the kernel, and with a non-trivial kernel, these pre-images are infinite (infinitely many solutions).

When do systems of equations have unique solutions? Consider the system of linear equations $\mathcal{L S}(C, \mathbf{f})$ and the linear transformation $S(\mathbf{x})=C \mathbf{x}$. If S has a trivial kernel, then pre-images will either be empty or be finite sets with single elements. Correspondingly, the coefficient matrix C will have a trivial null space and solution sets will either be empty (inconsistent) or contain a single solution (unique solution). Should the matrix be square and have a trivial null space then we recognize the matrix as being nonsingular. A square matrix means that the corresponding linear transformation, T, has equal-sized domain and codomain. With a nullity of zero, T is injective, and also Theorem RPNDD 503 tells us that rank of T is equal to the dimension of the domain, which in turn is equal to the dimension of the codomain. In other words, T is surjective. Injective and surjective, and Theorem ILTIS 498 tells us that T is invertible. Just as we can use the inverse of the coefficient matrix to find the unique solution of any linear system with a nonsingular coefficient matrix (Theorem SNCM [223), we can use the inverse of the linear transformation to construct the unique element of any pre-image (proof of Theorem ILTIS 498).

The executive summary of this discussion is that to every coefficient matrix of a system of linear equations we can associate a natural linear transformation. Solution sets for systems with this coefficient matrix
are preimages of elements of the codomain of the linear transformation. For every theorem about systems of linear equations there is an analogue about linear transformations. The theory of linear transformations provides all the tools to recreate the theory of solutions to linear systems of equations.

We will continue this adventure in Chapter R 513.

Subsection READ

Reading Questions

1. What conditions allow us to easily determine if a linear tranformation is invertible?
2. What does it mean to say two vector spaces are isomorphic? Both technically, and informally?
3. How do linear transformations relate to systems of linear equations?

Subsection EXC
 Exercises

C10 The archetypes below are linear transformations of the form $T: U \mapsto V$ that are invertible. For each, the inverse linear transformation is given explicitly as part of the archetype's description. Verify for each linear transformation that

$$
T^{-1} \circ T=I_{U} \quad T \circ T^{-1}=I_{V}
$$

Archetype R 756,
Archetype V 766,
Archetype W 768
Contributed by Robert Beezer
C20 Determine if the linear transformation $T: P_{2} \mapsto M_{22}$ is (a) injective, (b) surjective, (c) invertible.

$$
T\left(a+b x+c x^{2}\right)=\left[\begin{array}{cc}
a+2 b-2 c & 2 a+2 b \\
-a+b-4 c & 3 a+2 b+2 c
\end{array}\right]
$$

Contributed by Robert Beezer Solution 510
C21 Determine if the linear transformation $S: P_{3} \mapsto M_{22}$ is (a) injective, (b) surjective, (c) invertible.

$$
S\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
-a+4 b+c+2 d & 4 a-b+6 c-d \\
a+5 b-2 c+2 d & a+2 c+5 d
\end{array}\right]
$$

Contributed by Robert Beezer Solution 510
C50 Consider the linear transformation $S: M_{12} \mapsto P_{1}$ from the set of 1×2 matrices to the set of polynomials of degree at most 1 , defined by

$$
S\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right)=(3 a+b)+(5 a+2 b) x
$$

Prove that S is invertible. Then show that the linear transformation

$$
R: P_{1} \mapsto M_{12}, \quad R(r+s x)=[(2 r-s) \quad(-5 r+3 s)]
$$

is the inverse of S, that is $S^{-1}=R$.
Contributed by Robert Beezer Solution 511
M30 The linear transformation S below is invertible. Find a formula for the inverse linear transformation, S^{-1}.

$$
S: P_{1} \mapsto M_{1,2}, \quad S(a+b x)=\left[\begin{array}{ll}
3 a+b & 2 a+b
\end{array}\right]
$$

Contributed by Robert Beezer Solution 511
M31 The linear transformation $R: M_{12} \mapsto M_{21}$ is invertible. Determine a formula for the inverse linear transformation $R^{-1}: M_{21} \mapsto M_{12}$. (15 points)

$$
R\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right)=\left[\begin{array}{c}
a+3 b \\
4 a+11 b
\end{array}\right]
$$

Contributed by Robert Beezer Solution 512

T05 Prove that the identity linear transformation (Definition IDLT 495) is both injective and surjective, and hence invertible.
Contributed by Robert Beezer
T15 Suppose that $T: U \mapsto V$ is a surjective linear transformation and $\operatorname{dim}(U)=\operatorname{dim}(V)$. Prove that T is injective.
Contributed by Robert Beezer Solution 512
T16 Suppose that $T: U \mapsto V$ is an injective linear transformation and $\operatorname{dim}(U)=\operatorname{dim}(V)$. Prove that T is surjective.
Contributed by Robert Beezer

Subsection SOL
 Solutions

C20 Contributed by Robert Beezer Statement 508
(a) We will compute the kernel of T. Suppose that $a+b x+c x^{2} \in \mathcal{K}(T)$. Then

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=T\left(a+b x+c x^{2}\right)=\left[\begin{array}{cc}
a+2 b-2 c & 2 a+2 b \\
-a+b-4 c & 3 a+2 b+2 c
\end{array}\right]
$$

and matrix equality (Theorem ME 419) yields the homogeneous system of four equations in three variables,

$$
\begin{array}{r}
a+2 b-2 c=0 \\
2 a+2 b=0 \\
-a+b-4 c=0 \\
3 a+2 b+2 c=0
\end{array}
$$

The coefficient matrix of this system row-reduces as

$$
\left[\begin{array}{ccc}
1 & 2 & -2 \\
2 & 2 & 0 \\
-1 & 1 & -4 \\
3 & 2 & 2
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
{[1} & 0 & 2 \\
0 & \begin{array}{|c}
1 \\
\hline
\end{array} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

From the existence of non-trivial solutions to this system, we can infer non-zero polynomials in $\mathcal{K}(T)$. By Theorem KILT 471 we then know that T is not injective.
(b) Since $3=\operatorname{dim}\left(P_{2}\right)<\operatorname{dim}\left(M_{22}\right)=4$, by Theorem SLTD 489 T is not surjective.
(c) Since T is not surjective, it is not invertible by Theorem ILTIS 498 .

C21 Contributed by Robert Beezer Statement 508
(a) To check injectivity, we compute the kernel of S. To this end, suppose that $a+b x+c x^{2}+d x^{3} \in \mathcal{K}(S)$, so

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=S\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
-a+4 b+c+2 d & 4 a-b+6 c-d \\
a+5 b-2 c+2 d & a+2 c+5 d
\end{array}\right]
$$

this creates the homogeneous system of four equations in four variables,

$$
\begin{aligned}
-a+4 b+c+2 d & =0 \\
4 a-b+6 c-d & =0 \\
a+5 b-2 c+2 d & =0 \\
a+2 c+5 d & =0
\end{aligned}
$$

The coefficient matrix of this system row-reduces as,

$$
\left[\begin{array}{cccc}
-1 & 4 & 1 & 2 \\
4 & -1 & 6 & -1 \\
1 & 5 & -2 & 2 \\
1 & 0 & 2 & 5
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

We recognize the coefficient matrix as being nonsingular, so the only solution to the system is $a=b=c=$ $d=0$, and the kernel of S is trivial, $\mathcal{K}(S)=\left\{0+0 x+0 x^{2}+0 x^{3}\right\}$. By Theorem KILT 471, we see that S is injective.
(b) We can establish that S is surjective by considering the rank and nullity of S.

$$
\begin{aligned}
r(S) & =\operatorname{dim}\left(P_{3}\right)-n(S) & \text { Theorem RPNDD } 503 \\
& =4-0 & \\
& =\operatorname{dim}\left(M_{22}\right) &
\end{aligned}
$$

So, $\mathcal{R}(S)$ is a subspace of M_{22} Theorem RLTS 484) whose dimension equals that of M_{22}. By Theorem EDYES 352, we gain the set equality $\mathcal{R}(S)=M_{22}$. Theorem RSLT 485 then implies that S is surjective.
(c) Since S is both injective and surjective, Theorem ILTIS 498 says S is invertible.

C50 Contributed by Robert Beezer Statement 508
Determine the kernel of S first. The condition that $S\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)=\mathbf{0}$ becomes $(3 a+b)+(5 a+2 b) x=0+0 x$. Equating coefficients of these polynomials yields the system

$$
\begin{array}{r}
3 a+b=0 \\
5 a+2 b=0
\end{array}
$$

This homogeneous system has a nonsingular coefficient matrix, so the only solution is $a=0, b=0$ and thus

$$
\mathcal{K}(S)=\left\{\left[\begin{array}{ll}
0 & 0
\end{array}\right]\right\}
$$

By Theorem KILT 471, we know S is injective. With $n(S)=0$ we employ Theorem RPNDD 503 to find

$$
r(S)=r(S)+0=r(S)+n(S)=\operatorname{dim}\left(M_{12}\right)=2=\operatorname{dim}\left(P_{1}\right)
$$

Since $\mathcal{R}(S) \subseteq P_{1}$ and $\operatorname{dim}(\mathcal{R}(S))=\operatorname{dim}\left(P_{1}\right)$, we can apply Theorem EDYES 352 to obtain the set equality $\mathcal{R}(S)=P_{1}$ and therefore S is surjective.

One of the two defining conditions of an invertible linear transformation is Definition IVLT 495)

$$
\begin{aligned}
(S \circ R)(a+b x) & =S(R(a+b x)) \\
& =S([(2 a-b)(-5 a+3 b)]) \\
& =(3(2 a-b)+(-5 a+3 b))+(5(2 a-b)+2(-5 a+3 b)) x \\
& =((6 a-3 b)+(-5 a+3 b))+((10 a-5 b)+(-10 a+6 b)) x \\
& =a+b x \\
& =I_{P_{1}}(a+b x)
\end{aligned}
$$

That $(R \circ S)\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)=I_{M_{12}}\left(\left[\begin{array}{ll}a & b\end{array}\right]\right)$ is similar.
M30 Contributed by Robert Beezer Statement 508
Suppose that $S^{-1}: M_{1,2} \mapsto P_{1}$ has a form given by

$$
S^{-1}(z \quad w)=(r z+s w)+(p z+q w) x
$$

where r, s, p, q are unknown scalars. Then

$$
\begin{aligned}
a+b x & =S^{-1}(S(a+b x)) \\
& =S^{-1}([3 a+b \\
& 2 a+b]) \\
& =(r(3 a+b)+s(2 a+b))+(p(3 a+b)+q(2 a+b)) x \\
& =((3 r+2 s) a+(r+s) b)+((3 p+2 q) a+(p+q) b) x
\end{aligned}
$$

Equating coefficients of these two polynomials, and then equating coefficients on a and b, gives rise to 4 equations in 4 variables,

$$
3 r+2 s=1
$$

$$
\begin{aligned}
r+s & =0 \\
3 p+2 q & =0 \\
p+q & =1
\end{aligned}
$$

This system has a unique solution: $r=1, s=-1, p=-2, q=3$. So the desired inverse linear transformation is

$$
S^{-1}(z \quad w)=(z-w)+(-2 z+3 w) x
$$

Notice that the system of 4 equations in 4 variables could be split into two systems, each with two equations in two variables (and identical coefficient matrices). After making this split, the solution might feel like computing the inverse of a matrix (Theorem CINM 213). Hmmmm.
M31 Contributed by Robert Beezer Statement 508
We are given that R is invertible. The inverse linear transformation can be formulated by considering the pre-image of a generic element of the codomain. With injectivity and surjectivity, we know that the pre-image of any element will be a set of size one - it is this lone element that will be the output of the inverse linear transformation.

Suppose that we set $\mathbf{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$ as a generic element of the codomain, M_{21}. Then if $\left[\begin{array}{ll}r & s\end{array}\right]=\mathbf{w} \in R^{-1}(\mathbf{v})$,

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] } & =\mathbf{v}=R(\mathbf{w}) \\
& =\left[\begin{array}{c}
r+3 s \\
4 r+11 s
\end{array}\right]
\end{aligned}
$$

So we obtain the system of two equations in the two variables r and s,

$$
\begin{aligned}
r+3 s & =x \\
4 r+11 s & =y
\end{aligned}
$$

With a nonsingular coefficient matrix, we can solve the system using the inverse of the coefficient matrix,

$$
\begin{aligned}
& r=-11 x+3 y \\
& s=4 x-y
\end{aligned}
$$

So we define,

$$
R^{-1}(\mathbf{v})=R^{-1}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\mathbf{w}=\left[\begin{array}{ll}
r & s
\end{array}\right]=\left[\begin{array}{ll}
-11 x+3 y & 4 x-y
\end{array}\right]
$$

T15 Contributed by Robert Beezer Statement 509
If T is surjective, then Theorem RSLT 485 says $\mathcal{R}(T)=V$, so $r(T)=\operatorname{dim}(V)$. In turn, the hypothesis gives $r(T)=\operatorname{dim}(U)$. Then, using Theorem RPNDD 503,

$$
n(T)=(r(T)+n(T))-r(T)=\operatorname{dim}(U)-\operatorname{dim}(U)=0
$$

With a null space of zero dimension, $\mathcal{K}(T)=\{\mathbf{0}\}$, and by Theorem KILT 471 we see that T is injective. T is both injective and surjective so by Theorem ILTIS 498, T is invertible.

Chapter R

Representations

Previous work with linear transformations may have convinced you that we can convert most questions about linear transformations into questions about systems of equations or properties of subspaces of \mathbb{C}^{m}. In this section we begin to make these vague notions precise. We have used the word "representation" prior, but it will get a heavy workout in this chapter. In many ways, everything we have studied so far was in preparation for this chapter.

Section VR
 Vector Representations

We begin by establishing an invertible linear transformation between any vector space V of dimension m and \mathbb{C}^{m}. This will allow us to "go back and forth" between the two vector spaces, no matter how abstract the definition of V might be.

Definition VR

Vector Representation

Suppose that V is a vector space with a basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$. Define a function $\rho_{B}: V \mapsto \mathbb{C}^{n}$ as follows. For $\mathbf{w} \in V$, find scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ so that

$$
\mathbf{w}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{n} \mathbf{v}_{n}
$$

then

$$
\left[\rho_{B}(\mathbf{w})\right]_{i}=a_{i} \quad 1 \leq i \leq n
$$

We need to show that ρ_{B} is really a function (since "find scalars" sounds like it could be accomplished in many ways, or perhaps not at all) and right now we want to establish that ρ_{B} is a linear transformation. We will wrap up both objectives in one theorem, even though the first part is working backwards to make sure that ρ_{B} is well-defined.

Theorem VRLT

Vector Representation is a Linear Transformation

The function ρ_{B} (Definition VR 513) is a linear transformation.
Proof The definition of ρ_{B} Definition VR 513) appears to allow considerable latitude in selecting the scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. However, since B is a basis for V, Theorem VRRB 314 says this can be done, and done uniquely. So despite appearances, ρ_{B} is indeed a function.

Suppose that \mathbf{x} and \mathbf{y} are two vectors in V and $\alpha \in \mathbb{C}$. Then the vector space properties, Property AC 275 and Property SC 275, assure us that the vectors $\mathbf{x}+\mathbf{y}$ and $\alpha \mathbf{x}$ are also vectors in V. Theorem VRRB 314 then provides the following sets of scalars for the four vectors $\mathbf{x}, \mathbf{y}, \mathbf{x}+\mathbf{y}$ and $\alpha \mathbf{x}$, and tells us that each set of scalars is the only way to express the given vector as a linear combination of the basis vectors in B.

$$
\begin{aligned}
\mathbf{x} & =a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{n} \mathbf{v}_{n} \\
\mathbf{y} & =b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+b_{3} \mathbf{v}_{3}+\cdots+b_{n} \mathbf{v}_{n} \\
\mathbf{x}+\mathbf{y} & =c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+\cdots+c_{n} \mathbf{v}_{n} \\
\alpha \mathbf{x} & =d_{1} \mathbf{v}_{1}+d_{2} \mathbf{v}_{2}+d_{3} \mathbf{v}_{3}+\cdots+d_{n} \mathbf{v}_{n}
\end{aligned}
$$

Then these coefficients are related, as we now show.

$$
\begin{array}{rlrl}
\mathbf{x}+\mathbf{y}= & \left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{n} \mathbf{v}_{n}\right) & \\
& +\left(b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+b_{3} \mathbf{v}_{3}+\cdots+b_{n} \mathbf{v}_{n}\right) & \\
= & a_{1} \mathbf{v}_{1}+b_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+b_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}+b_{n} \mathbf{v}_{n} & & \text { Property AC 275 } \\
= & \left(a_{1}+b_{1}\right) \mathbf{v}_{1}+\left(a_{2}+b_{2}\right) \mathbf{v}_{2}+\cdots+\left(a_{n}+b_{n}\right) \mathbf{v}_{n} & & \text { Property DSA 2276 }
\end{array}
$$

By the uniqueness of the expression of $\mathbf{x}+\mathbf{y}$ as a linear combination of the vectors in B Theorem VRRB (314), we conclude that $c_{i}=a_{i}+b_{i}, 1 \leq i \leq n$.

Similarly,

$$
\begin{aligned}
\alpha \mathbf{x} & =\alpha\left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}+\cdots+a_{n} \mathbf{v}_{n}\right) & & \\
& =\alpha\left(a_{1} \mathbf{v}_{1}\right)+\alpha\left(a_{2} \mathbf{v}_{2}\right)+\alpha\left(a_{3} \mathbf{v}_{3}\right)+\cdots+\alpha\left(a_{n} \mathbf{v}_{n}\right) & & \text { Property DVA } 276 \\
& =\left(\alpha a_{1}\right) \mathbf{v}_{1}+\left(\alpha a_{2}\right) \mathbf{v}_{2}+\left(\alpha a_{3}\right) \mathbf{v}_{3}+\cdots+\left(\alpha a_{n}\right) \mathbf{v}_{n} & & \text { Property SMA } 276
\end{aligned}
$$

By the uniqueness of the expression of $\alpha \mathbf{x}$ as a linear combination of the vectors in B Theorem VRRB (314), we conclude that $d_{i}=\alpha a_{i}, 1 \leq i \leq n$.

Now, for $1 \leq i \leq n$, we have

$$
\begin{aligned}
{\left[\rho_{B}(\mathbf{x}+\mathbf{y})\right]_{i} } & =c_{i} & & \text { Definition VR } 513 \\
& =a_{i}+b_{i} & & \text { Theorem VRRB } 314 \\
& =\left[\rho_{B}(\mathbf{x})\right]_{i}+\left[\rho_{B}(\mathbf{y})\right]_{i} & & \text { Definition VR } 513 \\
& =\left[\rho_{B}(\mathbf{x})+\rho_{B}(\mathbf{y})\right]_{i} & & \text { Definition CVA } 80
\end{aligned}
$$

Thus the vectors $\rho_{B}(\mathbf{x}+\mathbf{y})$ and $\rho_{B}(\mathbf{x})+\rho_{B}(\mathbf{y})$ are equal in each entry and Definition CVE 80 tells us that $\rho_{B}(\mathbf{x}+\mathbf{y})=\rho_{B}(\mathbf{x})+\rho_{B}(\mathbf{y})$. This is the first necessary property for ρ_{B} to be a linear transformation (Definition LT 441).

Similarly, for $1 \leq i \leq n$, we have

$$
\begin{aligned}
{\left[\rho_{B}(\alpha \mathbf{x})\right]_{i} } & =d_{i} \\
& =\alpha a_{i} \\
& =\alpha\left[\rho_{B}(\mathbf{x})\right]_{i} \\
& =\left[\alpha \rho_{B}(\mathbf{x})\right]_{i}
\end{aligned}
$$

Definition VR 513
Theorem VRRB 314
Definition VR 513
Definition CVSM 81
and so, the vectors $\rho_{B}(\alpha \mathbf{x})$ and $\alpha \rho_{B}(\mathbf{x})$ are equal in each entry and therefore by Definition CVE 80 we have the vector equality $\rho_{B}(\alpha \mathbf{x})=\alpha \rho_{B}(\mathbf{x})$. This establishes the second property of a linear transformation (Definition LT 441) so we can conclude that ρ_{B} is a linear transformation.

Example VRC4

Vector representation in \mathbb{C}^{4}
Consider the vector $\mathbf{y} \in \mathbb{C}^{4}$

$$
\mathbf{y}=\left[\begin{array}{c}
6 \\
14 \\
6 \\
7
\end{array}\right]
$$

We will find several coordinate representations of \mathbf{y} in this example. Notice that \mathbf{y} never changes, but the representations of \mathbf{y} do change.

One basis for \mathbb{C}^{4} is

$$
B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}=\left\{\left[\begin{array}{c}
-2 \\
1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
3 \\
-6 \\
2 \\
-4
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0 \\
5
\end{array}\right],\left[\begin{array}{l}
4 \\
3 \\
1 \\
6
\end{array}\right]\right\}
$$

as can be seen by making these vectors the columns of a matrix, checking that the matrix is nonsingular and applying Theorem CNMB 326. To find $\rho_{B}(\mathbf{y})$, we need to find scalars, $a_{1}, a_{2}, a_{3}, a_{4}$ such that

$$
\mathbf{y}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+a_{4} \mathbf{u}_{4}
$$

By Theorem SLSLC 90 the desired scalars are a solution to the linear system of equations with a coefficient matrix whose columns are the vectors in B and with a vector of constants \mathbf{y}. With a nonsingular coefficient matrix, the solution is unique, but this is no surprise as this is the content of Theorem VRRB 314. This unique solution is

$$
\begin{array}{llll}
a_{1}=2 & a_{2}=-1 & a_{3}=-3 & a_{4}=4
\end{array}
$$

Then by Definition VR 513, we have

$$
\rho_{B}(\mathbf{y})=\left[\begin{array}{c}
2 \\
-1 \\
-3 \\
4
\end{array}\right]
$$

Suppose now that we construct a representation of \mathbf{y} relative to another basis of \mathbb{C}^{4},

$$
C=\left\{\left[\begin{array}{c}
-15 \\
9 \\
-4 \\
-2
\end{array}\right],\left[\begin{array}{c}
16 \\
-14 \\
5 \\
2
\end{array}\right],\left[\begin{array}{c}
-26 \\
14 \\
-6 \\
-3
\end{array}\right],\left[\begin{array}{c}
14 \\
-13 \\
4 \\
6
\end{array}\right]\right\}
$$

As with B, it is easy to check that C is a basis. Writing \mathbf{y} as a linear combination of the vectors in C leads to solving a system of four equations in the four unknown scalars with a nonsingular coefficient matrix. The unique solution can be expressed as

$$
\mathbf{y}=\left[\begin{array}{c}
6 \\
14 \\
6 \\
7
\end{array}\right]=(-28)\left[\begin{array}{c}
-15 \\
9 \\
-4 \\
-2
\end{array}\right]+(-8)\left[\begin{array}{c}
16 \\
-14 \\
5 \\
2
\end{array}\right]+11\left[\begin{array}{c}
-26 \\
14 \\
-6 \\
-3
\end{array}\right]+0\left[\begin{array}{c}
14 \\
-13 \\
4 \\
6
\end{array}\right]
$$

so that Definition VR 513 gives

$$
\rho_{C}(\mathbf{y})=\left[\begin{array}{c}
-28 \\
-8 \\
11 \\
0
\end{array}\right]
$$

We often perform representations relative to standard bases, but for vectors in \mathbb{C}^{m} its a little silly. Let's find the vector representation of \mathbf{y} relative to the standard basis (Theorem SUVB 321),

$$
D=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}
$$

Then, without any computation, we can check that

$$
\mathbf{y}=\left[\begin{array}{c}
6 \\
14 \\
6 \\
7
\end{array}\right]=6 \mathbf{e}_{1}+14 \mathbf{e}_{2}+6 \mathbf{e}_{3}+7 \mathbf{e}_{4}
$$

so by Definition VR 513 ,

$$
\rho_{D}(\mathbf{y})=\left[\begin{array}{c}
6 \\
14 \\
6 \\
7
\end{array}\right]
$$

which is not very exciting. Notice however that the order in which we place the vectors in the basis is critical to the representation. Let's keep the standard unit vectors as our basis, but rearrange the order we place them in the basis. So a fourth basis is

$$
E=\left\{\mathbf{e}_{3}, \mathbf{e}_{4}, \mathbf{e}_{2}, \mathbf{e}_{1}\right\}
$$

Then,

$$
\mathbf{y}=\left[\begin{array}{c}
6 \\
14 \\
6 \\
7
\end{array}\right]=6 \mathbf{e}_{3}+7 \mathbf{e}_{4}+14 \mathbf{e}_{2}+6 \mathbf{e}_{1}
$$

so by Definition VR 513,

$$
\rho_{E}(\mathbf{y})=\left[\begin{array}{c}
6 \\
7 \\
14 \\
6
\end{array}\right]
$$

So for every possible basis of \mathbb{C}^{4} we could construct a different representation of \mathbf{y}.
Vector representations are most interesting for vector spaces that are not \mathbb{C}^{m}.

Example VRP2

Vector representations in P_{2}
Consider the vector $\mathbf{u}=15+10 x-6 x^{2} \in P_{2}$ from the vector space of polynomials with degree at most 2 (Example VSP 277). A nice basis for P_{2} is

$$
B=\left\{1, x, x^{2}\right\}
$$

so that

$$
\mathbf{u}=15+10 x-6 x^{2}=15(1)+10(x)+(-6)\left(x^{2}\right)
$$

so by Definition VR 513

$$
\rho_{B}(\mathbf{u})=\left[\begin{array}{c}
15 \\
10 \\
-6
\end{array}\right]
$$

Another nice basis for P_{2} is

$$
B=\left\{1,1+x, 1+x+x^{2}\right\}
$$

so that now it takes a bit of computation to determine the scalars for the representation. We want a_{1}, a_{2}, a_{3} so that

$$
15+10 x-6 x^{2}=a_{1}(1)+a_{2}(1+x)+a_{3}\left(1+x+x^{2}\right)
$$

Performing the operations in P_{2} on the right-hand side, and equating coefficients, gives the three equations in the three unknown scalars,

$$
\begin{aligned}
15 & =a_{1}+a_{2}+a_{3} \\
10 & =a_{2}+a_{3} \\
-6 & =a_{3}
\end{aligned}
$$

The coefficient matrix of this sytem is nonsingular, leading to a unique solution (no surprise there, see Theorem VRRB 314),

$$
a_{1}=5 \quad a_{2}=16 \quad a_{3}=-6
$$

so by Definition VR 513

$$
\rho_{C}(\mathbf{u})=\left[\begin{array}{c}
5 \\
16 \\
-6
\end{array}\right]
$$

While we often form vector representations relative to "nice" bases, nothing prevents us from forming representations relative to "nasty" bases. For example, the set

$$
D=\left\{-2-x+3 x^{2}, 1-2 x^{2}, 5+4 x+x^{2}\right\}
$$

can be verified as a basis of P_{2} by checking linear independence with Definition LI 305 and then arguing that 3 vectors from P_{2}, a vector space of dimension 3 Theorem DP [339]), must also be a spanning set (Theorem G 349). Now we desire scalars a_{1}, a_{2}, a_{3} so that

$$
15+10 x-6 x^{2}=a_{1}\left(-2-x+3 x^{2}\right)+a_{2}\left(1-2 x^{2}\right)+a_{3}\left(5+4 x+x^{2}\right)
$$

Performing the operations in P_{2} on the right-hand side, and equating coefficients, gives the three equations in the three unknown scalars,

$$
\begin{aligned}
15 & =-2 a_{1}+a_{2}+5 a_{3} \\
10 & =-a_{1}+4 a_{3} \\
-6 & =3 a_{1}-2 a_{2}+a_{3}
\end{aligned}
$$

The coefficient matrix of this sytem is nonsingular, leading to a unique solution (no surprise there, see Theorem VRRB (314),

$$
\begin{array}{lll}
a_{1}=-2 & a_{2}=1 & a_{3}=2
\end{array}
$$

so by Definition VR 513

$$
\rho_{D}(\mathbf{u})=\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right]
$$

Theorem VRI

Vector Representation is Injective

The function ρ_{B} (Definition VR 513]) is an injective linear transformation.
Proof We will appeal to Theorem KILT 471. Suppose U is a vector space of dimension n, so vector representation is of the form $\rho_{B}: U \mapsto \mathbb{C}^{n}$. Let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ be the basis of U used in the definition of ρ_{B}. Suppose $\mathbf{u} \in \mathcal{K}\left(\rho_{B}\right)$. Finally, since B is a basis for U, by Theorem VRRB 314 there are (unique) scalars, $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ such that

$$
\mathbf{u}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{n} \mathbf{u}_{n}
$$

Then for $1 \leq i \leq n$

$$
\begin{aligned}
a_{i} & =\left[\rho_{B}(\mathbf{u})\right]_{i} \\
& =[\mathbf{0}]_{i} \\
& =0
\end{aligned}
$$

$$
\begin{array}{ll}
=[\mathbf{0}]_{i} & \overline{\text { Definition KLT } 468}
\end{array}
$$

So

$$
\begin{aligned}
\mathbf{u} & =a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{n} \mathbf{u}_{n} \\
& =0 \mathbf{u}_{1}+0 \mathbf{u}_{2}+0 \mathbf{u}_{3}+\cdots+0 \mathbf{u}_{n}
\end{aligned}
$$

$$
=\mathbf{0}+\mathbf{0}+\mathbf{0}+\cdots+\mathbf{0} \quad \text { Theorem ZSSM } 282
$$

$$
=\mathbf{0} \quad \text { Property Z } 276
$$

Thus an arbitrary vector, \mathbf{u}, from the kernel, $\mathcal{K}\left(\rho_{B}\right)$, must equal the zero vector of U. So $\mathcal{K}\left(\rho_{B}\right)=\{\mathbf{0}\}$ and by Theorem KILT 471, ρ_{B} is injective.

Theorem VRS

Vector Representation is Surjective

The function ρ_{B} (Definition VR [513) is a surjective linear transformation.
Proof We will appeal to Theorem RSLT 485. Suppose U is a vector space of dimension n, so vector representation is of the form $\rho_{B}: U \mapsto \mathbb{C}^{n}$. Let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ be the basis of U used in the definition of ρ_{B}. Suppose $\mathbf{v} \in \mathbb{C}^{n}$. Define the vector \mathbf{u} by

$$
\mathbf{u}=[\mathbf{v}]_{1} \mathbf{u}_{1}+[\mathbf{v}]_{2} \mathbf{u}_{2}+[\mathbf{v}]_{3} \mathbf{u}_{3}+\cdots+[\mathbf{v}]_{n} \mathbf{u}_{n}
$$

Then for $1 \leq i \leq n$

$$
\begin{aligned}
{\left[\rho_{B}(\mathbf{u})\right]_{i} } & =\left[\rho_{B}\left([\mathbf{v}]_{1} \mathbf{u}_{1}+[\mathbf{v}]_{2} \mathbf{u}_{2}+[\mathbf{v}]_{3} \mathbf{u}_{3}+\cdots+[\mathbf{v}]_{n} \mathbf{u}_{n}\right)\right]_{i} \\
& =[\mathbf{v}]_{i}
\end{aligned}
$$

$$
\text { Definition VR } 513
$$

so the entries of vectors $\rho_{B}(\mathbf{u})$ and \mathbf{v} are equal and Definition CVE 80 yields the vector equality $\rho_{B}(\mathbf{u})=$ v. This demonstrates that $\mathbf{v} \in \mathcal{R}\left(\rho_{B}\right)$, so $\mathbb{C}^{n} \subseteq \mathcal{R}\left(\rho_{B}\right)$. Since $\mathcal{R}\left(\rho_{B}\right) \subseteq \mathbb{C}^{n}$ by Definition RLT 483, we have $\mathcal{R}\left(\rho_{B}\right)=\mathbb{C}^{n}$ and Theorem RSLT 485 says ρ_{B} is surjective.

We will have many occasions later to employ the inverse of vector representation, so we will record the fact that vector representation is an invertible linear transformation.

Theorem VRILT

Vector Representation is an Invertible Linear Transformation

The function ρ_{B} Definition VR 513) is an invertible linear transformation.
Proof The function $\rho_{B}(\overline{\text { Definition VR }}$ [513]) is a linear transformation (Theorem VRLT (513) that is injective (Theorem VRI 518) and surjective (Theorem VRS 518) with domain V and codomain \mathbb{C}^{n}. By Theorem ILTIS 498 we then know that ρ_{B} is an invertible linear transformation.

Informally, we will refer to the application of ρ_{B} as coordinatizing a vector, while the application of ρ_{B}^{-1} will be referred to as un-coordinatizing a vector.

Subsection CVS
 Characterization of Vector Spaces

Limiting our attention to vector spaces with finite dimension, we now describe every possible vector space. All of them. Really.

Theorem CFDVS

Characterization of Finite Dimensional Vector Spaces

Suppose that V is a vector space with dimension n. Then V is isomorphic to \mathbb{C}^{n}.
Proof Since V has dimension n we can find a basis of V of size n (Definition D (335) which we will call B. The linear transformation ρ_{B} is an invertible linear transformation from V to \mathbb{C}^{n}, so by Definition IVS 501, we have that V and \mathbb{C}^{n} are isomorphic.

Theorem CFDVS 519 is the first of several surprises in this chapter, though it might be a bit demoralizing too. It says that there really are not all that many different (finite dimensional) vector spaces, and none are really any more complicated than $\mathbb{C}^{n} . H m m m$. The following examples should make this point.

Example TIVS

Two isomorphic vector spaces
The vector space of polynomials with degree 8 or less, P_{8}, has dimension 9 (Theorem DP 339). By Theorem CFDVS 519, P_{8} is isomorphic to \mathbb{C}^{9}.

Example CVSR

Crazy vector space revealed

The crazy vector space, C of Example CVS 279, has dimension 2 by Example DC 340. By Theorem CFDVS 519, C is isomorphic to \mathbb{C}^{2}. Hmmmm. Not really so crazy after all?

Example ASC

A subspace characterized
In Example DSP4 340 we determined that a certain subspace W of P_{4} has dimension 4. By Theorem CFDVS [519, W is isomorphic to \mathbb{C}^{4}.

Theorem IFDVS

Isomorphism of Finite Dimensional Vector Spaces

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if and only if $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Proof (\Rightarrow) This is just the statement proved in Theorem IVSED 502 .
(\Leftarrow) This is the advertised converse of Theorem IVSED 502. We will assume U and V have equal dimension and discover that they are isomorphic vector spaces. Let n be the common dimension of U and V. Then by Theorem CFDVS 519 there are isomorphisms $T: U \mapsto \mathbb{C}^{n}$ and $S: V \mapsto \mathbb{C}^{n}$.
T is therefore an invertible linear transformation by Definition IVS 501. Similarly, S is an invertible linear transformation, and so S^{-1} is an invertible linear transformation (Theorem IILT 498). The composition of invertible linear transformations is again invertible (Theorem CIVLT 499) so the composition of S^{-1} with T is invertible. Then $\left(S^{-1} \circ T\right): U \mapsto V$ is an invertible linear transformation from U to V and Definition IVS 501 says U and V are isomorphic.

Example MIVS

Multiple isomorphic vector spaces

$\mathbb{C}^{10}, P_{9}, M_{2,5}$ and $M_{5,2}$ are all vector spaces and each has dimension 10 . By Theorem IFDVS 519 each is isomorphic to any other.

The subspace of $M_{4,4}$ that contains all the symmetric matrices (Definition SYM 181) has dimension 10 , so this subspace is also isomorphic to each of the four vector spaces above.

Subsection CP
 Coordinatization Principle

With ρ_{B} available as an invertible linear transformation, we can translate between vectors in a vector space U of dimension m and \mathbb{C}^{m}. Furthermore, as a linear transformation, ρ_{B} respects the addition and scalar multiplication in U, while ρ_{B}^{-1} respects the addition and scalar multiplication in \mathbb{C}^{m}. Since our definitions of linear independence, spans, bases and dimension are all built up from linear combinations, we will finally be able to translate fundamental properties between abstract vector spaces (U) and concrete vector spaces $\left(\mathbb{C}^{m}\right)$.

Theorem CLI

Coordinatization and Linear Independence

Suppose that U is a vector space with a basis B of size n. Then $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}$ is a linearly independent subset of U if and only if $R=\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}$ is a linearly independent subset of \mathbb{C}^{n}.
Proof The linear transformation ρ_{B} is an isomorphism between U and \mathbb{C}^{n} (Theorem VRILT 519). As an invertible linear transformation, ρ_{B} is an injective linear transformation (Theorem ILTIS 498), and ρ_{B}^{-1} is also an injective linear transformation Theorem IILT 498, Theorem ILTIS 498]).
(\Rightarrow) Since ρ_{B} is an injective linear transformation and S is linearly independent, Theorem ILTLI 472 says that R is linearly independent.
(\Leftarrow) If we apply ρ_{B}^{-1} to each element of R, we will create the set S. Since we are assuming R is linearly independent and ρ_{B}^{-1} is injective, Theorem ILTLI 472 says that S is linearly independent.

Theorem CSS

Coordinatization and Spanning Sets

Suppose that U is a vector space with a basis B of size n. Then $\mathbf{u} \in\left\langle\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}\right\rangle$ if and only if $\rho_{B}(\mathbf{u}) \in\left\langle\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}\right\rangle$.
Proof (\Rightarrow) Suppose $\mathbf{u} \in\left\langle\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}\right\rangle$. Then there are scalars, $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$, such that

$$
\mathbf{u}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{k} \mathbf{u}_{k}
$$

Then,

$$
\begin{aligned}
\rho_{B}(\mathbf{u}) & =\rho_{B}\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{k} \mathbf{u}_{k}\right) \\
& =a_{1} \rho_{B}\left(\mathbf{u}_{1}\right)+a_{2} \rho_{B}\left(\mathbf{u}_{2}\right)+a_{3} \rho_{B}\left(\mathbf{u}_{3}\right)+\cdots+a_{k} \rho_{B}\left(\mathbf{u}_{k}\right) \quad \text { Theorem LTLC } 449
\end{aligned}
$$

which says that $\rho_{B}(\mathbf{u}) \in\left\langle\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}\right\rangle$.
(\Leftarrow) Suppose that $\rho_{B}(\mathbf{u}) \in\left\langle\left\{\rho_{B}\left(\mathbf{u}_{1}\right), \rho_{B}\left(\mathbf{u}_{2}\right), \rho_{B}\left(\mathbf{u}_{3}\right), \ldots, \rho_{B}\left(\mathbf{u}_{k}\right)\right\}\right\rangle$. Then there are scalars $b_{1}, b_{2}, b_{3}, \ldots, b_{k}$ such that

$$
\rho_{B}(\mathbf{u})=b_{1} \rho_{B}\left(\mathbf{u}_{1}\right)+b_{2} \rho_{B}\left(\mathbf{u}_{2}\right)+b_{3} \rho_{B}\left(\mathbf{u}_{3}\right)+\cdots+b_{k} \rho_{B}\left(\mathbf{u}_{k}\right)
$$

Recall that ρ_{B} is invertible Theorem VRILT (519), so

$$
\begin{aligned}
\mathbf{u}= & I_{U}(\mathbf{u}) \\
= & \left(\rho_{B}^{-1} \circ \rho_{B}\right)(\mathbf{u}) \\
= & \rho_{B}^{-1}\left(\rho_{B}(\mathbf{u})\right) \\
= & \rho_{B}^{-1}\left(b_{1} \rho_{B}\left(\mathbf{u}_{1}\right)+b_{2} \rho_{B}\left(\mathbf{u}_{2}\right)+b_{3} \rho_{B}\left(\mathbf{u}_{3}\right)+\cdots+b_{k} \rho_{B}\left(\mathbf{u}_{k}\right)\right) \\
= & b_{1} \rho_{B}^{-1}\left(\rho_{B}\left(\mathbf{u}_{1}\right)\right)+b_{2} \rho_{B}^{-1}\left(\rho_{B}\left(\mathbf{u}_{2}\right)\right)+b_{3} \rho_{B}^{-1}\left(\rho_{B}\left(\mathbf{u}_{3}\right)\right) \\
& \quad+\cdots+b_{k} \rho_{B}^{-1}\left(\rho_{B}\left(\mathbf{u}_{k}\right)\right) \\
= & b_{1} I_{U}\left(\mathbf{u}_{1}\right)+b_{2} I_{U}\left(\mathbf{u}_{2}\right)+b_{3} I_{U}\left(\mathbf{u}_{3}\right)+\cdots+b_{k} I_{U}\left(\mathbf{u}_{k}\right) \\
= & b_{1} \mathbf{u}_{1}+b_{2} \mathbf{u}_{2}+b_{3} \mathbf{u}_{3}+\cdots+b_{k} \mathbf{u}_{k}
\end{aligned}
$$

Definition IDLT 495
Definition IVLT 495
Definition LTC 456

Theorem LTLC 449
Definition IVLT 495
Definition IDLT 495
which says that $\mathbf{u} \in\left\langle\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\}\right\rangle$.
Here's a fairly simple example that illustrates a very, very important idea.

Example CP2

Coordinatizing in P_{2}

In Example VRP2 516 we needed to know that

$$
D=\left\{-2-x+3 x^{2}, 1-2 x^{2}, 5+4 x+x^{2}\right\}
$$

is a basis for P_{2}. With Theorem CLI 520 and Theorem CSS 520 this task is much easier. First, choose a known basis for P_{2}, a basis that forms vector representations easily. We will choose

$$
B=\left\{1, x, x^{2}\right\}
$$

Now, form the subset of \mathbb{C}^{3} that is the result of applying ρ_{B} to each element of D,

$$
F=\left\{\rho_{B}\left(-2-x+3 x^{2}\right), \rho_{B}\left(1-2 x^{2}\right), \rho_{B}\left(5+4 x+x^{2}\right)\right\}=\left\{\left[\begin{array}{c}
-2 \\
-1 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{l}
5 \\
4 \\
1
\end{array}\right]\right\}
$$

and ask if F is a linearly independent spanning set for \mathbb{C}^{3}. This is easily seen to be the case by forming a matrix A whose columns are the vectors of F, row-reducing A to the identity matrix I_{3}, and then using the nonsingularity of A to assert that F is a basis for \mathbb{C}^{3} Theorem CNMB (326). Now, since F is a basis for \mathbb{C}^{3}, Theorem CLI 520 and Theorem CSS 520 tell us that D is also a basis for P_{2}.

Example CP2 521 illustrates the broad notion that computations in abstract vector spaces can be reduced to computations in \mathbb{C}^{m}. You may have noticed this phenomenon as you worked through examples in Chapter VS 275 or Chapter LT 441 employing vector spaces of matrices or polynomials. These computations seemed to invariably result in systems of equations or the like from Chapter SLE 3, Chapter V 79 and Chapter M 177. It is vector representation, ρ_{B}, that allows us to make this connection formal and precise.

Knowing that vector representation allows us to translate questions about linear combinations, linear indepencence and spans from general vector spaces to \mathbb{C}^{m} allows us to prove a great many theorems about how to translate other properties. Rather than prove these theorems, each of the same style as the other, we will offer some general guidance about how to best employ Theorem VRLT 513 , Theorem CLI 520 and Theorem CSS 520. This comes in the form of a "principle": a basic truth, but most definitely not a theorem (hence, no proof).

The Coordinatization Principle Suppose that U is a vector space with a basis B of size n. Then any question about U, or its elements, which ultimately depends on the vector addition or scalar multiplication in U, or depends on linear independence or spanning, may be translated into the same question in \mathbb{C}^{n} by application of the linear transformation ρ_{B} to the relevant vectors. Once the question is answered in \mathbb{C}^{n}, the answer may be translated back to U (if necessary) through application of the inverse linear transformation ρ_{B}^{-1}.

Example CM32

Coordinatization in M_{32}

This is a simple example of the Coordinatization Principle 522, depending only on the fact that coordinatizing is an invertible linear transformation (Theorem VRILT [519). Suppose we have a linear combination to perform in M_{32}, the vector space of 3×2 matrices, but we are adverse to doing the operations of M_{32} (Definition MA 177, Definition MSM 178). More specifically, suppose we are faced with the computation

$$
6\left[\begin{array}{cc}
3 & 7 \\
-2 & 4 \\
0 & -3
\end{array}\right]+2\left[\begin{array}{cc}
-1 & 3 \\
4 & 8 \\
-2 & 5
\end{array}\right]
$$

We choose a nice basis for M_{32} (or a nasty basis if we are so inclined),

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

and apply ρ_{B} to each vector in the linear combination. This gives us a new computation, now in the vector space \mathbb{C}^{6},

$$
6\left[\begin{array}{c}
3 \\
-2 \\
0 \\
7 \\
4 \\
-3
\end{array}\right]+2\left[\begin{array}{c}
-1 \\
4 \\
-2 \\
3 \\
8 \\
5
\end{array}\right]
$$

which we can compute with the operations of \mathbb{C}^{6} (Definition CVA 80, Definition CVSM 81), to arrive at

$$
\left[\begin{array}{c}
16 \\
-4 \\
-4 \\
48 \\
40 \\
-8
\end{array}\right]
$$

We are after the result of a computation in M_{32}, so we now can apply ρ_{B}^{-1} to obtain a 3×2 matrix,

$$
16\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]+(-4)\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]+(-4)\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right]+48\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]+40\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]+(-8)\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
16 & 48 \\
-4 & 40 \\
-4 & -8
\end{array}\right]
$$

which is exactly the matrix we would have computed had we just performed the matrix operations in the first place. So this was not meant to be an easier way to compute a linear combination of two matrices, just a different way.

Subsection READ
 Reading Questions

1. The vector space of 3×5 matrices, $M_{3,5}$ is isomorphic to what fundamental vector space?
2. A basis for \mathbb{C}^{3} is

$$
B=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

Compute $\rho_{B}\left(\left[\begin{array}{c}5 \\ 8 \\ -1\end{array}\right]\right)$.
3. What is the first "surprise," and why is it surprising?

Subsection EXC Exercises

$\mathbf{C 1 0}$ In the vector space \mathbb{C}^{3}, compute the vector representation $\rho_{B}(\mathbf{v})$ for the basis B and vector \mathbf{v} below.

$$
B=\left\{\left[\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
5 \\
2
\end{array}\right]\right\} \quad \mathbf{v}=\left[\begin{array}{c}
11 \\
5 \\
8
\end{array}\right]
$$

Contributed by Robert Beezer Solution 525
C20 Rework Example CM32 522 replacing the basis B by the basis

$$
C=\left\{\left[\begin{array}{cc}
-14 & -9 \\
10 & 10 \\
-6 & -2
\end{array}\right],\left[\begin{array}{cc}
-7 & -4 \\
5 & 5 \\
-3 & -1
\end{array}\right],\left[\begin{array}{cc}
-3 & -1 \\
0 & -2 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
-7 & -4 \\
3 & 2 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
4 & 2 \\
-3 & -3 \\
2 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
-1 & -2 \\
1 & 1
\end{array}\right]\right\}
$$

Contributed by Robert Beezer Solution 525
M10 Prove that the set S below is a basis for the vector space of 2×2 matrices, M_{22}. Do this choosing a natural basis for M_{22} and coordinatizing the elements of S with respect to this basis. Examine the resulting set of column vectors from \mathbb{C}^{4} and apply the Coordinatization Principle 522.

$$
S=\left\{\left[\begin{array}{cc}
33 & 99 \\
78 & -9
\end{array}\right],\left[\begin{array}{cc}
-16 & -47 \\
-36 & 2
\end{array}\right],\left[\begin{array}{cc}
10 & 27 \\
17 & 3
\end{array}\right],\left[\begin{array}{cc}
-2 & -7 \\
-6 & 4
\end{array}\right]\right\}
$$

Contributed by Andy Zimmer

Subsection SOL
 Solutions
 Tol

C10 Contributed by Robert Beezer Statement 524
We need to express the vector \mathbf{v} as a linear combination of the vectors in B. Theorem VRRB 314 tells us we will be able to do this, and do it uniquely. The vector equation

$$
a_{1}\left[\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right]+a_{2}\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]+a_{3}\left[\begin{array}{l}
3 \\
5 \\
2
\end{array}\right]=\left[\begin{array}{c}
11 \\
5 \\
8
\end{array}\right]
$$

becomes (via Theorem SLSLC 90) a system of linear equations with augmented matrix,

$$
\left[\begin{array}{cccc}
2 & 1 & 3 & 11 \\
-2 & 3 & 5 & 5 \\
2 & 1 & 2 & 8
\end{array}\right]
$$

This system has the unique solution $a_{1}=2, a_{2}=-2, a_{3}=3$. So by Definition VR [513],

$$
\rho_{B}(\mathbf{v})=\rho_{B}\left(\left[\begin{array}{c}
11 \\
5 \\
8
\end{array}\right]\right)=\rho_{B}\left(2\left[\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right]+(-2)\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]+3\left[\begin{array}{l}
3 \\
5 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right]
$$

C20 Contributed by Robert Beezer Statement 524
The following computations replicate the computations given in Example CM32 522, only using the basis C.

$$
\begin{aligned}
\rho_{C}\left(\left[\begin{array}{cc}
3 & 7 \\
-2 & 4 \\
0 & -3
\end{array}\right]\right) & =\left[\begin{array}{c}
-9 \\
12 \\
-6 \\
7 \\
-2 \\
-1
\end{array}\right] \\
6\left[\begin{array}{c}
-9 \\
12 \\
-6 \\
7 \\
-2 \\
-1
\end{array}\right]+2\left[\begin{array}{c}
-11 \\
34 \\
-4 \\
-1 \\
16 \\
5
\end{array}\right] & =\left[\begin{array}{c}
-76 \\
140 \\
-44 \\
40 \\
20 \\
4
\end{array}\right]
\end{aligned}
$$

Section MR
 Matrix Representations

We have seen that linear transformations whose domain and codomain are vector spaces of columns vectors have a close relationship with matrices (Theorem MBLT [446, Theorem MLTCV [448). In this section, we will extend the relationship between matrices and linear transformations to the setting of linear transformations between abstract vector spaces.

Definition MR

Matrix Representation

Suppose that $T: U \mapsto V$ is a linear transformation, $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ is a basis for U of size n, and C is a basis for V of size m. Then the matrix representation of T relative to B and C is the $m \times n$ matrix,

$$
M_{B, C}^{T}=\left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right)\left|\rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right)\right| \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right)|\ldots| \rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]
$$

Example OLTTR

One linear transformation, three representations

Consider the linear transformation

$$
S: P_{3} \mapsto M_{22}, \quad S\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
3 a+7 b-2 c-5 d & 8 a+14 b-2 c-11 d \\
-4 a-8 b+2 c+6 d & 12 a+22 b-4 c-17 d
\end{array}\right]
$$

First, we build a representation relative to the bases,

$$
\begin{aligned}
& B=\left\{1+2 x+x^{2}-x^{3}, 1+3 x+x^{2}+x^{3},-1-2 x+2 x^{3}, 2+3 x+2 x^{2}-5 x^{3}\right\} \\
& C=\left\{\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{ll}
2 & 3 \\
2 & 5
\end{array}\right],\left[\begin{array}{cc}
-1 & -1 \\
0 & -2
\end{array}\right],\left[\begin{array}{ll}
-1 & -4 \\
-2 & -4
\end{array}\right]\right\}
\end{aligned}
$$

We evaluate S with each element of the basis for the domain, B, and coordinatize the result relative to the vectors in the basis for the codomain, C.

$$
\begin{aligned}
& \rho_{C}\left(S\left(1+2 x+x^{2}-x^{3}\right)\right)=\rho_{C}\left(\left[\begin{array}{cc}
20 & 45 \\
-24 & 69
\end{array}\right]\right) \\
& \quad=\rho_{C}\left((-90)\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]+37\left[\begin{array}{ll}
2 & 3 \\
2 & 5
\end{array}\right]+(-40)\left[\begin{array}{cc}
-1 & -1 \\
0 & -2
\end{array}\right]+4\left[\begin{array}{ll}
-1 & -4 \\
-2 & -4
\end{array}\right]\right)=\left[\begin{array}{c}
-90 \\
37 \\
-40 \\
4
\end{array}\right] \\
& \rho_{C}\left(S\left(1+3 x+x^{2}+x^{3}\right)\right)=\rho_{C}\left(\left[\begin{array}{cc}
17 & 37 \\
-20 & 57
\end{array}\right]\right) \\
& \quad=\rho_{C}\left((-72)\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]+29\left[\begin{array}{ll}
2 & 3 \\
2 & 5
\end{array}\right]+(-34)\left[\begin{array}{cc}
-1 & -1 \\
0 & -2
\end{array}\right]+3\left[\begin{array}{ll}
-1 & -4 \\
-2 & -4
\end{array}\right]\right)=\left[\begin{array}{c}
-72 \\
29 \\
-34 \\
3
\end{array}\right] \\
& \rho_{C}\left(S\left(-1-2 x+2 x^{3}\right)\right)=\rho_{C}\left(\left[\begin{array}{cc}
-27 & -58 \\
32 & -90
\end{array}\right]\right) \\
& \quad=\rho_{C}\left(114\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]+(-46)\left[\begin{array}{ll}
2 & 3 \\
2 & 5
\end{array}\right]+54\left[\begin{array}{cc}
-1 & -1 \\
0 & -2
\end{array}\right]+(-5)\left[\begin{array}{ll}
-1 & -4 \\
-2 & -4
\end{array}\right]\right)=\left[\begin{array}{c}
114 \\
-46 \\
54 \\
-5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\rho_{C} & \left(S\left(2+3 x+2 x^{2}-5 x^{3}\right)\right)=\rho_{C}\left(\left[\begin{array}{cc}
48 & 109 \\
-58 & 167
\end{array}\right]\right) \\
& =\rho_{C}\left((-220)\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]+91\left[\begin{array}{ll}
2 & 3 \\
2 & 5
\end{array}\right]+-96\left[\begin{array}{cc}
-1 & -1 \\
0 & -2
\end{array}\right]+10\left[\begin{array}{cc}
-1 & -4 \\
-2 & -4
\end{array}\right]\right)=\left[\begin{array}{c}
-220 \\
91 \\
-96 \\
10
\end{array}\right]
\end{aligned}
$$

Thus, employing Definition MR 527

$$
M_{B, C}^{S}=\left[\begin{array}{cccc}
-90 & -72 & 114 & -220 \\
37 & 29 & -46 & 91 \\
-40 & -34 & 54 & -96 \\
4 & 3 & -5 & 10
\end{array}\right]
$$

Often we use "nice" bases to build matrix representations and the work involved is much easier. Suppose we take bases

$$
D=\left\{1, x, x^{2}, x^{3}\right\} \quad E=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

The evaluation of S at the elements of D is easy and coordinatization relative to E can be done on sight,

$$
\begin{aligned}
\rho_{E}(S(1)) & =\rho_{E}\left(\left[\begin{array}{cc}
3 & 8 \\
-4 & 12
\end{array}\right]\right) \\
& =\rho_{E}\left(3\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+8\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(-4)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+12\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
8 \\
-4 \\
12
\end{array}\right] \\
\rho_{E}(S(x)) & =\rho_{E}\left(\left[\begin{array}{cc}
7 & 14 \\
-8 & 22
\end{array}\right]\right) \\
& =\rho_{E}\left(7\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+14\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(-8)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+22\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
7 \\
14 \\
-8 \\
22
\end{array}\right] \\
\rho_{E}\left(S\left(x^{2}\right)\right) & =\rho_{E}\left(\left[\begin{array}{cc}
-2 & -2 \\
2 & -4
\end{array}\right]\right) \\
& =\rho_{E}\left((-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-2)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+(-4)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
-2 \\
2 \\
-4
\end{array}\right] \\
\rho_{E}\left(S\left(x^{3}\right)\right) & =\rho_{E}\left(\left[\begin{array}{cc}
-5 & -11 \\
6 & -17
\end{array}\right]\right) \\
& =\rho_{E}\left((-5)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-11)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+6\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+(-17)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
-5 \\
-11 \\
6 \\
-17
\end{array}\right]
\end{aligned}
$$

So the matrix representation of S relative to D and E is

$$
M_{D, E}^{S}=\left[\begin{array}{cccc}
3 & 7 & -2 & -5 \\
8 & 14 & -2 & -11 \\
-4 & -8 & 2 & 6 \\
12 & 22 & -4 & -17
\end{array}\right]
$$

One more time, but now let's use bases

$$
\begin{aligned}
& F=\left\{1+x-x^{2}+2 x^{3},-1+2 x+2 x^{3}, 2+x-2 x^{2}+3 x^{3}, 1+x+2 x^{3}\right\} \\
& G=\left\{\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right],\left[\begin{array}{cc}
-1 & 2 \\
0 & 2
\end{array}\right],\left[\begin{array}{cc}
2 & 1 \\
-2 & 3
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\right\}
\end{aligned}
$$

and evaluate S with the elements of F, then coordinatize the results relative to G,

$$
\begin{gathered}
\rho_{G}\left(S\left(1+x-x^{2}+2 x^{3}\right)\right)=\rho_{G}\left(\left[\begin{array}{cc}
2 & 2 \\
-2 & 4
\end{array}\right]\right)=\rho_{G}\left(2\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right] \\
\rho_{G}\left(S\left(-1+2 x+2 x^{3}\right)\right)=\rho_{G}\left(\left[\begin{array}{cc}
1 & -2 \\
0 & -2
\end{array}\right]\right)=\rho_{G}\left((-1)\left[\begin{array}{cc}
-1 & 2 \\
0 & 2
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right] \\
\rho_{G}\left(S\left(2+x-2 x^{2}+3 x^{3}\right)\right)=\rho_{G}\left(\left[\begin{array}{cc}
2 & 1 \\
-2 & 3
\end{array}\right]\right)=\rho_{G}\left(\left[\begin{array}{cc}
2 & 1 \\
-2 & 3
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \\
\rho_{G}\left(S\left(1+x+2 x^{3}\right)\right)=\rho_{G}\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right)=\rho_{G}\left(0\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

So we arrive at an especially economical matrix representation,

$$
M_{F, G}^{S}=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We may choose to use whatever terms we want when we make a definition. Some are arbitrary, while others make sense, but only in light of subsequent theorems. Matrix representation is in the latter category. We begin with a linear transformation and produce a matrix. So what? Here's the theorem that justifies the term "matrix representation."

Theorem FTMR

Fundamental Theorem of Matrix Representation

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U, C is a basis for V and $M_{B, C}^{T}$ is the matrix representation of T relative to B and C. Then, for any $\mathbf{u} \in U$,

$$
\rho_{C}(T(\mathbf{u}))=M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)
$$

or equivalently

$$
T(\mathbf{u})=\rho_{C}^{-1}\left(M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)\right)
$$

Proof Let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ be the basis of U. Since $\mathbf{u} \in U$, there are scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ such that

$$
\mathbf{u}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{n} \mathbf{u}_{n}
$$

Then,

$$
\begin{array}{ll}
M_{B, C}^{T} \rho_{B}(\mathbf{u}) & \\
=\left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right)\left|\rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right)\right| \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right)|\ldots| \rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right] \rho_{B}(\mathbf{u}) & \\
\\
=\left[\rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right)\left|\rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right)\right| \rho_{C}\left(T\left(\mathbf{u}_{3}\right)\right)|\ldots| \rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right)\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n}
\end{array}\right] & \\
=a_{1} \rho_{C}\left(T\left(\mathbf{u}_{1}\right)\right)+a_{2} \rho_{C}\left(T\left(\mathbf{u}_{2}\right)\right)+\cdots+a_{n} \rho_{C}\left(T\left(\mathbf{u}_{n}\right)\right) & \\
=\rho_{C}\left(a_{1} T\left(\mathbf{u}_{1}\right)+a_{2} T\left(\mathbf{u}_{2}\right)+a_{3} T\left(\mathbf{u}_{3}\right)+\cdots+a_{n} T\left(\mathbf{u}_{n}\right)\right) & \\
=\rho_{C}\left(T\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+\cdots+a_{n} \mathbf{u}_{n}\right)\right) & \text { Definition VR 513 } \\
=\rho_{C}(T(\mathbf{u})) & \text { Definition MVP 189 } \\
\hline
\end{array}
$$

The alternative conclusion is obtained as

$$
\begin{aligned}
T(\mathbf{u}) & =I_{V}(T(\mathbf{u})) & & \text { Definition IDLT } 495 \\
& =\left(\rho_{C}^{-1} \circ \rho_{C}\right)(T(\mathbf{u})) & & \text { Definition IVLT } 495 \\
& =\rho_{C}^{-1}\left(\rho_{C}(T(\mathbf{u}))\right) & & \text { Definition LTC 456 } \\
& =\rho_{C}^{-1}\left(M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)\right) & &
\end{aligned}
$$

This theorem says that we can apply T to \mathbf{u} and coordinatize the result relative to C in V, or we can first coordinatize \mathbf{u} relative to B in U, then multiply by the matrix representation. Either way, the result is the same. So the effect of a linear transformation can always be accomplished by a matrix-vector product (Definition MVP (189). That's important enough to say again. The effect of a linear transformation is a matrix-vector product.

The alternative conclusion of this result might be even more striking. It says that to effect a linear transformation (T) of a vector (\mathbf{u}), coordinatize the input (with ρ_{B}), do a matrix-vector product (with $M_{B, C}^{T}$), and un-coordinatize the result (with ρ_{C}^{-1}). So, absent some bookkeeping about vector representations, a linear transformation is a matrix.

Here's an example to illustrate how the "action" of a linear transformation can be effected by matrix multiplication.

Example ALTMM

A linear transformation as matrix multiplication

In Example OLTTR 527 we found three representations of the linear transformation S. In this example, we will compute a single output of S in four different ways. First "normally," then three times over using Theorem FTMR 529.

Choose $p(x)=3-x+2 x^{2}-5 x^{3}$, for no particular reason. Then the straightforward application of S to $p(x)$ yields

$$
\begin{aligned}
S(p(x)) & =S\left(3-x+2 x^{2}-5 x^{3}\right) \\
& =\left[\begin{array}{cc}
3(3)+7(-1)-2(2)-5(-5) & 8(3)+14(-1)-2(2)-11(-5) \\
-4(3)-8(-1)+2(2)+6(-5) & 12(3)+22(-1)-4(2)-17(-5)
\end{array}\right] \\
& =\left[\begin{array}{cr}
23 & 61 \\
-30 & 91
\end{array}\right]
\end{aligned}
$$

Now use the representation of S relative to the bases B and C and Theorem FTMR 529. Note that we will employ the following linear combination in moving from the second line to the third,

$$
\begin{aligned}
& 3-x+2 x^{2}-5 x^{3}=48\left(1+2 x+x^{2}-x^{3}\right)+(-20)\left(1+3 x+x^{2}+x^{3}\right)+ \\
&(-1)\left(-1-2 x+2 x^{3}\right)+(-13)\left(2+3 x+2 x^{2}-5 x^{3}\right) \\
& S(p(x))= \rho_{C}^{-1}\left(M_{B, C}^{S} \rho_{B}(p(x))\right) \\
&= \rho_{C}^{-1}\left(M_{B, C}^{S} \rho_{B}\left(3-x+2 x^{2}-5 x^{3}\right)\right) \\
&= \rho_{C}^{-1}\left(M_{B, C}^{S}\left[\begin{array}{c}
48 \\
-20 \\
-1 \\
-13
\end{array}\right]\right) \\
&= \rho_{C}^{-1}\left(\left[\begin{array}{ccc}
-90 & -72 & 114 \\
37 & 29 & -46 \\
-40 & -34 & 54 \\
4 & 3 & -96 \\
4 & 10
\end{array}\right]\left[\begin{array}{c}
48 \\
-20 \\
-1 \\
-13
\end{array}\right]\right) \\
&= \rho_{C}^{-1}\left(\left[\begin{array}{c}
-134 \\
59 \\
-46 \\
7
\end{array}\right]\right) \\
&=(-134)\left[\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right]+59\left[\begin{array}{ll}
2 & 3 \\
2 & 5
\end{array}\right]+(-46)\left[\begin{array}{cc}
-1 & -1 \\
0 & -2
\end{array}\right]+7\left[\begin{array}{ll}
-1 & -4 \\
-2 & -4
\end{array}\right] \\
&=\left[\begin{array}{cc}
23 & 61 \\
-30 & 91
\end{array}\right]
\end{aligned}
$$

Again, but now with "nice" bases like D and E, and the computations are more transparent.

$$
\begin{aligned}
S(p(x)) & =\rho_{E}^{-1}\left(M_{D, E}^{S} \rho_{D}(p(x))\right) \\
& =\rho_{E}^{-1}\left(M_{D, E}^{S} \rho_{D}\left(3-x+2 x^{2}-5 x^{3}\right)\right) \\
& =\rho_{E}^{-1}\left(M_{D, E}^{S} \rho_{D}\left(3(1)+(-1)(x)+2\left(x^{2}\right)+(-5)\left(x^{3}\right)\right)\right) \\
& =\rho_{E}^{-1}\left(M_{D, E}^{S}\left[\begin{array}{c}
3 \\
-1 \\
2 \\
-5
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\rho_{E}^{-1}\left(\left[\begin{array}{cccc}
3 & 7 & -2 & -5 \\
8 & 14 & -2 & -11 \\
-4 & -8 & 2 & 6 \\
12 & 22 & -4 & -17
\end{array}\right]\left[\begin{array}{c}
3 \\
-1 \\
2 \\
-5
\end{array}\right]\right) \\
& =\rho_{E}^{-1}\left(\left[\begin{array}{c}
23 \\
61 \\
-30 \\
91
\end{array}\right]\right) \\
& =23\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+61\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(-30)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+91\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
23 & 61 \\
-30 & 91
\end{array}\right]
\end{aligned}
$$

OK, last time, now with the bases F and G. The coordinatizations will take some work this time, but the matrix-vector product (Definition MVP 189) (which is the actual action of the linear transformation) will be especially easy, given the diagonal nature of the matrix representation, $M_{F, G}^{S}$. Here we go,

$$
\begin{aligned}
S(p(x)) & =\rho_{G}^{-1}\left(M_{F, G}^{S} \rho_{F}(p(x))\right) \\
& =\rho_{G}^{-1}\left(M_{F, G}^{S} \rho_{F}\left(3-x+2 x^{2}-5 x^{3}\right)\right) \\
& =\rho_{G}^{-1}\left(M_{F, G}^{S} \rho_{F}\left(32\left(1+x-x^{2}+2 x^{3}\right)-7\left(-1+2 x+2 x^{3}\right)-17\left(2+x-2 x^{2}+3 x^{3}\right)-2\left(1+x+2 x^{3}\right)\right)\right) \\
& =\rho_{G}^{-1}\left(M_{F, G}^{S}\left[\begin{array}{c}
32 \\
-7 \\
-17 \\
-2
\end{array}\right]\right) \\
& =\rho_{G}^{-1}\left(\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
32 \\
-7 \\
-17 \\
-2
\end{array}\right]\right) \\
& =\rho_{G}^{-1}\left(\left[\begin{array}{c}
64 \\
7 \\
-17 \\
0
\end{array}\right]\right) \\
& =64\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]+7\left[\begin{array}{cc}
-1 & 2 \\
0 & 2
\end{array}\right]+(-17)\left[\begin{array}{cc}
2 & 1 \\
-2 & 3
\end{array}\right]+0\left[\begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
23 & 61 \\
-30 & 91
\end{array}\right]
\end{aligned}
$$

This example is not meant to necessarily illustrate that any one of these four computations is simpler than the others. Instead, it is meant to illustrate the many different ways we can arrive at the same result, with the last three all employing a matrix representation to effect the linear transformation.

We will use Theorem FTMR 529 frequently in the next few sections. A typical application will feel like the linear transformation T "commutes" with a vector representation, ρ_{C}, and as it does the transformation morphs into a matrix, $M_{B, C}^{T}$, while the vector representation changes to a new basis, ρ_{B}. Or vice-versa.

Subsection NRFO
 New Representations from Old

In Subsection LT.NLTFO 454 we built new linear transformations from other linear transformations. Sums, scalar multiples and compositions. These new linear transformations will have matrix represntations as well. How do the new matrix representations relate to the old matrix representations? Here are the three theorems.

Theorem MRSLT

Matrix Representation of a Sum of Linear Transformations

Suppose that $T: U \mapsto V$ and $S: U \mapsto V$ are linear transformations, B is a basis of U and C is a basis of V. Then

$$
M_{B, C}^{T+S}=M_{B, C}^{T}+M_{B, C}^{S}
$$

Proof Let \mathbf{x} be any vector in \mathbb{C}^{n}. Define $\mathbf{u} \in U$ by $\mathbf{u}=\rho_{B}^{-1}(\mathbf{x})$, so $\mathbf{x}=\rho_{B}(\mathbf{u})$. Then,

$$
\begin{aligned}
M_{B, C}^{T+S} \mathbf{x} & =M_{B, C}^{T+S} \rho_{B}(\mathbf{u}) & & \text { Substitution } \\
& =\rho_{C}((T+S)(\mathbf{u})) & & \text { Theorem FTMR } 529 \\
& =\rho_{C}(T(\mathbf{u})+S(\mathbf{u})) & & \text { Definition LTA } 454 \\
& =\rho_{C}(T(\mathbf{u}))+\rho_{C}(S(\mathbf{u})) & & \text { Definition LT 441 } \\
& =M_{B, C}^{T}\left(\rho_{B}(\mathbf{u})\right)+M_{B, C}^{S}\left(\rho_{B}(\mathbf{u})\right) & & \text { Theorem FTMR 529 } \\
& =\left(M_{B, C}^{T}+M_{B, C}^{S}\right) \rho_{B}(\mathbf{u}) & & \text { Theorem MMDAA 196 } \\
& =\left(M_{B, C}^{T}+M_{B, C}^{S}\right) \mathbf{x} & & \text { Substitution }
\end{aligned}
$$

Since the matrices $M_{B . C}^{T+S}$ and $M_{B, C}^{T}+M_{B, C}^{S}$ have equal matrix-vector products for every vector in \mathbb{C}^{n}, by Theorem EMMVP 191 they are equal matrices. (Now would be a good time to double-back and study the proof of Theorem EMMVP 191. You did promise, didn't you?)

Theorem MRMLT

Matrix Representation of a Multiple of a Linear Transformation

Suppose that $T: U \mapsto V$ is a linear transformation, $\alpha \in \mathbb{C}, B$ is a basis of U and C is a basis of V. Then

$$
M_{B, C}^{\alpha T}=\alpha M_{B, C}^{T}
$$

Proof Let \mathbf{x} be any vector in \mathbb{C}^{n}. Define $\mathbf{u} \in U$ by $\mathbf{u}=\rho_{B}^{-1}(\mathbf{x})$, so $\mathbf{x}=\rho_{B}(\mathbf{u})$. Then,

$$
\begin{aligned}
M_{B, C}^{\alpha T} \mathbf{x} & =M_{B, C}^{\alpha T} \rho_{B}(\mathbf{u}) & & \text { Substitution } \\
& =\rho_{C}((\alpha T)(\mathbf{u})) & & \text { Theorem FTMR } 529 \\
& =\rho_{C}(\alpha T(\mathbf{u})) & & \text { Definition LTSM } 455 \\
& =\alpha \rho_{C}(T(\mathbf{u})) & & \text { Definition LT } 441 \\
& =\alpha\left(M_{B, C}^{T} \rho_{B}(\mathbf{u})\right) & & \text { Theorem FTMR } 529 \\
& =\left(\alpha M_{B, C}^{T}\right) \rho_{B}(\mathbf{u}) & & \text { Theorem MMSMM 196 } \\
& =\left(\alpha M_{B, C}^{T}\right) \mathbf{x} & & \text { Substitution }
\end{aligned}
$$

Since the matrices $M_{B, C}^{\alpha T}$ and $\alpha M_{B, C}^{T}$ have equal matrix-vector products for every vector in \mathbb{C}^{n}, by Theorem EMMVP 191 they are equal matrices.

The vector space of all linear transformations from U to V is now isomorphic to the vector space of all $m \times n$ matrices.

Theorem MRCLT

Matrix Representation of a Composition of Linear Transformations

Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations, B is a basis of U, C is a basis of V, and D is a basis of W. Then

$$
M_{B, D}^{S \circ T}=M_{C, D}^{S} M_{B, C}^{T}
$$

Proof Let \mathbf{x} be any vector in \mathbb{C}^{n}. Define $\mathbf{u} \in U$ by $\mathbf{u}=\rho_{B}^{-1}(\mathbf{x})$, so $\mathbf{x}=\rho_{B}(\mathbf{u})$. Then,

$$
\begin{aligned}
M_{B, D}^{S \circ T} \mathbf{x} & =M_{B, D}^{S \circ T} \rho_{B}(\mathbf{u}) & & \text { Substitution } \\
& =\rho_{D}((S \circ T)(\mathbf{u})) & & \text { Theorem FTMR } 529 \\
& =\rho_{D}(S(T(\mathbf{u}))) & & \text { Definition LTC } 456 \\
& =M_{C, D}^{S} \rho_{C}(T(\mathbf{u})) & & \text { Theorem FTMR } 529 \\
& =M_{C, D}^{S}\left(M_{B, C}^{T} \rho_{B}(\mathbf{u})\right) & & \text { Theorem FTMR } 529 \\
& =\left(M_{C, D}^{S} M_{B, C}^{T}\right) \rho_{B}(\mathbf{u}) & & \text { Theorem MMA 196 } \\
& =\left(M_{C, D}^{S} M_{B, C}^{T}\right) \mathbf{x} & & \text { Substitution }
\end{aligned}
$$

Since the matrices $M_{B, D}^{S \circ T}$ and $M_{C, D}^{S} M_{B, C}^{T}$ have equal matrix-vector products for every vector in \mathbb{C}^{n}, by Theorem EMMVP 191 they are equal matrices.

This is the second great surprise of introductory linear algebra. Matrices are linear transformations (functions, really), and matrix multiplication is function composition! We can form the composition of two linear transformations, then form the matrix representation of the result. Or we can form the matrix representation of each linear transformation separately, then multiply the two representations together via Definition MM 192. In either case, we arrive at the same result.

Example MPMR

Matrix product of matrix representations

Consider the two linear transformations,

$$
\begin{array}{cc}
T: \mathbb{C}^{2} \mapsto P_{2} & T\left(\left[\begin{array}{c}
a \\
b
\end{array}\right]\right)=(-a+3 b)+(2 a+4 b) x+(a-2 b) x^{2} \\
S: P_{2} \mapsto M_{22} & S\left(a+b x+c x^{2}\right)=\left[\begin{array}{cc}
2 a+b+2 c & a+4 b-c \\
-a+3 c & 3 a+b+2 c
\end{array}\right]
\end{array}
$$

and bases for \mathbb{C}^{2}, P_{2} and M_{22} (respectively),

$$
\begin{aligned}
& B=\left\{\left[\begin{array}{l}
3 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} \\
& C=\left\{1-2 x+x^{2},-1+3 x, 2 x+3 x^{2}\right\} \\
& D=\left\{\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right],\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
2 & -3 \\
2 & 2
\end{array}\right]\right\}
\end{aligned}
$$

Begin by computing the new linear transformation that is the composition of T and S Definition LTC 456, Theorem CLTLT 456), $(S \circ T): \mathbb{C}^{2} \mapsto M_{22}$,

$$
(S \circ T)\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=S\left(T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)\right)
$$

$$
\begin{aligned}
& =S\left((-a+3 b)+(2 a+4 b) x+(a-2 b) x^{2}\right) \\
& =\left[\begin{array}{cc}
2(-a+3 b)+(2 a+4 b)+2(a-2 b) & (-a+3 b)+4(2 a+4 b)-(a-2 b) \\
-(-a+3 b)+3(a-2 b) & 3(-a+3 b)+(2 a+4 b)+2(a-2 b)
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 a+6 b & 6 a+21 b \\
4 a-9 b & a+9 b
\end{array}\right]
\end{aligned}
$$

Now compute the matrix representations Definition MR 527) for each of these three linear transformations $(T, S, S \circ T)$, relative to the appropriate bases. First for T,

$$
\begin{aligned}
\rho_{C}\left(T\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)\right) & =\rho_{C}\left(10 x+x^{2}\right) \\
& =\rho_{C}\left(28\left(1-2 x+x^{2}\right)+28(-1+3 x)+(-9)\left(2 x+3 x^{2}\right)\right)=\left[\begin{array}{c}
28 \\
28 \\
-9
\end{array}\right] \\
\rho_{C}\left(T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\right) & =\rho_{C}(1+8 x) \\
& =\rho_{C}\left(33\left(1-2 x+x^{2}\right)+32(-1+3 x)+(-11)\left(2 x+3 x^{2}\right)\right)=\left[\begin{array}{c}
33 \\
32 \\
-11
\end{array}\right]
\end{aligned}
$$

So we have the matrix representation of T,

$$
M_{B, C}^{T}=\left[\begin{array}{cc}
28 & 33 \\
28 & 32 \\
-9 & -11
\end{array}\right]
$$

Now, a representation of S,

$$
\begin{aligned}
\rho_{D}\left(S\left(1-2 x+x^{2}\right)\right) & =\rho_{D}\left(\left[\begin{array}{cc}
2 & -8 \\
2 & 3
\end{array}\right]\right) \\
& =\rho_{D}\left((-11)\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]+(-21)\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]+0\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right]+(17)\left[\begin{array}{cc}
2 & -3 \\
2 & 2
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-11 \\
0 \\
17
\end{array}\right] \\
\rho_{D}(S(-1+3 x)) & =\rho_{D}\left(\left[\begin{array}{ll}
1 & 11 \\
1 & 0
\end{array}\right]\right) \\
& =\rho_{D}\left(26\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]+51\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]+0\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right]+(-38)\left[\begin{array}{cc}
2 & -3 \\
2 & 2
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
26 \\
51 \\
0 \\
-38
\end{array}\right] \\
\rho_{D}\left(S\left(2 x+3 x^{2}\right)\right) & =\rho_{D}\left(\left[\begin{array}{ll}
8 & 5 \\
9 & 8
\end{array}\right]\right) \\
& =\rho_{D}\left(34\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]+67\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]+1\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right]+(-46)\left[\begin{array}{cc}
2 & -3 \\
2 & 2
\end{array}\right]\right)
\end{aligned}
$$

$$
=\left[\begin{array}{c}
34 \\
67 \\
1 \\
-46
\end{array}\right]
$$

So we have the matrix representation of S,

$$
M_{C, D}^{S}=\left[\begin{array}{ccc}
-11 & 26 & 34 \\
-21 & 51 & 67 \\
0 & 0 & 1 \\
17 & -38 & -46
\end{array}\right]
$$

Finally, a representation of $S \circ T$,

$$
\begin{aligned}
\rho_{D}\left((S \circ T)\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right)\right) & =\rho_{D}\left(\left[\begin{array}{cc}
12 & 39 \\
3 & 12
\end{array}\right]\right) \\
& =\rho_{D}\left(114\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]+237\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]+(-9)\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right]+(-174)\left[\begin{array}{cc}
2 & -3 \\
2 & 2
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
114 \\
237 \\
-9 \\
-174
\end{array}\right] \\
\rho_{D}\left((S \circ T)\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)\right) & =\rho_{D}\left(\left[\begin{array}{ll}
10 & 33 \\
-1 & 11
\end{array}\right]\right) \\
& =\rho_{D}\left(\begin{array}{c}
\left.95\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]+202\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]+(-11)\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right]+(-149)\left[\begin{array}{cc}
2 & -3 \\
2 & 2
\end{array}\right]\right) \\
\end{array}\right. \\
& =\left[\begin{array}{c}
95 \\
202 \\
-11 \\
-149
\end{array}\right]
\end{aligned}
$$

So we have the matrix representation of $S \circ T$,

$$
M_{B, D}^{S \circ T}=\left[\begin{array}{cc}
114 & 95 \\
237 & 202 \\
-9 & -11 \\
-174 & -149
\end{array}\right]
$$

Now, we are all set to verify the conclusion of Theorem MRCLT 534,

$$
\begin{aligned}
M_{C, D}^{S} M_{B, C}^{T} & =\left[\begin{array}{ccc}
-11 & 26 & 34 \\
-21 & 51 & 67 \\
0 & 0 & 1 \\
17 & -38 & -46
\end{array}\right]\left[\begin{array}{cc}
28 & 33 \\
28 & 32 \\
-9 & -11
\end{array}\right] \\
& =\left[\begin{array}{cc}
114 & 95 \\
237 & 202 \\
-9 & -11 \\
-174 & -149
\end{array}\right]
\end{aligned}
$$

$$
=M_{B, D}^{S \circ T}
$$

We have intentionally used non-standard bases. If you were to choose "nice" bases for the three vector spaces, then the result of the theorem might be rather transparent. But this would still be a worthwhile exercise - give it a go.

A diagram, similar to ones we have seen earlier, might make the importance of this theorem clearer,

One of our goals in the first part of this book is to make the definition of matrix multiplication Definition MVP 189, Definition MM (192) seem as natural as possible. However, many are brought up with an entry-by-entry description of matrix multiplication (Theorem ME 419) as the definition of matrix multiplication, and then theorems about columns of matrices and linear combinations follow from that definition. With this unmotivated definition, the realization that matrix multiplication is function composition is quite remarkable. It is an interesting exercise to begin with the question, "What is the matrix representation of the composition of two linear transformations?" and then, without using any theorems about matrix multiplication, finally arrive at the entry-by-entry description of matrix multiplication. Try it yourself (Exercise MR.T80 549).

Subsection PMR
 Properties of Matrix Representations

It will not be a surprise to discover that the kernel and range of a linear transformation are closely related to the null space and column space of the transformation's matrix representation. Perhaps this idea has been bouncing around in your head already, even before seeing the definition of a matrix representation. However, with a formal definition of a matrix representation (Definition MR 527), and a fundamental theorem to go with it Theorem FTMR [529]) we can be formal about the relationship, using the idea of isomorphic vector spaces (Definition IVS 501). Here are the twin theorems.

Theorem KNSI

Kernel and Null Space Isomorphism

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V. Then the kernel of T is isomorphic to the null space of $M_{B, C}^{T}$,

$$
\mathcal{K}(T) \cong \mathcal{N}\left(M_{B, C}^{T}\right)
$$

Proof To establish that two vector spaces are isomorphic, we must find an isomorphism between them, an invertible linear transformation (Definition IVS 501). The kernel of the linear transformation $T, \mathcal{K}(T)$, is a subspace of U, while the null space of the matrix representation, $\mathcal{N}\left(M_{B, C}^{T}\right)$ is a subspace of \mathbb{C}^{n}. The function ρ_{B} is defined as a function from U to \mathbb{C}^{n}, but we can just as well employ the definition of ρ_{B} as a function from $\mathcal{K}(T)$ to $\mathcal{N}\left(M_{B, C}^{T}\right)$.

We must first insure that if we choose an input for ρ_{B} from $\mathcal{K}(T)$ that then the output will be an element of $\mathcal{N}\left(M_{B, C}^{T}\right)$. So suppose that $\mathbf{u} \in \mathcal{K}(T)$. Then

$$
M_{B, C}^{T} \rho_{B}(\mathbf{u})=\rho_{C}(T(\mathbf{u}))
$$

Theorem FTMR 529

$$
\begin{array}{ll}
=\rho_{C}(\mathbf{0}) & \text { Definition KLT 468 } \\
=\mathbf{0} & \text { Theorem LTTZZ 445 }
\end{array}
$$

This says that $\rho_{B}(\mathbf{u}) \in \mathcal{N}\left(M_{B, C}^{T}\right)$, as desired.
The restriction in the size of the domain and codomain ρ_{B} will not affect the fact that ρ_{B} is a linear transformation Theorem VRLT 513), nor will it affect the fact that ρ_{B} is injective Theorem VRI [518). Something must be done though to verify that ρ_{B} is surjective. To this end, appeal to the definition of surjective Definition SLT (479), and suppose that we have an element of the codomain, $\mathbf{x} \in \mathcal{N}\left(M_{B, C}^{T}\right) \subseteq \mathbb{C}^{n}$ and we wish to find an element of the domain with \mathbf{x} as its image. We now show that the desired element of the domain is $\mathbf{u}=\rho_{B}^{-1}(\mathbf{x})$. First, verify that $\mathbf{u} \in \mathcal{K}(T)$,

$$
\begin{aligned}
T(\mathbf{u}) & =T\left(\rho_{B}^{-1}(\mathbf{x})\right) \\
& =\rho_{C}^{-1}\left(M_{B, C}^{T}\left(\rho_{B}\left(\rho_{B}^{-1}(\mathbf{x})\right)\right)\right) \\
& =\rho_{C}^{-1}\left(M_{B, C}^{T}\left(I_{\mathbb{C}^{n}}(\mathbf{x})\right)\right) \\
& =\rho_{C}^{-1}\left(M_{B, C}^{T} \mathbf{x}\right) \\
& =\rho_{C}^{-1}\left(\mathbf{0}_{\mathbb{C}^{n}}\right) \\
& =\mathbf{0}_{V}
\end{aligned}
$$

$$
\text { Theorem FTMR } 529
$$

$$
\text { Definition IVLT } 495
$$

$$
\text { Definition IDLT } 495
$$

$$
\text { Definition KLT } 468
$$

$$
\text { Theorem LTTZZ } 445
$$

Second, verify that the proposed isomorphism, ρ_{B}, takes \mathbf{u} to \mathbf{x},

$$
\begin{aligned}
\rho_{B}(\mathbf{u}) & =\rho_{B}\left(\rho_{B}^{-1}(\mathbf{x})\right) \\
& =I_{\mathbb{C}^{n}}(\mathbf{x}) \\
& =\mathbf{x}
\end{aligned}
$$

Substitution
Definition IVLT 495
Definition IDLT 495

With ρ_{B} demonstrated to be an injective and surjective linear transformation from $\mathcal{K}(T)$ to $\mathcal{N}\left(M_{B, C}^{T}\right)$, Theorem ILTIS 498 tells us ρ_{B} is invertible, and so by Definition IVS 501, we say $\mathcal{K}(T)$ and $\mathcal{N}\left(M_{B, C}^{T}\right)$ are isomorphic.

Example KVMR

Kernel via matrix representation

Consider the kernel of the linear transformation

$$
T: M_{22} \mapsto P_{2}, \quad T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(2 a-b+c-5 d)+(a+4 b+5 b+2 d) x+(3 a-2 b+c-8 d) x^{2}
$$

We will begin with a matrix representation of T relative to the bases for M_{22} and P_{2} (respectively),

$$
\begin{aligned}
B & =\left\{\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 3 \\
-1 & -4
\end{array}\right],\left[\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right],\left[\begin{array}{cc}
2 & 5 \\
-2 & -4
\end{array}\right]\right\} \\
C & =\left\{1+x+x^{2}, 2+3 x,-1-2 x^{2}\right\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\rho_{C}\left(T\left(\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right]\right)\right) & =\rho_{C}\left(4+2 x+6 x^{2}\right) \\
& =\rho_{C}\left(2\left(1+x+x^{2}\right)+0(2+3 x)+(-2)\left(-1-2 x^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right] \\
\rho_{C}\left(T\left(\left[\begin{array}{cc}
1 & 3 \\
-1 & -4
\end{array}\right]\right)\right) & =\rho_{C}\left(18+28 x^{2}\right) \\
& =\rho_{C}\left((-24)\left(1+x+x^{2}\right)+8(2+3 x)+(-26)\left(-1-2 x^{2}\right)\right) \\
& =\left[\begin{array}{c}
-24 \\
8 \\
-26
\end{array}\right] \\
\rho_{C}\left(T\left(\left[\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right]\right)\right) & =\rho_{C}\left(10+5 x+15 x^{2}\right) \\
& =\rho_{C}\left(5\left(1+x+x^{2}\right)+0(2+3 x)+(-5)\left(-1-2 x^{2}\right)\right) \\
& =\left[\begin{array}{c}
5 \\
0 \\
-5
\end{array}\right] \\
\rho_{C}\left(T\left(\left[\begin{array}{cc}
2 & 5 \\
-2 & -4
\end{array}\right]\right)\right) & =\rho_{C}\left(17+4 x+26 x^{2}\right) \\
& =\rho_{C}\left((-8)\left(1+x+x^{2}\right)+(4)(2+3 x)+(-17)\left(-1-2 x^{2}\right)\right) \\
& =\left[\begin{array}{c}
-8 \\
4 \\
-17
\end{array}\right]
\end{aligned}
$$

So the matrix representation of T (relative to B and C) is

$$
M_{B, C}^{T}=\left[\begin{array}{cccc}
2 & -24 & 5 & -8 \\
0 & 8 & 0 & 4 \\
-2 & -26 & -5 & -17
\end{array}\right]
$$

We know from Theorem KNSI 537 that the kernel of the linear transformation T is isomorphic to the null space of the matrix representation $M_{B, C}^{T}$ and by studying the proof of Theorem KNSI 537 we learn that ρ_{B} is an isomorphism between these null spaces. Rather than trying to compute the kernel of T using definitions and techniques from Chapter LT 441 we will instead analyze the null space of $M_{B, C}^{T}$ using techniques from way back in Chapter V 79 . First row-reduce $M_{B, C}^{T}$,

$$
\left[\begin{array}{cccc}
2 & -24 & 5 & -8 \\
0 & 8 & 0 & 4 \\
-2 & -26 & -5 & -17
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
\hline 1 & 0 & \frac{5}{2} & 2 \\
0 & \boxed{1} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So, by Theorem BNS 138, a basis for $\mathcal{N}\left(M_{B, C}^{T}\right)$ is

$$
\left\langle\left\{\left[\begin{array}{c}
-\frac{5}{2} \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

We can now convert this basis of $\mathcal{N}\left(M_{B, C}^{T}\right)$ into a basis of $\mathcal{K}(T)$ by applying ρ_{B}^{-1} to each element of the
basis,

$$
\begin{aligned}
\rho_{B}^{-1}\left(\left[\begin{array}{c}
-\frac{5}{0} \\
0 \\
1 \\
0
\end{array}\right]\right) & =\left(-\frac{5}{2}\right)\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right]+0\left[\begin{array}{cc}
1 & 3 \\
-1 & -4
\end{array}\right]+1\left[\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right]+0\left[\begin{array}{cc}
2 & 5 \\
-2 & -4
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{3}{2} & -3 \\
\frac{5}{2} & \frac{1}{2}
\end{array}\right] \\
\rho_{B}^{-1}\left(\left[\begin{array}{c}
-2 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]\right) & =(-2)\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right]+\left(-\frac{1}{2}\right)\left[\begin{array}{cc}
1 & 3 \\
-1 & -4
\end{array}\right]+0\left[\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right]+1\left[\begin{array}{cc}
2 & 5 \\
-2 & -4
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right]
\end{aligned}
$$

So the set

$$
\left\{\left[\begin{array}{cc}
-\frac{3}{2} & -3 \\
\frac{5}{2} & \frac{1}{2}
\end{array}\right],\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right]\right\}
$$

is a basis for $\mathcal{K}(T)$ Just for fun, you might evaluate T with each of these two basis vectors and verify that the output is the zero polynomial (Exercise MR.C10 547).

An entirely similar result applies to the range of a linear transformation and the column space of a matrix representation of the linear transformation.

Theorem RCSI

Range and Column Space Isomorphism

Suppose that $T: U \mapsto V$ is a linear transformation, B is a basis for U of size n, and C is a basis for V of size m. Then the range of T is isomorphic to the column space of $M_{B, C}^{T}$,

$$
\mathcal{R}(T) \cong \mathcal{C}\left(M_{B, C}^{T}\right)
$$

Proof To establish that two vector spaces are isomorphic, we must find an isomorphism between them, an invertible linear transformation (Definition IVS 501). The range of the linear transformation $T, \mathcal{R}(T)$, is a subspace of V, while the column space of the matrix representation, $\mathcal{C}\left(M_{B, C}^{T}\right)$ is a subspace of \mathbb{C}^{m}. The function ρ_{C} is defined as a function from V to \mathbb{C}^{m}, but we can just as well employ the definition of ρ_{C} as a function from $\mathcal{R}(T)$ to $\mathcal{C}\left(M_{B, C}^{T}\right)$.

We must first insure that if we choose an input for ρ_{C} from $\mathcal{R}(T)$ that then the output will be an element of $\mathcal{C}\left(M_{B, C}^{T}\right)$. So suppose that $\mathbf{v} \in \mathcal{R}(T)$. Then there is a vector $\mathbf{u} \in U$, such that $T(\mathbf{u})=\mathbf{v}$. Consider

$$
\begin{aligned}
M_{B, C}^{T} \rho_{B}(\mathbf{u}) & =\rho_{C}(T(\mathbf{u})) & & \text { Theorem FTMR } 529 \\
& =\rho_{C}(\mathbf{v}) & & \text { Definition RLT } 483
\end{aligned}
$$

This says that $\rho_{C}(\mathbf{v}) \in \mathcal{C}\left(M_{B, C}^{T}\right)$, as desired.
The restriction in the size of the domain and codomain will not affect the fact that ρ_{C} is a linear transformation Theorem VRLT [513]), nor will it affect the fact that ρ_{C} is injective Theorem VRI [518]). Something must be done though to verify that ρ_{C} is surjective. This all gets a bit confusing, since the domain of our isomorphism is the range of the linear transformation, so think about your objects as you go. To establish that ρ_{C} is surjective, appeal to the definition of a surjective linear transformation Definition

SLT 479]), and suppose that we have an element of the codomain, $\mathbf{y} \in \mathcal{C}\left(M_{B, C}^{T}\right) \subseteq \mathbb{C}^{m}$ and we wish to find an element of the domain with \mathbf{y} as its image. Since $\mathbf{y} \in \mathcal{C}\left(M_{B, C}^{T}\right)$, there exists a vector, $\mathbf{x} \in \mathbb{C}^{n}$ with $M_{B, C}^{T} \mathbf{x}=\mathbf{y}$. We now show that the desired element of the domain is $\mathbf{v}=\rho_{C}^{-1}(\mathbf{y})$. First, verify that $\mathbf{v} \in \mathcal{R}(T)$ by applying T to $\mathbf{u}=\rho_{B}^{-1}(\mathbf{x})$,

$$
\begin{aligned}
T(\mathbf{u}) & =T\left(\rho_{B}^{-1}(\mathbf{x})\right) & & \\
& =\rho_{C}^{-1}\left(M_{B, C}^{T}\left(\rho_{B}\left(\rho_{B}^{-1}(\mathbf{x})\right)\right)\right) & & \text { Theorem FTMR } 529 \\
& =\rho_{C}^{-1}\left(M_{B, C}^{T}\left(I_{\mathbb{C}^{n}}(\mathbf{x})\right)\right) & & \text { Definition IVLT 495 } \\
& =\rho_{C}^{-1}\left(M_{B, C}^{T} \mathbf{x}\right) & & \text { Definition IDLT 495 } \\
& =\rho_{C}^{-1}(\mathbf{y}) & & \text { Definition CSM } 231 \\
& =\mathbf{v} & & \text { Substitution }
\end{aligned}
$$

Second, verify that the proposed isomorphism, ρ_{C}, takes \mathbf{v} to \mathbf{y},

$$
\begin{aligned}
\rho_{C}(\mathbf{v}) & =\rho_{C}\left(\rho_{C}^{-1}(\mathbf{y})\right) \\
& =I_{\mathbb{C}^{m}}(\mathbf{y}) \\
& =\mathbf{y}
\end{aligned}
$$

> Substitution | Definition IVLT | 495 |
| :--- | :--- |
| Definition IDLT | 495 |

With ρ_{C} demonstrated to be an injective and surjective linear transformation from $\mathcal{R}(T)$ to $\mathcal{C}\left(M_{B, C}^{T}\right)$, Theorem ILTIS 498 tells us ρ_{C} is invertible, and so by Definition IVS 501, we say $\mathcal{R}(T)$ and $\mathcal{C}\left(M_{B, C}^{T}\right)$ are isomorphic.

Example RVMR

Range via matrix representation

In this example, we will recycle the linear transformation T and the bases B and C of Example KVMR 538 but now we will compute the range of T,

$$
T: M_{22} \mapsto P_{2}, \quad T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(2 a-b+c-5 d)+(a+4 b+5 b+2 d) x+(3 a-2 b+c-8 d) x^{2}
$$

With bases B and C,

$$
\begin{aligned}
B & =\left\{\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right],\left[\begin{array}{cc}
1 & 3 \\
-1 & -4
\end{array}\right],\left[\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right],\left[\begin{array}{cc}
2 & 5 \\
-2 & -4
\end{array}\right]\right\} \\
C & =\left\{1+x+x^{2}, 2+3 x,-1-2 x^{2}\right\}
\end{aligned}
$$

we obtain the matrix representation

$$
M_{B, C}^{T}=\left[\begin{array}{cccc}
2 & -24 & 5 & -8 \\
0 & 8 & 0 & 4 \\
-2 & -26 & -5 & -17
\end{array}\right]
$$

We know from Theorem RCSI 540 that the range of the linear transformation T is isomorphic to the column space of the matrix representation $M_{B, C}^{T}$ and by studying the proof of Theorem RCSI 540 we learn that ρ_{C} is an isomorphism between these subspaces. Notice that since the range is a subspace of the codomain, we will employ ρ_{C} as the isomorphism, rather than ρ_{B}, which was the correct choice for an isomophism between the null spaces of Example KVMR 538.

Rather than trying to compute the range of T using definitions and techniques from Chapter LT 441 we will instead analyze the column space of $M_{B, C}^{T}$ using techniques from way back in Chapter M 177. First row-reduce $\left(M_{B, C}^{T}\right)^{t}$,

$$
\left[\begin{array}{ccc}
2 & 0 & -2 \\
-24 & 8 & -26 \\
5 & 0 & -5 \\
-8 & 4 & -17
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccc}
\boxed{1} & 0 & -1 \\
0 & \boxed{1} & -\frac{25}{4} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Now employ Theorem CSRST 241 and Theorem BRS 240 (there are other methods we could choose here to compute the column space, such as Theorem BCS 234) to obtain the basis for $\mathcal{C}\left(M_{B, C}^{T}\right)$,

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-\frac{25}{4}
\end{array}\right]\right\}
$$

We can now convert this basis of $\mathcal{C}\left(M_{B, C}^{T}\right)$ into a basis of $\mathcal{R}(T)$ by applying ρ_{C}^{-1} to each element of the basis,

$$
\begin{aligned}
& \rho_{C}^{-1}\left(\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right)=\left(1+x+x^{2}\right)-\left(-1-2 x^{2}\right)=2+x+3 x^{2} \\
& \rho_{C}^{-1}\left(\left[\begin{array}{c}
0 \\
1 \\
-\frac{25}{4}
\end{array}\right]\right)=(2+3 x)-\frac{25}{4}\left(-1-2 x^{2}\right)=\frac{33}{4}+3 x+\frac{31}{2} x^{2}
\end{aligned}
$$

So the set

$$
\left\{2+3 x+3 x^{2}, \frac{33}{4}+3 x+\frac{31}{2} x^{2}\right\}
$$

is a basis for $\mathcal{R}(T)$.
Theorem KNSI 537 and Theorem RCSI [540] can be viewed as further formal evidence for the Coordinatization Principle 522, though they are not direct consequences.

Subsection IVLT

Invertible Linear Transformations

We have seen, both in theorems and in examples, that questions about linear transformations are often equivalent to questions about matrices. It is the matrix representation of a linear transformation that makes this idea precise. Here's our final theorem that solidifies this connection.

Theorem IMR

Invertible Matrix Representations

Suppose that $T: U \mapsto V$ is an invertible linear transformation, B is a basis for U and C is a basis for V. Then the matrix representation of T relative to B and $C, M_{B, C}^{T}$ is an invertible matrix, and

$$
M_{C, B}^{T^{-1}}=\left(M_{B, C}^{T}\right)^{-1}
$$

Proof This theorem states that the matrix representation of T^{-1} can be found by finding the matrix inverse of the matrix representation of T (with suitable bases in the right places). It also says that the
matrix representation of T is an invertible matrix. We can establish the invertibility, and precisely what the inverse is, by appealing to the definition of a matrix inverse, Definition MI 208. To this end, let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}\right\}$ and $C=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$. Then

$$
\begin{aligned}
M_{C, B}^{T-1} M_{B, C}^{T} & =M_{B, B}^{T-1} \mathrm{o}^{T} & & \text { Theorem MRCLT 534 } \\
& =M_{B, B}^{I U} & & \text { Definition IVLT 495 } \\
& =\left[\rho_{B}\left(I_{U}\left(\mathbf{u}_{1}\right)\right)\left|\rho_{B}\left(I_{U}\left(\mathbf{u}_{2}\right)\right)\right| \ldots \mid \rho_{B}\left(I_{U}\left(\mathbf{u}_{n}\right)\right)\right] & & \text { Definition MR 527 } \\
& =\left[\rho_{B}\left(\mathbf{u}_{1}\right)\left|\rho_{B}\left(\mathbf{u}_{2}\right)\right| \rho_{B}\left(\mathbf{u}_{3}\right)|\ldots| \rho_{B}\left(\mathbf{u}_{n}\right)\right] & & \text { Definition IDLT 495 } \\
& =\left[\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \mathbf{e}_{3}|\ldots| \mathbf{e}_{n}\right] & & \text { Definition VR } 513 \\
& =I_{n} & & \text { Definition IM 68 }
\end{aligned}
$$

and

$$
\begin{aligned}
M_{B, C}^{T} M_{C, B}^{T^{-1}} & =M_{C, C}^{T \circ T^{-1}} \\
& =M_{C, C}^{I_{V}} \\
& =\left[\rho_{C}\left(I_{V}\left(\mathbf{v}_{1}\right)\right)\left|\rho_{C}\left(I_{V}\left(\mathbf{v}_{2}\right)\right)\right| \ldots \mid \rho_{C}\left(I_{V}\left(\mathbf{v}_{n}\right)\right)\right] \\
& =\left[\rho_{C}\left(\mathbf{v}_{1}\right)\left|\rho_{C}\left(\mathbf{v}_{2}\right)\right| \rho_{C}\left(\mathbf{v}_{3}\right)|\ldots| \rho_{C}\left(\mathbf{v}_{n}\right)\right] \\
& =\left[\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \mathbf{e}_{3}|\ldots| \mathbf{e}_{n}\right] \\
& =I_{n}
\end{aligned}
$$

Theorem MRCLT 534
Definition IVLT 495
Definition MR 527
Definition IDLT 495
Definition VR 513
Definition IM 68

So by Definition MI 208, the matrix $M_{B, C}^{T}$ has an inverse, and that inverse is $M_{C, B}^{T^{-1}}$.

Example ILTVR

Inverse of a linear transformation via a representation

Consider the linear transformation

$$
R: P_{3} \mapsto M_{22}, \quad R\left(a+b x+c x^{2}+x^{3}\right)=\left[\begin{array}{cc}
a+b-c+2 d & 2 a+3 b-2 c+3 d \\
a+b+2 d & -a+b+2 c-5 d
\end{array}\right]
$$

If we wish to quickly find a formula for the inverse of R (presuming it exists), then choosing "nice" bases will work best. So build a matrix representation of R relative to the bases B and C,

$$
\begin{aligned}
B & =\left\{1, x, x^{2}, x^{3}\right\} \\
C & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

Then,

$$
\begin{gathered}
\rho_{C}(R(1))=\rho_{C}\left(\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
2 \\
1 \\
-1
\end{array}\right] \\
\rho_{C}(R(x))=\rho_{C}\left(\left[\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
3 \\
1 \\
1
\end{array}\right] \\
\rho_{C}\left(R\left(x^{2}\right)\right)=\rho_{C}\left(\left[\begin{array}{cc}
-1 & -2 \\
0 & 2
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
2
\end{array}\right]
\end{gathered}
$$

$$
\rho_{C}\left(R\left(x^{3}\right)\right)=\rho_{C}\left(\left[\begin{array}{cc}
2 & 3 \\
2 & -5
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
3 \\
2 \\
-5
\end{array}\right]
$$

So a representation of R is

$$
M_{B, C}^{R}=\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
2 & 3 & -2 & 3 \\
1 & 1 & 0 & 2 \\
-1 & 1 & 2 & -5
\end{array}\right]
$$

The matrix $M_{B, C}^{R}$ is invertible (as you can check) so we know by Theorem IMR 542 that R is invertible. Furthermore,

$$
M_{C, B}^{R^{-1}}=\left(M_{B, C}^{R}\right)^{-1}=\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
2 & 3 & -2 & 3 \\
1 & 1 & 0 & 2 \\
-1 & 1 & 2 & -5
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
20 & -7 & -2 & 3 \\
-8 & 3 & 1 & -1 \\
-1 & 0 & 1 & 0 \\
-6 & 2 & 1 & -1
\end{array}\right]
$$

We can use this representation of the inverse linear transformation, in concert with Theorem FTMR 529, to determine an explicit formula for the inverse itself,

$$
\begin{aligned}
R^{-1}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) & =\rho_{B}^{-1}\left(M_{C, B}^{R^{-1}} \rho_{C}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right) & & \text { Theorem FTMR 529 } \\
= & \rho_{B}^{-1}\left(\left(M_{B, C}^{R}\right)^{-1} \rho_{C}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right) & & \text { Theorem IMR 542 } \\
= & \rho_{B}^{-1}\left(\left(M_{B, C}^{R}\right)^{-1}\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]\right) & & \text { Definition VR 513 } \\
= & \rho_{B}^{-1}\left(\left[\begin{array}{ccc}
20 & -7 & -2 \\
-8 & 3 & 1 \\
-1 & 0 & 1 \\
-6 & 0 \\
-6 & 2 & 1 \\
\hline
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]\right. & & \\
= & \rho_{B}^{-1}\left(\left[\begin{array}{cc}
20 a-7 b-2 c+3 d \\
-8 a+3 b+c-d \\
-a+c \\
-6 a+2 b+c-d
\end{array}\right]\right) & & \text { Definition MI 208 } \\
= & (20 a-7 b-2 c+3 d)+(-8 a+3 b+c-d) x & & \text { Definition MVP 189 } \\
& +(-a+c) x^{2}+(-6 a+2 b+c-d) x^{3} & & \text { Definition VR 513 }
\end{aligned}
$$

You might look back at Example AIVLT 495, where we first witnessed the inverse of a linear transformation and recognize that the inverse (S) was built from using the method of this example on a matrix representation of T.

Theorem IMILT

Invertible Matrices, Invertible Linear Transformation

Suppose that A is a square matrix of size n and $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{n}$ is the linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$. Then A is invertible matrix if and only if T is an invertible linear transformation.

Proof Choose bases $B=C=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{n}\right\}$ consisting of the standard unit vectors as a basis of \mathbb{C}^{n} Theorem SUVB 321) and build a matrix representation of T relative to B and C. Then

$$
\rho_{C}\left(T\left(\mathbf{e}_{i}\right)\right)=\rho_{C}\left(A \mathbf{e}_{i}\right)
$$

$$
\begin{aligned}
& =\rho_{C}\left(\mathbf{A}_{i}\right) \\
& =\mathbf{A}_{i}
\end{aligned}
$$

So then the matrix representation of T, relative to B and C, is simply $M_{B, C}^{T}=A$. This is the basic observation that makes the rest of this proof go.
(\Leftarrow) Suppose T is invertible. Then T is injective by Theorem ILTIS 498 and

$$
\begin{aligned}
n(A) & =\operatorname{dim}(\mathcal{N}(A)) & & \text { Definition NOM } 341 \\
& =\operatorname{dim}\left(\mathcal{N}\left(M_{B, C}^{T}\right)\right) & & \\
& =\operatorname{dim}(\operatorname{ker} T) & & \text { Theorem KNSI } 537 \\
& =\operatorname{dim}(\{\mathbf{0}\}) & & \text { Theorem KILT } 471 \\
& =0 & &
\end{aligned}
$$

Then Theorem RNNM 343 tells us that A is nonsingular, and therefore A is invertible Theorem NI (223).
(\Rightarrow) Suppose A is a nonsingular matrix, then A is invertible (Theorem NI 223) and has zero nullity (Theorem RNNM [343). So

$$
\begin{aligned}
n(T) & =\operatorname{dim}(\mathcal{K}(T)) & & \text { Definition NOLT } 502 \\
& =\operatorname{dim}\left(\mathcal{N}\left(M_{B, C}^{T}\right)\right) & & \text { Theorem KNSI } 537 \\
& =\operatorname{dim}(\mathcal{N}(A)) & & \\
& =\operatorname{dim}(\{\mathbf{0}\}) & & \text { Theorem NMTNS } 70 \\
& =0 & &
\end{aligned}
$$

So T has zero nullity, and therefore has a trivial kernel and by Theorem KILT 471 T is injective. Furthermore, by Theorem RPNDD 503,

$$
r(T)=\operatorname{dim}\left(\mathbb{C}^{n}\right)-n(T)=n-0=n
$$

So T has full rank and therefore the range of T is all of \mathbb{C}^{n} and by Theorem RSLT $485 T$ is surjective. Finally, with T known to be injective and surjective, Theorem ILTIS 498 says T is invertible.

This theorem looks like more work than you would imagine it to be. But by now, the connections between matrices and linear transformations should be starting to become more transparent, and you may have already recognized the invertiblity of a matrix as being tantamount to the invertiblity of the associated matrix representation. See Exercise MR.T60 549 as well.

We can update the NMEx series of theorems, yet again.

Theorem NME9

Nonsingular Matrix Equivalences, Round 9

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{0\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{C}^{n}, \mathcal{C}(A)=\mathbb{C}^{n}$.
8. The columns of A are a basis for \mathbb{C}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
11. The determinant of A is nonzero, $\operatorname{det}(A) \neq 0$.
12. $\lambda=0$ is not an eigenvalue of A.
13. The linear transformation $T: \mathbb{C}^{n} \mapsto \mathbb{C}^{n}$ defined by $T(\mathbf{x})=A \mathbf{x}$ is invertible.

Proof By Theorem IMILT [544 the new addition to this list is equivalent to the statement that A is invertible so we can expand Theorem NME8 414.

Subsection READ
 Reading Questions

1. Why does Theorem FTMR 529 deserve the moniker "fundamental"?
2. Find the matrix representation, $M_{B, C}^{T}$ of the linear transformation

$$
T: \mathbb{C}^{2} \mapsto \mathbb{C}^{2}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}-x_{2} \\
3 x_{1}+2 x_{2}
\end{array}\right]
$$

relative to the bases

$$
B=\left\{\left[\begin{array}{l}
2 \\
3
\end{array}\right],\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\} \quad C=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

3. What is the second "surprise," and why is it surprising?

Subsection EXC
 Exercises

C10 Example KVMR 538 concludes with a basis for the kernel of the linear transformation T. Compute the value of T for each of these two basis vectors. Did you get what you expected?
Contributed by Robert Beezer
C20 Compute the matrix representation of T relative to the bases B and C.

$$
\begin{gathered}
T: P_{3} \mapsto \mathbb{C}^{3}, \quad T\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{c}
2 a-3 b+4 c-2 d \\
a+b-c+d \\
3 a+2 c-3 d
\end{array}\right] \\
B=\left\{1, x, x^{2}, x^{3}\right\} \quad C=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

Contributed by Robert Beezer Solution 550
C21 Find a matrix representation of the linear transformation T relative to the bases B and C.

$$
\begin{aligned}
& T: P_{2} \mapsto \mathbb{C}^{2}, \quad T(p(x))=\left[\begin{array}{l}
p(1) \\
p(3)
\end{array}\right] \\
& B=\left\{2-5 x+x^{2}, 1+x-x^{2}, x^{2}\right\} \\
& C=\left\{\left[\begin{array}{l}
3 \\
4
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\}
\end{aligned}
$$

Contributed by Robert Beezer Solution 550
C22 Let S_{22} be the vector space of 2×2 symmetric matrices. Build the matrix representation of the linear transformation $T: P_{2} \mapsto S_{22}$ relative to the bases B and C and then use this matrix representation to compute $T\left(3+5 x-2 x^{2}\right)$.

$$
\begin{aligned}
B & =\left\{1,1+x, 1+x+x^{2}\right\} \\
T\left(a+b x+c x^{2}\right) & =\left[\begin{array}{cc}
2 a-b+c & a+3 b-c \\
a+3 b-c & a-c
\end{array}\right]
\end{aligned}
$$

Contributed by Robert Beezer Solution 550
C25 Use a matrix representation to determine if the linear transformation $T: P_{3} \mapsto M_{22}$ surjective.

$$
T\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
-a+4 b+c+2 d & 4 a-b+6 c-d \\
a+5 b-2 c+2 d & a+2 c+5 d
\end{array}\right]
$$

Contributed by Robert Beezer Solution 551
C30 Find bases for the kernel and range of the linear transformation S below.

$$
S: M_{22} \mapsto P_{2}, \quad S\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+2 b+5 c-4 d)+(3 a-b+8 c+2 d) x+(a+b+4 c-2 d) x^{2}
$$

Contributed by Robert Beezer Solution 552
C40 Let S_{22} be the set of 2×2 symmetric matrices. Verify that the linear transformation R is invertible and find R^{-1}.

$$
R: S_{22} \mapsto P_{2}, \quad R\left(\left[\begin{array}{cc}
a & b \\
b & c
\end{array}\right]\right)=(a-b)+(2 a-3 b-2 c) x+(a-b+c) x^{2}
$$

Contributed by Robert Beezer Solution 552
C41 Prove that the linear transformation S is invertible. Then find a formula for the inverse linear transformation, S^{-1}, by employing a matrix inverse. (15 points)

$$
S: P_{1} \mapsto M_{1,2}, \quad S(a+b x)=\left[\begin{array}{ll}
3 a+b & 2 a+b
\end{array}\right]
$$

Contributed by Robert Beezer Solution 553
C42 The linear transformation $R: M_{12} \mapsto M_{21}$ is invertible. Use a matrix representation to determine a formula for the inverse linear transformation $R^{-1}: M_{21} \mapsto M_{12}$.

$$
R\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right)=\left[\begin{array}{c}
a+3 b \\
4 a+11 b
\end{array}\right]
$$

Contributed by Robert Beezer Solution 554
C50 Use a matrix representation to find a basis for the range of the linear transformation L. (15 points)

$$
L: M_{22} \mapsto P_{2}, \quad T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+2 b+4 c+d)+(3 a+c-2 d) x+(-a+b+3 c+3 d) x^{2}
$$

Contributed by Robert Beezer Solution 554
C51 Use a matrix representation to find a basis for the kernel of the linear transformation L. (15 points)

$$
L: M_{22} \mapsto P_{2}, \quad T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+2 b+4 c+d)+(3 a+c-2 d) x+(-a+b+3 c+3 d) x^{2}
$$

Contributed by Robert Beezer
C52 Find a basis for the kernel of the linear transformation $T: P_{2} \mapsto M_{22}$.

$$
T\left(a+b x+c x^{2}\right)=\left[\begin{array}{cc}
a+2 b-2 c & 2 a+2 b \\
-a+b-4 c & 3 a+2 b+2 c
\end{array}\right]
$$

Contributed by Robert Beezer Solution 555
M20 The linear transformation D performs differentiation on polynomials. Use a matrix representation of D to find the rank and nullity of D.

$$
D: P_{n} \mapsto P_{n}, \quad D(p(x))=p^{\prime}(x)
$$

Contributed by Robert Beezer Solution 555

T60 Create an entirely different proof of Theorem IMILT 544 that relies on Definition IVLT 495 to establish the invertibility of T, and that relies on Definition MI 208 to establish the invertibility of A. Contributed by Robert Beezer

T80 Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations, and that B, C and D are bases for U, V, and W. Using only Definition MR 527 define matrix representations for T and S. Using these two definitions, and Definition MR [527, derive a matrix representation for the composition $S \circ T$ in terms of the entries of the matrices $M_{B, C}^{T}$ and $M_{C, D}^{S}$. Explain how you would use this result to motivate a definition for matrix multiplication that is strikingly similar to Theorem EMP 193.
Contributed by Robert Beezer Solution 556

Subsection SOL

Solutions

C20 Contributed by Robert Beezer Statement 547
Apply Definition MR 527,

$$
\begin{aligned}
& \rho_{C}(T(1))=\rho_{C}\left(\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]\right)=\rho_{C}\left(1\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+(-2)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \\
& \rho_{C}(T(x))=\rho_{C}\left(\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]\right)=\rho_{C}\left((-4)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+0\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-4 \\
1 \\
0
\end{array}\right] \\
& \rho_{C}\left(T\left(x^{2}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right]\right)=\rho_{C}\left(5\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+(-3)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
5 \\
-3 \\
2
\end{array}\right] \\
& \rho_{C}\left(T\left(x^{3}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
-2 \\
1 \\
-3
\end{array}\right]\right)=\rho_{C}\left((-3)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+4\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+(-3)\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-3 \\
4 \\
-3
\end{array}\right]
\end{aligned}
$$

These four vectors are the columns of the matrix representation,

$$
M_{B, C}^{T}=\left[\begin{array}{cccc}
1 & -4 & 5 & -3 \\
-2 & 1 & -3 & 4 \\
3 & 0 & 2 & -3
\end{array}\right]
$$

C21 Contributed by Robert Beezer Statement 547 Applying Definition MR 527,

$$
\begin{aligned}
\rho_{C}\left(T\left(2-5 x+x^{2}\right)\right) & =\rho_{C}\left(\left[\begin{array}{l}
-2 \\
-4
\end{array}\right]\right)=\rho_{C}\left(2\left[\begin{array}{l}
3 \\
4
\end{array}\right]+(-4)\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-4
\end{array}\right] \\
\rho_{C}\left(T\left(1+x-x^{2}\right)\right) & =\rho_{C}\left(\left[\begin{array}{c}
1 \\
-5
\end{array}\right]\right)=\rho_{C}\left(13\left[\begin{array}{l}
3 \\
4
\end{array}\right]+(-19)\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
13 \\
-19
\end{array}\right] \\
\rho_{C}\left(T\left(x^{2}\right)\right) & =\rho_{C}\left(\left[\begin{array}{l}
1 \\
9
\end{array}\right]\right)=\rho_{C}\left((-15)\left[\begin{array}{l}
3 \\
4
\end{array}\right]+23\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
-15 \\
23
\end{array}\right]
\end{aligned}
$$

So the resulting matrix representation is

$$
M_{B, C}^{T}=\left[\begin{array}{ccc}
2 & 13 & -15 \\
-4 & -19 & 23
\end{array}\right]
$$

C22 Contributed by Robert Beezer Statement 547
Input to T the vectors of the basis B and coordinatize the outputs relative to C,

$$
\begin{array}{r}
\rho_{C}(T(1))=\rho_{C}\left(\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right)=\rho_{C}\left(2\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] \\
\rho_{C}(T(1+x))=\rho_{C}\left(\left[\begin{array}{ll}
1 & 4 \\
4 & 1
\end{array}\right]\right)=\rho_{C}\left(1\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+4\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]
\end{array}
$$

$$
\rho_{C}\left(T\left(1+x+x^{2}\right)\right)=\rho_{C}\left(\left[\begin{array}{ll}
2 & 3 \\
3 & 0
\end{array}\right]\right)=\rho_{C}\left(2\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+3\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+0\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]
$$

Applying Definition MR 527 we have the matrix representation

$$
M_{B, C}^{T}=\left[\begin{array}{lll}
2 & 1 & 2 \\
1 & 4 & 3 \\
1 & 1 & 0
\end{array}\right]
$$

To compute $T\left(3+5 x-2 x^{2}\right)$ employ Theorem FTMR 529,

$$
\begin{aligned}
T\left(3+5 x-2 x^{2}\right) & =\rho_{C}^{-1}\left(M_{B, C}^{T} \rho_{B}\left(3+5 x-2 x^{2}\right)\right) \\
& =\rho_{C}^{-1}\left(M_{B, C}^{T} \rho_{B}\left((-2)(1)+7(1+x)+(-2)\left(1+x+x^{2}\right)\right)\right) \\
& =\rho_{C}^{-1}\left(\left[\begin{array}{ccc}
2 & 1 & 2 \\
1 & 4 & 3 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
-2 \\
7 \\
-2
\end{array}\right]\right) \\
& =\rho_{C}^{-1}\left(\left[\begin{array}{c}
-1 \\
20 \\
5
\end{array}\right]\right) \\
& =(-1)\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right]+20\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+5\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & 20 \\
20 & 5
\end{array}\right]
\end{aligned}
$$

You can, of course, check your answer by evaluating $T\left(3+5 x-2 x^{2}\right)$ directly.
C25 Contributed by Robert Beezer Statement 547
Choose bases B and C for the matrix representation,

$$
B=\left\{1, x, x^{2}, x^{3}\right\} \quad C=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Input to T the vectors of the basis B and coordinatize the outputs relative to C,

$$
\begin{aligned}
& \rho_{C}(T(1))=\rho_{C}\left(\left[\begin{array}{cc}
-1 & 4 \\
1 & 1
\end{array}\right]\right)=\rho_{C}\left((-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+4\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
4 \\
1 \\
1
\end{array}\right] \\
& \rho_{C}(T(x))=\rho_{C}\left(\left[\begin{array}{cc}
4 & -1 \\
5 & 0
\end{array}\right]\right)=\rho_{C}\left(4\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-1)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+5\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+0\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
4 \\
-1 \\
5 \\
0
\end{array}\right] \\
& \rho_{C}\left(T\left(x^{2}\right)\right)=\rho_{C}\left(\left[\begin{array}{cc}
1 & 6 \\
-2 & 2
\end{array}\right]\right)=\rho_{C}\left(1\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+6\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(-2)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
6 \\
-2 \\
2
\end{array}\right] \\
& \rho_{C}\left(T\left(x^{3}\right)\right)=\rho_{C}\left(\left[\begin{array}{cc}
2 & -1 \\
2 & 5
\end{array}\right]\right)=\rho_{C}\left(2\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-1)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+5\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-1 \\
2 \\
5
\end{array}\right]
\end{aligned}
$$

Applying Definition MR 527 we have the matrix representation

$$
M_{B, C}^{T}=\left[\begin{array}{cccc}
-1 & 4 & 1 & 2 \\
4 & -1 & 6 & -1 \\
1 & 5 & -2 & 2 \\
1 & 0 & 2 & 5
\end{array}\right]
$$

Properties of this matrix representation will translate to properties of the linear transformation The matrix representation is nonsingular since it row-reduces to the identity matrix (Theorem NMRRI 68) and therefore has a column space equal to \mathbb{C}^{4} Theorem CNMB 326). The column space of the matrix representation is isomorphic to the range of the linear transformation (Theorem RCSI 540). So the range of T has dimension 4, equal to the dimension of the codomain M_{22}. By Theorem ROSLT 503, T is surjective.
C30 Contributed by Robert Beezer Statement 547
These subspaces will be easiest to construct by analyzing a matrix representation of S. Since we can use any matrix representation, we might as well use natural bases that allow us to construct the matrix representation quickly and easily,

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \quad C=\left\{1, x, x^{2}\right\}
$$

then we can practically build the matrix representation on sight,

$$
M_{B, C}^{S}=\left[\begin{array}{cccc}
1 & 2 & 5 & -4 \\
3 & -1 & 8 & 2 \\
1 & 1 & 4 & -2
\end{array}\right]
$$

The first step is to find bases for the null space and column space of the matrix representation. Rowreducing the matrix representation we find,

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 3 & 0 \\
0 & \boxed{1} & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So by Theorem BNS 138 and Theorem BCS 234, we have

$$
\mathcal{N}\left(M_{B, C}^{S}\right)=\left\langle\left\{\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \quad \mathcal{C}\left(M_{B, C}^{S}\right)=\left\langle\left\{\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]\right\}\right\rangle
$$

Now, the proofs of Theorem KNSI 537 and Theorem RCSI 540 tell us that we can apply ρ_{B}^{-1} and ρ_{C}^{-1} (respectively) to "un-coordinatize" and get bases for the kernel and range of the linear transformation S itself,

$$
\mathcal{K}(S)=\left\langle\left\{\left[\begin{array}{cc}
-3 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right]\right\}\right\rangle \quad \mathcal{R}(S)=\left\langle\left\{1+3 x+x^{2}, 2-x+x^{2}\right\}\right\rangle
$$

C40 Contributed by Robert Beezer Statement 548
The analysis of R will be easiest if we analyze a matrix representation of R. Since we can use any matrix representation, we might as well use natural bases that allow us to construct the matrix representation quickly and easily,

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \quad C=\left\{1, x, x^{2}\right\}
$$

then we can practically build the matrix representation on sight,

$$
M_{B, C}^{R}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & -3 & -2 \\
1 & -1 & 1
\end{array}\right]
$$

This matrix representation is invertible (it has a nonzero determinant of -1 , Theorem SMZD 383, Theorem NI 223) so Theorem IMR 542 tells us that the linear transformation S is also invertible. To find a formula for R^{-1} we compute,

$$
\begin{aligned}
R^{-1}\left(a+b x+c x^{2}\right) & =\rho_{B}^{-1}\left(M_{C, B}^{R^{-1}} \rho_{C}\left(a+b x+c x^{2}\right)\right) \\
& =\rho_{B}^{-1}\left(\left(M_{B, C}^{R}\right)^{-1} \rho_{C}\left(a+b x+c x^{2}\right)\right) \\
& =\rho_{B}^{-1}\left(\left(M_{B, C}^{R}\right)^{-1}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right) \\
& =\rho_{B}^{-1}\left(\left[\begin{array}{ccc}
5 & -1 & -2 \\
4 & -1 & -2 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right) \\
& =\rho_{B}^{-1}\left(\left[\begin{array}{cc}
5 a-b-2 c \\
4 a-b-2 c \\
-a+c
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
5 a-b-2 c & 4 a-b-2 c \\
4 a-b-2 c & -a+c
\end{array}\right]
\end{aligned}
$$

Theorem FTMR 529
Theorem IMR 542

Definition VR 513

Definition MI 208

Definition MVP 189

Definition VR 513

C41 Contributed by Robert Beezer Statement 548
First, build a matrix representation of S (Definition MR 527). We are free to choose whatever bases we wish, so we should choose ones that are easy to work with, such as

$$
\begin{aligned}
B & =\{1, x\} \\
C & =\left\{\left[\begin{array}{ll}
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

The resulting matrix representation is then

$$
M_{B, C}^{T}=\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]
$$

this matrix is invertible, since it has a nonzero determinant, so by Theorem IMR 542 the linear transformation S is invertible. We can use the matrix inverse and Theorem IMR [542] to find a formula for the inverse linear transformation,

$$
\begin{aligned}
S^{-1}\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right) & =\rho_{B}^{-1}\left(M_{C, B}^{S-1} \rho_{C}\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right)\right) \\
& =\rho_{B}^{-1}\left(\left(M_{B, C}^{S}\right)^{-1} \rho_{C}\left(\left[\begin{array}{ll}
a & b
\end{array}\right]\right)\right) \\
& =\rho_{B}^{-1}\left(\left(M_{B, C}^{S}\right)^{-1}\left[\begin{array}{l}
a \\
b
\end{array}\right]\right) \\
& =\rho_{B}^{-1}\left(\left(\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
a \\
b
\end{array}\right]\right) \\
& =\rho_{B}^{-1}\left(\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\rho_{B}^{-1}\left(\left[\begin{array}{c}
a-b \\
-2 a+3 b
\end{array}\right]\right) \\
& =(a-b)+(-2 a+3 b) x
\end{aligned}
$$

Definition MVP 189
Definition VR 513

C42 Contributed by Robert Beezer Statement 548
Choose bases B and C for M_{12} and M_{21} (respectively),

$$
B=\left\{\left[\begin{array}{ll}
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1
\end{array}\right]\right\} C=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

The resulting matrix representation is

$$
M_{B, C}^{R}=\left[\begin{array}{cc}
1 & 3 \\
4 & 11
\end{array}\right]
$$

This matrix is invertible (its determinant is nonzero, Theorem SMZD 383), so by Theorem IMR [542, we can compute the matrix representation of R^{-1} with a matrix inverse (Theorem TTMI [210]),

$$
M_{C, B}^{R^{-1}}=\left[\begin{array}{cc}
1 & 3 \\
4 & 11
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-11 & 3 \\
4 & -1
\end{array}\right]
$$

To obtain a general formula for R^{-1}, use Theorem FTMR 529,

$$
R^{-1}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\rho_{B}\left(M_{C, B}^{R^{-1}} \rho_{C}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)\right)=\rho_{B}\left(\left[\begin{array}{cc}
-11 & 3 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\rho_{B}\left(\left[\begin{array}{c}
-11 x+3 y \\
4 x-y
\end{array}\right]\right)=\left[\begin{array}{c}
-11 x+3 y \\
4 x-y
\end{array}\right]
$$

C50 Contributed by Robert Beezer Statement 548
As usual, build any matrix representation of L, most likely using a "nice" bases, such as

$$
\begin{aligned}
& B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
& C=\left\{1, x, x^{2}\right\}
\end{aligned}
$$

Then the matrix representation (Definition MR 527) is,

$$
M_{B, C}^{L}=\left[\begin{array}{cccc}
1 & 2 & 4 & 1 \\
3 & 0 & 1 & -2 \\
-1 & 1 & 3 & 3
\end{array}\right]
$$

Theorem RCSI 540 tells us that we can compute the column space of the matrix representation, then use the isomorphism ρ_{C}^{-1} to convert the column space of the matrix representation into the range of the linear transformation. So we first analyze the matrix representation,

$$
\left[\begin{array}{cccc}
1 & 2 & 4 & 1 \\
3 & 0 & 1 & -2 \\
-1 & 1 & 3 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{[1} & 0 & 0 & -1 \\
0 & \boxed{1} & 0 & -1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

With three nonzero rows in the reduced row-echelon form of the matrix, we know the column space has dimension 3. Since P_{2} has dimension 3 Theorem DP 339), the range must be all of P_{2}. So any basis of P_{2} would suffice as a basis for the range. For instance, C itself would be a correct answer.

A more laborious approach would be to use Theorem BCS 234 and choose the first three columns of the matrix representation as a basis for the range of the matrix representation. These could then be "un-coordinatized" with ρ_{C}^{-1} to yield a ("not nice") basis for P_{2}.

C52 Contributed by Robert Beezer Statement 548
Choose bases B and C for the matrix representation,

$$
B=\left\{1, x, x^{2}\right\} \quad C=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Input to T the vectors of the basis B and coordinatize the outputs relative to C,

$$
\begin{aligned}
& \rho_{C}(T(1))=\rho_{C}\left(\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]\right)=\rho_{C}\left(1\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(-1)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+3\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
3
\end{array}\right] \\
& \rho_{C}(T(x))=\rho_{C}\left(\left[\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right]\right)=\rho_{C}\left(2\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
2 \\
1 \\
2
\end{array}\right] \\
& \rho_{C}\left(T\left(x^{2}\right)\right)=\rho_{C}\left(\left[\begin{array}{ll}
-2 & 0 \\
-4 & 2
\end{array}\right]\right)=\rho_{C}\left((-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+0\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(-4)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
0 \\
-4 \\
2
\end{array}\right]
\end{aligned}
$$

Applying Definition MR 527 we have the matrix representation

$$
M_{B, C}^{T}=\left[\begin{array}{ccc}
1 & 2 & -2 \\
2 & 2 & 0 \\
-1 & 1 & -4 \\
3 & 2 & 2
\end{array}\right]
$$

The null space of the matrix representation is isomorphic (via ρ_{B}) to the kernel of the linear transformation (Theorem KNSI 537). So we compute the null space of the matrix representation by first row-reducing the matrix to,

$$
\left[\begin{array}{ccc}
{[1} & 0 & 2 \\
0 & \boxed{1} & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Employing Theorem BNS 138 we have

$$
\mathcal{N}\left(M_{B, C}^{T}\right)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\}\right\rangle
$$

We only need to uncoordinatize this one basis vector to get a basis for $\mathcal{K}(T)$,

$$
\mathcal{K}(T)=\left\langle\left\{\rho_{B}^{-1}\left(\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right)\right\}\right\rangle=\left\langle\left\{-2+2 x+x^{2}\right\}\right\rangle
$$

M20 Contributed by Robert Beezer Statement 548
Build a matrix representation (Definition MR $[527]$) with the set

$$
B=\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

employed as a basis of both the domain and codomain. Then

$$
\left.\begin{array}{c}
\rho_{B}(D(1))=\rho_{B}(0)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] \\
\rho_{B}\left(D\left(x^{2}\right)\right)=\rho_{B}(2 x)=\left[\begin{array}{c}
0 \\
2 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] \\
\vdots \\
\rho_{B}\left(D\left(x^{n}\right)\right)=\rho_{B}\left(n x^{n-1}\right)=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] \\
\vdots \\
0 \\
0 \\
n \\
0
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
0 \\
3 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

and the resulting matrix representation is

$$
M_{B, B}^{D}=\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 2 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 3 & \ldots & 0 & 0 \\
& \vdots & & & \ddots & & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & n \\
0 & 0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

This $(n+1) \times(n+1)$ matrix is very close to being in reduced row-echelon form. Multiply row i by $\frac{1}{i}$, for $1 \leq i \leq n$, to convert it to reduced row-echelon form. From this we can see that matrix representation $M_{B, B}^{D}$ has rank n and nullity 1. Applying Theorem RCSI 540 and Theorem KNSI 537 tells us that the linear transformation D will have the same values for the rank and nullity, as well.

T80 Contributed by Robert Beezer Statement 549
Suppose that $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{m}\right\}, C=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ and $D=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \ldots, \mathbf{w}_{p}\right\}$. For convenience, set $M=M_{B, C}^{T}, m_{i j}=[M]_{i j}, 1 \leq i \leq n, 1 \leq j \leq m$, and similarly, set $N=M_{C, D}^{S}, n_{i j}=[N]_{i j}$, $1 \leq i \leq p, 1 \leq j \leq n$. We want to learn about the matrix representation of $S \circ T: V \mapsto W$ relative to B and D. We will examine a single (generic) entry of this representation.

$$
\begin{aligned}
{\left[M_{B, D}^{S \circ T}\right]_{i j} } & =\left[\rho_{D}\left((S \circ T)\left(\mathbf{u}_{j}\right)\right)\right]_{i} & & \text { Definition MR 527 } \\
& =\left[\rho_{D}\left(S\left(T\left(\mathbf{u}_{j}\right)\right)\right)\right]_{i} & & \text { Definition LTC 456 } \\
& =\left[\rho_{D}\left(S\left(\sum_{k=1}^{n} m_{k j} \mathbf{v}_{k}\right)\right)\right]_{i} & & \text { Definition MR 527 }
\end{aligned}
$$

$$
\begin{array}{ll}
=\left[\rho_{D}\left(\sum_{k=1}^{n} m_{k j} S\left(\mathbf{v}_{k}\right)\right)\right]_{i} & \text { Theorem LTLC 449 } \\
=\left[\rho_{D}\left(\sum_{k=1}^{n} m_{k j} \sum_{\ell=1}^{p} n_{\ell k} \mathbf{w}_{\ell}\right)\right]_{i} & \text { Definition MR 527 } \\
=\left[\rho_{D}\left(\sum_{k=1}^{n} \sum_{\ell=1}^{p} m_{k j} n_{\ell k} \mathbf{w}_{\ell}\right)\right]_{i} & \text { Property DVA 276 } \\
=\left[\rho_{D}\left(\sum_{\ell=1}^{p} \sum_{k=1}^{n} m_{k j} n_{\ell k} \mathbf{w}_{\ell}\right)\right]_{i} & \text { Property C 275 } \\
=\left[\rho_{D}\left(\sum_{\ell=1}^{p}\left(\sum_{k=1}^{n} m_{k j} n_{\ell k}\right) \mathbf{w}_{\ell}\right)\right]_{i} & \text { Property DSA 276 } \\
=\sum_{k=1}^{n} m_{k j} n_{i k} & \text { Definition VR 513 } \\
=\sum_{k=1}^{n} n_{i k} m_{k j} & \text { Property MCCN 666 } \\
=\sum_{k=1}^{n}\left[M_{C, D}^{S}\right]_{i k}\left[M_{B, C}^{T}\right]_{k j} & \text { Property MCCN 666 }
\end{array}
$$

This formula for the entry of a matrix should remind you of Theorem EMP 193. However, while the theorem presumed we knew how to multiply matrices, the solution before us never uses any understanding of matrix products. It uses the definitions of vector and matrix representations, properties of linear transformations and vector spaces. So if we began a course by first discussing vector space, and then linear transformations between vector spaces, we could carry matrix representations into a motivation for a definition of matrix multiplication that is grounded in function composition. That is worth saying again - a definition of matrix representations of linear transformations results in a matrix product being the representation of a composition of linear transformations.

This exercise is meant to explain why many authors take the formula in Theorem EMP 193 as their definition of matrix multiplication, and why it is a natural choice when the proper motivation is in place. If we first defined matrix multiplication in the style of Theorem EMP [193, then the above argument, followed by a simple application of the definition of matrix equality (Definition ME 177), would yield Theorem MRCLT 534 .

Section CB
 Change of Basis

We have seen in Section MR 527 that a linear transformation can be represented by a matrix, once we pick bases for the domain and codomain. How does the matrix representation change if we choose different bases? Which bases lead to especially nice representations? From the infinite possibilities, what is the best possible representation? This section will begin to answer these questions. But first we need to define eigenvalues for linear transformations and the change-of-basis matrix.

Subsection EELT

Eigenvalues and Eigenvectors of Linear Transformations

We now define the notion of an eigenvalue and eigenvector of a linear transformation. It should not be too surprising, especially if you remind yourself of the close relationship between matrices and linear transformations.

Definition EELT

Eigenvalue and Eigenvector of a Linear Transformation

Suppose that $T: V \mapsto V$ is a linear transformation. Then a nonzero vector $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if $T(\mathbf{v})=\lambda \mathbf{v}$.

We will see shortly the best method for computing the eigenvalues and eigenvectors of a linear transformation, but for now, here are some examples to verify that such things really do exist.

Example ELTBM

Eigenvectors of linear transformation between matrices

Consider the linear transformation $T: M_{22} \mapsto M_{22}$ defined by

$$
T\left(\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ll}
-17 a+11 b+8 c-11 d & -57 a+35 b+24 c-33 d \\
-14 a+10 b+6 c-10 d & -41 a+25 b+16 c-23 d
\end{array}\right]
$$

and the vectors

$$
\mathbf{x}_{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \quad \mathbf{x}_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \quad \mathbf{x}_{3}=\left[\begin{array}{ll}
1 & 3 \\
2 & 3
\end{array}\right] \quad \mathbf{x}_{4}=\left[\begin{array}{ll}
2 & 6 \\
1 & 4
\end{array}\right]
$$

Then compute

$$
\begin{aligned}
& T\left(\mathbf{x}_{1}\right)=T\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right]=2 \mathbf{x}_{1} \\
& T\left(\mathbf{x}_{2}\right)=T\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
2 & 2 \\
2 & 0
\end{array}\right]=2 \mathbf{x}_{2} \\
& T\left(\mathbf{x}_{3}\right)=T\left(\left[\begin{array}{ll}
1 & 3 \\
2 & 3
\end{array}\right]\right)=\left[\begin{array}{ll}
-1 & -3 \\
-2 & -3
\end{array}\right]=(-1) \mathbf{x}_{3} \\
& T\left(\mathbf{x}_{4}\right)=T\left(\left[\begin{array}{ll}
2 & 6 \\
1 & 4
\end{array}\right]\right)=\left[\begin{array}{ll}
-4 & -12 \\
-2 & -8
\end{array}\right]=(-2) \mathbf{x}_{4}
\end{aligned}
$$

So $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$ are eigenvectors of T with eigenvalues (respectively) $\lambda_{1}=2, \lambda_{2}=2, \lambda_{3}=-1, \lambda_{4}=-2$. \boxtimes

Here's another.

Example ELTBP

Eigenvectors of linear transformation between polynomials

Consider the linear transformation $R: P_{2} \mapsto P_{2}$ defined by

$$
R\left(a+b x+c x^{2}\right)=(15 a+8 b-4 c)+(-12 a-6 b+3 c) x+(24 a+14 b-7 c) x^{2}
$$

and the vectors

$$
\mathbf{w}_{1}=1-x+x^{2} \quad \mathbf{w}_{2}=x+2 x^{2} \quad \mathbf{w}_{3}=1+4 x^{2}
$$

Then compute

$$
\begin{aligned}
& R\left(\mathbf{w}_{1}\right)=R\left(1-x+x^{2}\right)=3-3 x+3 x^{2}=3 \mathbf{w}_{1} \\
& R\left(\mathbf{w}_{2}\right)=R\left(x+2 x^{2}\right)=0+0 x+0 x^{2}=0 \mathbf{w}_{2} \\
& R\left(\mathbf{w}_{3}\right)=R\left(1+4 x^{2}\right)=-1-4 x^{2}=(-1) \mathbf{w}_{3}
\end{aligned}
$$

So $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$ are eigenvectors of R with eigenvalues (respectively) $\lambda_{1}=3, \lambda_{2}=0, \lambda_{3}=-1$. Notice how the eigenvalue $\lambda_{2}=0$ indicates that the eigenvector \mathbf{w}_{2} is a non-trivial element of the kernel of R, and therefore R is not injective Exercise CB.T15 581).

Of course, these examples are meant only to illustrate the definition of eigenvectors and eigenvalues for linear transformations, and therefore beg the question, "How would I find eigenvectors?" We'll have an answer before we finish this section. We need one more construction first.

Subsection CBM
 Change-of-Basis Matrix

Given a vector space, we know we can usually find many different bases for the vector space, some nice, some nasty. If we choose a single vector from this vector space, we can build many different representations of the vector by constructing the representations relative to different bases. How are these different representations related to each other? A change-of-basis matrix answers this question.

Definition CBM

Change-of-Basis Matrix

Suppose that V is a vector space, and $I_{V}: V \mapsto V$ is the identity linear transformation on V. Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ and C be two bases of V. Then the change-of-basis matrix from B to C is the matrix representation of I_{V} relative to B and C,

$$
\begin{aligned}
C_{B, C} & =M_{B, C}^{I_{V}} \\
& =\left[\rho_{C}\left(I_{V}\left(\mathbf{v}_{1}\right)\right)\left|\rho_{C}\left(I_{V}\left(\mathbf{v}_{2}\right)\right)\right| \rho_{C}\left(I_{V}\left(\mathbf{v}_{3}\right)\right)|\ldots| \rho_{C}\left(I_{V}\left(\mathbf{v}_{n}\right)\right)\right] \\
& =\left[\rho_{C}\left(\mathbf{v}_{1}\right)\left|\rho_{C}\left(\mathbf{v}_{2}\right)\right| \rho_{C}\left(\mathbf{v}_{3}\right)|\ldots| \rho_{C}\left(\mathbf{v}_{n}\right)\right]
\end{aligned}
$$

Notice that this definition is primarily about a single vector space (V) and two bases of $V(B, C)$. The linear transformation $\left(I_{V}\right)$ is necessary but not critical. As you might expect, this matrix has something to do with changing bases. Here is the theorem that gives the matrix its name (not the other way around).

Theorem CB

Change-of-Basis

Suppose that \mathbf{v} is a vector in the vector space V and B and C are bases of V. Then

$$
\rho_{C}(\mathbf{v})=C_{B, C} \rho_{B}(\mathbf{v})
$$

Proof

$$
\begin{aligned}
\rho_{C}(\mathbf{v}) & =\rho_{C}\left(I_{V}(\mathbf{v})\right) & & \text { Definition IDLT } 495 \\
& =M_{B, C}^{I_{V}} \rho_{B}(\mathbf{v}) & & \text { Theorem FTMR } 529 \\
& =C_{B, C} \rho_{B}(\mathbf{v}) & & \text { Definition CBM } 560
\end{aligned}
$$

So the change-of-basis matrix can be used with matrix multiplication to convert a vector representation of a vector (\mathbf{v}) relative to one basis $\left(\rho_{B}(\mathbf{v})\right)$ to a representation of the same vector relative to a second basis $\left(\rho_{C}(\mathbf{v})\right)$.

Theorem ICBM

Inverse of Change-of-Basis Matrix

Suppose that V is a vector space, and B and C are bases of V. Then the change-of-basis matrix $C_{B, C}$ is nonsingular and

$$
C_{B, C}^{-1}=C_{C, B}
$$

Proof The linear transformation $I_{V}: V \mapsto V$ is invertible, and its inverse is itself, I_{V} (check this!). So by Theorem IMR 542, the matrix $M_{B, C}^{I_{V}}=C_{B, C}$ is invertible. Theorem NI 223 says an invertible matrix is nonsingular.

Then

$$
\begin{aligned}
C_{B, C}^{-1} & =\left(M_{B, C}^{I_{V}}\right)^{-1} & & \text { Definition CBM } 560 \\
& =M_{C, B}^{I_{V}^{-1}} & & \text { Theorem IMR } 542 \\
& =M_{C, B}^{I_{V}} & & \text { Definition IDLT } 495 \\
& =C_{C, B} & & \text { Definition CBM } 560
\end{aligned}
$$

Example CBP

Change of basis with polynomials

The vector space P_{4} (Example VSP 277) has two nice bases Example BP 322),

$$
B=\left\{1, x, x^{2}, x^{3}, x^{4}\right\} \quad C=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}, 1+x+x^{2}+x^{3}+x^{4}\right\}
$$

To build the change-of-basis matrix between B and C, we must first build a vector representation of each vector in B relative to C,

$$
\rho_{C}(1)=\rho_{C}((1)(1))=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \rho_{C}(x)=\rho_{C}((-1)(1)+(1)(1+x))=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{C}\left(x^{2}\right)=\rho_{C}\left((-1)(1+x)+(1)\left(1+x+x^{2}\right)\right)=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0 \\
0
\end{array}\right] \\
& \rho_{C}\left(x^{3}\right)=\rho_{C}\left((-1)\left(1+x+x^{2}\right)+(1)\left(1+x+x^{2}+x^{3}\right)\right)=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1 \\
0
\end{array}\right] \\
& \rho_{C}\left(x^{4}\right)=\rho_{C}\left((-1)\left(1+x+x^{2}+x^{3}\right)+(1)\left(1+x+x^{2}+x^{3}+x^{4}\right)\right)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Then we package up these vectors as the columns of a matrix,

$$
C_{B, C}=\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Now, to illustrate Theorem CB 561, consider the vector $\mathbf{u}=5-3 x+2 x^{2}+8 x^{3}-3 x^{4}$. We can build the representation of \mathbf{u} relative to B easily,

$$
\rho_{B}(\mathbf{u})=\rho_{B}\left(5-3 x+2 x^{2}+8 x^{3}-3 x^{4}\right)=\left[\begin{array}{c}
5 \\
-3 \\
2 \\
8 \\
-3
\end{array}\right]
$$

Applying Theorem CB 561, we obtain a second representation of \mathbf{u}, but now relative to C,

$$
\begin{align*}
\rho_{C}(\mathbf{u}) & =C_{B, C} \rho_{B}(\mathbf{u}) \\
& =\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
5 \\
-3 \\
2 \\
8 \\
-3
\end{array}\right] \\
& =\left[\begin{array}{c}
8 \\
-5 \\
-6 \\
11 \\
-3
\end{array}\right]
\end{align*}
$$

We can check our work by unraveling this second representation,

$$
\begin{aligned}
\mathbf{u} & =\rho_{C}^{-1}\left(\rho_{C}(\mathbf{u})\right) & & \text { Definition IVLT 495 } \\
& \left.=\rho_{C}^{-1}\left(\begin{array}{c}
8 \\
-5 \\
-6 \\
11 \\
-3
\end{array}\right]\right) & & \\
& =8(1)+(-5)(1+x)+(-6)\left(1+x+x^{2}\right) & & \\
& +(11)\left(1+x+x^{2}+x^{3}\right)+(-3)\left(1+x+x^{2}+x^{3}+x^{4}\right) & & \text { Definition VR 513 } \\
& =5-3 x+2 x^{2}+8 x^{3}-3 x^{4} & &
\end{aligned}
$$

The change-of-basis matrix from C to B is actually easier to build. Grab each vector in the basis C and form its representation relative to B

$$
\begin{aligned}
& \rho_{B}(1)=\rho_{B}((1) 1)=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}(1+x)=\rho_{B}((1) 1+(1) x)=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(1+x+x^{2}\right)=\rho_{B}\left((1) 1+(1) x+(1) x^{2}\right)=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(1+x+x^{2}+x^{3}\right)=\rho_{B}\left((1) 1+(1) x+(1) x^{2}+(1) x^{3}\right)=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right] \\
& \rho_{B}\left(1+x+x^{2}+x^{3}+x^{4}\right)=\rho_{B}\left((1) 1+(1) x+(1) x^{2}+(1) x^{3}+(1) x^{4}\right)=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

Then we package up these vectors as the columns of a matrix,

$$
C_{C, B}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

We formed two representations of the vector \mathbf{u} above, so we can again provide a check on our computations by converting from the representation of \mathbf{u} relative to C to the representation of \mathbf{u} relative to B,

$$
\begin{aligned}
\rho_{B}(\mathbf{u}) & =C_{C, B} \rho_{C}(\mathbf{u}) & & \text { Theorem CB 561 } \\
& =\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
8 \\
-5 \\
-6 \\
11 \\
-3
\end{array}\right] & & \\
& =\left[\begin{array}{c}
5 \\
-3 \\
2 \\
8 \\
-3
\end{array}\right] & & \text { Definition MVP 189 }
\end{aligned}
$$

One more computation that is either a check on our work, or an illustration of a theorem. The two change-of-basis matrices, $C_{B, C}$ and $C_{C, B}$, should be inverses of each other, according to Theorem ICBM 561]. Here we go,

$$
C_{B, C} C_{C, B}=\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The computations of the previous example are not meant to present any labor-saving devices, but instead are meant to illustrate the utility of the change-of-basis matrix. However, you might have noticed that $C_{C, B}$ was easier to compute than $C_{B, C}$. If you needed $C_{B, C}$, then you could first compute $C_{C, B}$ and then compute its inverse, which by Theorem ICBM 561, would equal $C_{B, C}$.

Here's another illustrative example. We have been concentrating on working with abstract vector spaces, but all of our theorems and techniques apply just as well to \mathbb{C}^{m}, the vector space of column vectors. We only need to use more complicated bases than the standard unit vectors Theorem SUVB (321) to make things interesting.

Example CBCV

Change of basis with column vectors

For the vector space \mathbb{C}^{4} we have the two bases,

$$
B=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-3 \\
3 \\
-4
\end{array}\right],\left[\begin{array}{c}
-1 \\
3 \\
3 \\
0
\end{array}\right]\right\} \quad C=\left\{\left[\begin{array}{c}
1 \\
-6 \\
-4 \\
-1
\end{array}\right],\left[\begin{array}{c}
-4 \\
8 \\
-5 \\
8
\end{array}\right],\left[\begin{array}{c}
-5 \\
13 \\
-2 \\
9
\end{array}\right],\left[\begin{array}{c}
3 \\
-7 \\
3 \\
-6
\end{array}\right]\right\}
$$

The change-of-basis matrix from B to C requires writing each vector of B as a linear combination the vectors in C,

$$
\rho_{C}\left(\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-2
\end{array}\right]\right)=\rho_{C}\left((1)\left[\begin{array}{c}
1 \\
-6 \\
-4 \\
-1
\end{array}\right]+(-2)\left[\begin{array}{c}
-4 \\
8 \\
-5 \\
8
\end{array}\right]+(1)\left[\begin{array}{c}
-5 \\
13 \\
-2 \\
9
\end{array}\right]+(-1)\left[\begin{array}{c}
3 \\
-7 \\
3 \\
-6
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-1
\end{array}\right]
$$

$$
\begin{aligned}
& \rho_{C}\left(\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]\right)=\rho_{C}\left((2)\left[\begin{array}{c}
1 \\
-6 \\
-4 \\
-1
\end{array}\right]+(-3)\left[\begin{array}{c}
-4 \\
8 \\
-5 \\
8
\end{array}\right]+(3)\left[\begin{array}{c}
-5 \\
13 \\
-2 \\
9
\end{array}\right]+(0)\left[\begin{array}{c}
3 \\
-7 \\
3 \\
-6
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-3 \\
3 \\
0
\end{array}\right] \\
& \rho_{C}\left(\left[\begin{array}{c}
2 \\
-3 \\
3 \\
-4
\end{array}\right]\right)=\rho_{C}\left((1)\left[\begin{array}{c}
1 \\
-6 \\
-4 \\
-1
\end{array}\right]+(-3)\left[\begin{array}{c}
-4 \\
8 \\
-5 \\
8
\end{array}\right]+(1)\left[\begin{array}{c}
-5 \\
13 \\
-2 \\
9
\end{array}\right]+(-2)\left[\begin{array}{c}
3 \\
-7 \\
3 \\
-6
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-3 \\
1 \\
-2
\end{array}\right] \\
& \rho_{C}\left(\left[\begin{array}{c}
-1 \\
3 \\
3 \\
0
\end{array}\right]\right)=\rho_{C}\left((2)\left[\begin{array}{c}
1 \\
-6 \\
-4 \\
-1
\end{array}\right]+(-2)\left[\begin{array}{c}
-4 \\
8 \\
-5 \\
8
\end{array}\right]+(4)\left[\begin{array}{c}
-5 \\
13 \\
-2 \\
9
\end{array}\right]+(3)\left[\begin{array}{c}
3 \\
-7 \\
3 \\
-6
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-2 \\
4 \\
3
\end{array}\right]
\end{aligned}
$$

Then we package these vectors up as the change-of-basis matrix,

$$
C_{B, C}=\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
-2 & -3 & -3 & -2 \\
1 & 3 & 1 & 4 \\
-1 & 0 & -2 & 3
\end{array}\right]
$$

Now consider a single (arbitrary) vector $\mathbf{y}=\left[\begin{array}{c}2 \\ 6 \\ -3 \\ 4\end{array}\right]$. First, build the vector representation of \mathbf{y} relative to B. This will require writing \mathbf{y} as a linear combination of the vectors in B,

$$
\begin{aligned}
\rho_{B}(\mathbf{y}) & =\rho_{B}\left(\left[\begin{array}{c}
2 \\
6 \\
-3 \\
4
\end{array}\right]\right) \\
& =\rho_{B}\left((-21)\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-2
\end{array}\right]+(6)\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]+(11)\left[\begin{array}{c}
2 \\
-3 \\
3 \\
-4
\end{array}\right]+(-7)\left[\begin{array}{c}
-1 \\
3 \\
3 \\
0
\end{array}\right]\right) \quad=\left[\begin{array}{c}
-21 \\
6 \\
11 \\
-7
\end{array}\right]
\end{aligned}
$$

Now, applying Theorem CB 561 we can convert the representation of \mathbf{y} relative to B into a representation relative to C,

$$
\begin{aligned}
\rho_{C}(\mathbf{y}) & =C_{B, C} \rho_{B}(\mathbf{y}) \\
& =\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
-2 & -3 & -3 & -2 \\
1 & 3 & 1 & 4 \\
-1 & 0 & -2 & 3
\end{array}\right]\left[\begin{array}{c}
-21 \\
6 \\
11 \\
-7
\end{array}\right] \\
& =\left[\begin{array}{c}
-12 \\
5 \\
-20 \\
-22
\end{array}\right]
\end{aligned}
$$

$$
\text { Theorem CB } 561
$$

$$
\text { Definition MVP } 189
$$

We could continue further with this example, perhaps by computing the representation of \mathbf{y} relative to the basis C directly as a check on our work (Exercise CB.C20 581). Or we could choose another vector to
play the role of \mathbf{y} and compute two different representations of this vector relative to the two bases B and C.

Subsection MRS

Matrix Representations and Similarity

Here is the main theorem of this section. It looks a bit involved at first glance, but the proof should make you realize it is not all that complicated. In any event, we are more interested in a special case.

Theorem MRCB

Matrix Representation and Change of Basis

Suppose that $T: U \mapsto V$ is a linear transformation, B and C are bases for U, and D and E are bases for V. Then

$$
M_{B, D}^{T}=C_{E, D} M_{C, E}^{T} C_{B, C}
$$

Proof

$$
\begin{aligned}
C_{E, D} M_{C, E}^{T} C_{B, C} & =M_{E, D}^{I_{V}} M_{C, E}^{T} M_{B, C}^{I_{U}} & & \text { Definition CBM } 560 \\
& =M_{E, D}^{I_{V}} M_{B, E}^{T \circ I_{U}} & & \text { Theorem MRCLT 534 } \\
& =M_{E, D}^{I_{V}} M_{B, E}^{T} & & \text { Definition IDLT } 495 \\
& =M_{B, D}^{I_{V} \circ T} & & \text { Theorem MRCLT 534 } \\
& =M_{B, D}^{T} & & \text { Definition IDLT } 495
\end{aligned}
$$

We will be most interested in a special case of this theorem Theorem SCB 568), but here's an example that illustrates the full generality of Theorem MRCB 566.

Example MRCM

Matrix representations and change-of-basis matrices

Begin with two vector spaces, S_{2}, the subspace of M_{22} containing all 2×2 symmetric matrices, and P_{3} (Example VSP 277), the vector space of all polynomials of degree 3 or less. Then define the linear transformation $Q: S_{2} \mapsto P_{3}$ by

$$
Q\left(\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\right)=(5 a-2 b+6 c)+(3 a-b+2 c) x+(a+3 b-c) x^{2}+(-4 a+2 b+c) x^{3}
$$

Here are two bases for each vector space, one nice, one nasty. First for S_{2},

$$
B=\left\{\left[\begin{array}{cc}
5 & -3 \\
-3 & -2
\end{array}\right],\left[\begin{array}{cc}
2 & -3 \\
-3 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 2 \\
2 & 4
\end{array}\right]\right\} \quad C=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

and then for P_{3},

$$
D=\left\{2+x-2 x^{2}+3 x^{3},-1-2 x^{2}+3 x^{3},-3-x+x^{3},-x^{2}+x^{3}\right\} \quad E=\left\{1, x, x^{2}, x^{3}\right\}
$$

We'll begin with a matrix representation of Q relative to C and E. We first find vector representations of the elements of C relative to E,

$$
\rho_{E}\left(Q\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)\right)=\rho_{E}\left(5+3 x+x^{2}-4 x^{3}\right)=\left[\begin{array}{c}
5 \\
3 \\
1 \\
-4
\end{array}\right]
$$

$$
\begin{aligned}
& \rho_{E}\left(Q\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)\right)=\rho_{E}\left(-2-x+3 x^{2}+2 x^{3}\right)=\left[\begin{array}{c}
-2 \\
-1 \\
3 \\
2
\end{array}\right] \\
& \rho_{E}\left(Q\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)\right)=\rho_{E}\left(6+2 x-x^{2}+x^{3}\right)=\left[\begin{array}{c}
6 \\
2 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

So

$$
M_{C, E}^{Q}=\left[\begin{array}{ccc}
5 & -2 & 6 \\
3 & -1 & 2 \\
1 & 3 & -1 \\
-4 & 2 & 1
\end{array}\right]
$$

Now we construct two change-of-basis matrices. First, $C_{B, C}$ requires vector representations of the elements of B, relative to C. Since C is a nice basis, this is straightforward,

$$
\begin{aligned}
\rho_{C}\left(\left[\begin{array}{cc}
5 & -3 \\
-3 & -2
\end{array}\right]\right) & =\rho_{C}\left((5)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-3)\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+(-2)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
5 \\
-3 \\
-2
\end{array}\right] \\
\rho_{C}\left(\left[\begin{array}{cc}
2 & -3 \\
-3 & 0
\end{array}\right]\right) & =\rho_{C}\left((2)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-3)\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+(0)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right] \\
\rho_{C}\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\right) & =\rho_{C}\left((1)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(2)\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+(4)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]
\end{aligned}
$$

So

$$
C_{B, C}=\left[\begin{array}{ccc}
5 & 2 & 1 \\
-3 & -3 & 2 \\
-2 & 0 & 4
\end{array}\right]
$$

The other change-of-basis matrix we'll compute is $C_{E, D}$. However, since E is a nice basis (and D is not) we'll turn it around and instead compute $C_{D, E}$ and apply Theorem ICBM 561 to use an inverse to compute $C_{E, D}$.

$$
\begin{aligned}
\rho_{E}\left(2+x-2 x^{2}+3 x^{3}\right) & =\rho_{E}\left((2) 1+(1) x+(-2) x^{2}+(3) x^{3}\right)=\left[\begin{array}{c}
2 \\
1 \\
-2 \\
3
\end{array}\right] \\
\rho_{E}\left(-1-2 x^{2}+3 x^{3}\right) & =\rho_{E}\left((-1) 1+(0) x+(-2) x^{2}+(3) x^{3}\right)=\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
3
\end{array}\right] \\
\rho_{E}\left(-3-x+x^{3}\right) & =\rho_{E}\left((-3) 1+(-1) x+(0) x^{2}+(1) x^{3}\right)=\left[\begin{array}{c}
-3 \\
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\rho_{E}\left(-x^{2}+x^{3}\right)=\rho_{E}\left((0) 1+(0) x+(-1) x^{2}+(1) x^{3}\right)=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right]
$$

So, we can package these column vectors up as a matrix to obtain $C_{D, E}$ and then,

$$
\begin{aligned}
C_{E, D} & =\left(C_{D, E}\right)^{-1} \\
& =\left[\begin{array}{cccc}
2 & -1 & -3 & 0 \\
1 & 0 & -1 & 0 \\
-2 & -2 & 0 & -1 \\
3 & 3 & 1 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cccc}
1 & -2 & 1 & 1 \\
-2 & 5 & -1 & -1 \\
1 & -3 & 1 & 1 \\
2 & -6 & -1 & 0
\end{array}\right]
\end{aligned}
$$

$$
\text { Theorem ICBM } 561
$$

We are now in a position to apply Theorem MRCB 566. The matrix representation of Q relative to B and D can be obtained as follows,

$$
\begin{aligned}
M_{B, D}^{Q} & =C_{E, D} M_{C, E}^{Q} C_{B, C} \\
& =\left[\begin{array}{cccc}
1 & -2 & 1 & 1 \\
-2 & 5 & -1 & -1 \\
1 & -3 & 1 & 1 \\
2 & -6 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
5 & -2 & 6 \\
3 & -1 & 2 \\
1 & 3 & -1 \\
-4 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
5 & 2 & 1 \\
-3 & -3 & 2 \\
-2 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & -2 & 1 & 1 \\
-2 & 5 & -1 & -1 \\
1 & -3 & 1 & 1 \\
2 & -6 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
19 & 16 & 25 \\
14 & 9 & 9 \\
-2 & -7 & 3 \\
-28 & -14 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-39 & -23 & 14 \\
62 & 34 & -12 \\
-53 & -32 & 5 \\
-44 & -15 & -7
\end{array}\right]
\end{aligned}
$$

Now check our work by computing $M_{B, D}^{Q}$ directly Exercise CB.C21 581).
Theorem MRCB 566

Here is a special case of the previous theorem, where we choose U and V to be the same vector space, so the matrix representations and the change-of-basis matrices are all square of the same size.

Theorem SCB

Similarity and Change of Basis

Suppose that $T: V \mapsto V$ is a linear transformation and B and C are bases of V. Then

$$
M_{B, B}^{T}=C_{B, C}^{-1} M_{C, C}^{T} C_{B, C}
$$

Proof In the conclusion of Theorem MRCB 566, replace D by B, and replace E by C,

$$
\begin{aligned}
M_{B, B}^{T} & =C_{C, B} M_{C, C}^{T} C_{B, C} \\
& =C_{B, C}^{-1} M_{C, C}^{T} C_{B, C}
\end{aligned}
$$

Theorem MRCB 566
Theorem ICBM 561

This is the third surprise of this chapter. Theorem SCB 568 considers the special case where a linear transformation has the same vector space for the domain and codomain (V). We build a matrix representation of T using the basis B simultaneously for both the domain and codomain ($M_{B, B}^{T}$), and then we build a second matrix representation of T, now using the basis C for both the domain and codomain $\left(M_{C, C}^{T}\right)$. Then these two representations are related via a similarity transformation (Definition SIM 425) using a change-of-basis matrix $\left(C_{B, C}\right)$!

Example MRBE

Matrix representation with basis of eigenvectors

We return to the linear transfomation $T: M_{22} \mapsto M_{22}$ of Example ELTBM 559 defined by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ll}
-17 a+11 b+8 c-11 d & -57 a+35 b+24 c-33 d \\
-14 a+10 b+6 c-10 d & -41 a+25 b+16 c-23 d
\end{array}\right]
$$

In Example ELTBM 559] we showcased four eigenvectors of T. We will now put these four vectors in a set,

$$
B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}=\left\{\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 3 \\
2 & 3
\end{array}\right],\left[\begin{array}{ll}
2 & 6 \\
1 & 4
\end{array}\right]\right\}
$$

Check that B is a basis of M_{22} by first establishing the linear independence of B and then employing Theorem G 349 to get the spanning property easily. Here is a second set of 2×2 matrices, which also forms a basis of M_{22} (Example BM (322),

$$
C=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}\right\}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

We can build two matrix representations of T, one relative to B and one relative to C. Each is easy, but for wildly different reasons. In our computation of the matrix representation relative to B we borrow some of our work in Example ELTBM 559. Here are the representations, then the explanation.

$$
\begin{aligned}
& \rho_{B}\left(T\left(\mathbf{x}_{1}\right)\right)=\rho_{B}\left(2 \mathbf{x}_{1}\right)=\rho_{B}\left(2 \mathbf{x}_{1}+0 \mathbf{x}_{2}+0 \mathbf{x}_{3}+0 \mathbf{x}_{4}\right)=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{x}_{2}\right)\right)=\rho_{B}\left(2 \mathbf{x}_{2}\right)=\rho_{B}\left(0 \mathbf{x}_{1}+2 \mathbf{x}_{2}+0 \mathbf{x}_{3}+0 \mathbf{x}_{4}\right)=\left[\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{x}_{3}\right)\right)=\rho_{B}\left((-1) \mathbf{x}_{3}\right)=\rho_{B}\left(0 \mathbf{x}_{1}+0 \mathbf{x}_{2}+(-1) \mathbf{x}_{3}+0 \mathbf{x}_{4}\right)=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{x}_{4}\right)\right)=\rho_{B}\left((-2) \mathbf{x}_{4}\right)=\rho_{B}\left(0 \mathbf{x}_{1}+0 \mathbf{x}_{2}+0 \mathbf{x}_{3}+(-2) \mathbf{x}_{4}\right)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-2
\end{array}\right]
\end{aligned}
$$

So the resulting representation is

$$
M_{B, B}^{T}=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

Very pretty. Now for the matrix representation relative to C first compute,

$$
\begin{aligned}
\rho_{C}\left(T\left(\mathbf{y}_{1}\right)\right) & =\rho_{C}\left(\left[\begin{array}{ll}
-17 & -57 \\
-14 & -41
\end{array}\right]\right) \\
& =\rho_{C}\left((-17)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-57)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(-14)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+(-41)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
-17 \\
-57 \\
-14 \\
-41
\end{array}\right] \\
\rho_{C}\left(T\left(\mathbf{y}_{2}\right)\right) & =\rho_{C}\left(\left[\begin{array}{ll}
11 & 35 \\
10 & 25
\end{array}\right]\right) \\
& =\rho_{C}\left(11\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+35\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+10\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+25\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
11 \\
35 \\
10 \\
25
\end{array}\right] \\
\rho_{C}\left(T\left(\mathbf{y}_{3}\right)\right) & =\rho_{C}\left(\left[\begin{array}{ll}
8 & 24 \\
6 & 16
\end{array}\right]\right) \\
& =\rho_{C}\left(8\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+24\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+6\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+16\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
8 \\
24 \\
6 \\
16
\end{array}\right] \\
\rho_{C}\left(T\left(\mathbf{y}_{4}\right)\right) & =\rho_{C}\left(\left[\begin{array}{ll}
-11 & -33 \\
-10 & -23
\end{array}\right]\right) \\
& =\rho_{C}\left((-11)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-33)\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+(-10)\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+(-23)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
-11 \\
-33 \\
-10 \\
-23
\end{array}\right]
\end{aligned}
$$

So the resulting representation is

$$
M_{C, C}^{T}=\left[\begin{array}{cccc}
-17 & 11 & 8 & -11 \\
-57 & 35 & 24 & -33 \\
-14 & 10 & 6 & -10 \\
-41 & 25 & 16 & -23
\end{array}\right]
$$

Not quite as pretty. The purpose of this example is to illustrate Theorem SCB 568. This theorem says that the two matrix representations, $M_{B, B}^{T}$ and $M_{C, C}^{T}$, of the one linear transformation, T, are related by a similarity transformation using the change-of-basis matrix $C_{B, C}$. Lets compute this change-of-basis matrix. Notice that since C is such a nice basis, this is fairly straightforward,

$$
\begin{aligned}
& \rho_{C}\left(\mathbf{x}_{1}\right)=\rho_{C}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\right)=\rho_{C}\left(0\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+0\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right] \\
& \rho_{C}\left(\mathbf{x}_{2}\right)=\rho_{C}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right)=\rho_{C}\left(1\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+0\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{C}\left(\mathbf{x}_{3}\right)=\rho_{C}\left(\left[\begin{array}{ll}
1 & 3 \\
2 & 3
\end{array}\right]\right)=\rho_{C}\left(1\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+3\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+3\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
3 \\
2 \\
3
\end{array}\right] \\
& \rho_{C}\left(\mathbf{x}_{4}\right)=\rho_{C}\left(\left[\begin{array}{ll}
2 & 6 \\
1 & 4
\end{array}\right]\right)=\rho_{C}\left(2\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+6\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+4\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
6 \\
1 \\
4
\end{array}\right]
\end{aligned}
$$

So we have,

$$
C_{B, C}=\left[\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 1 & 3 & 6 \\
0 & 1 & 2 & 1 \\
1 & 0 & 3 & 4
\end{array}\right]
$$

Now, according to Theorem SCB 568 we can write,

$$
\begin{aligned}
& M_{B, B}^{T}=C_{B, C}^{-1} M_{C, C}^{T} C_{B, C} \\
& {\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -2
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 1 & 3 & 6 \\
0 & 1 & 2 & 1 \\
1 & 0 & 3 & 4
\end{array}\right]^{-1}\left[\begin{array}{cccc}
-17 & 11 & 8 & -11 \\
-57 & 35 & 24 & -33 \\
-14 & 10 & 6 & -10 \\
-41 & 25 & 16 & -23
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 1 & 2 \\
1 & 1 & 3 & 6 \\
0 & 1 & 2 & 1 \\
1 & 0 & 3 & 4
\end{array}\right] }
\end{aligned}
$$

This should look and feel exactly like the process for diagonalizing a matrix, as was described in Section SD 425. And it is.

We can now return to the question of computing an eigenvalue or eigenvector of a linear transformation. For a linear transformation of the form $T: V \mapsto V$, we know that representations relative to different bases are similar matrices. We also know that similar matrices have equal characteristic polynomials by Theorem SMEE 427. We will now show that eigenvalues of a linear transformation T are precisely the eigenvalues of any matrix representation of T. Since the choice of a different matrix representation leads to a similar matrix, there will be no "new" eigenvalues obtained from this second representation. Similarly, the change-of-basis matrix can be used to show that eigenvectors obtained from one matrix representation will be precisely those obtained from any other representation. So we can determine the eigenvalues and eigenvectors of a linear transformation by forming one matrix representation, using any basis we please, and analyzing the matrix in the manner of Chapter E 389.

Theorem EER

Eigenvalues, Eigenvectors, Representations

Suppose that $T: V \mapsto V$ is a linear transformation and B is a basis of V. Then $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ if and only if $\rho_{B}(\mathbf{v})$ is an eigenvector of $M_{B, B}^{T}$ for the eigenvalue λ.
Proof (\Rightarrow) Assume that $\mathbf{v} \in V$ is an eigenvector of T for the eigenvalue λ. Then

$$
\begin{aligned}
M_{B, B}^{T} \rho_{B}(\mathbf{v}) & =\rho_{B}(T(\mathbf{v})) & & \text { Theorem FTMR 529 } \\
& =\rho_{B}(\lambda \mathbf{v}) & & \text { Definition EELT 559 } \\
& =\lambda \rho_{B}(\mathbf{v}) & & \text { Theorem VRLT 513 }
\end{aligned}
$$

which by Definition EEM 389 says that $\rho_{B}(\mathbf{v})$ is an eigenvector of the matrix $M_{B, B}^{T}$ for the eigenvalue λ.
(\Leftarrow) Assume that $\rho_{B}(\mathbf{v})$ is an eigenvector of $M_{B, B}^{T}$ for the eigenvalue λ. Then

$$
\begin{aligned}
T(\mathbf{v}) & =\rho_{B}^{-1}\left(\rho_{B}(T(\mathbf{v}))\right) & & \text { Definition IVLT } 495 \\
& =\rho_{B}^{-1}\left(M_{B, B}^{T} \rho_{B}(\mathbf{v})\right) & & \text { Theorem FTMR } 529
\end{aligned}
$$

$$
\begin{aligned}
& =\rho_{B}^{-1}\left(\lambda \rho_{B}(\mathbf{v})\right) \\
& =\lambda \rho_{B}^{-1}\left(\rho_{B}(\mathbf{v})\right) \\
& =\lambda \mathbf{v}
\end{aligned}
$$

$$
\begin{array}{l|l|}
\hline \text { Definition EEM } & 389 \\
\hline \text { Theorem ILTLT } & 498 \\
\hline \text { Definition IVLT } & 495 \\
\hline
\end{array}
$$

which by Definition EELT 559 says \mathbf{v} is an eigenvector of T for the eigenvalue λ.

Subsection CELT
 Computing Eigenvectors of Linear Transformations

Knowing that the eigenvalues of a linear transformation are the eigenvalues of any representation, no matter what the choice of the basis B might be, we could now unambigously define items such as the characteristic polynomial of a linear transformation, rather than a matrix. We'll say that again - eigenvalues, eigenvectors, and characteristic polynomials are intrinsic properties of a linear transformation, independent of the choice of a basis used to construct a matrix representation.

As a practical matter, how does one compute the eigenvalues and eigenvectors of a linear transformation of the form $T: V \mapsto V$? Choose a nice basis B for V, one where the vector representations of the values of the linear transformations necessary for the matrix representation are easy to compute. Construct the matrix representation relative to this basis, and find the eigenvalues and eigenvectors of this matrix using the techniques of Chapter E 389]. The resulting eigenvalues of the matrix are precisely the eigenvalues of the linear transformation. The eigenvectors of the matrix are column vectors that need to be converted to vectors in V through application of ρ_{B}^{-1}.

Now consider the case where the matrix representation of a linear transformation is diagonalizable. The n linearly independent eigenvectors that must exist for the matrix Theorem DC 429) can be converted (via ρ_{B}^{-1}) into eigenvectors of the linear transformation. A matrix representation of the linear transformation relative to a basis of eigenvectors will be a diagonal matrix - an especially nice representation! Though we did not know it at the time, the diagonalizations of Section SD 425 were really finding especially pleasing matrix representations of linear transformations.

Here are some examples.

Example ELTT

Eigenvectors of a linear transformation, twice

Consider the linear transformation $S: M_{22} \mapsto M_{22}$ defined by

$$
S\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
-b-c-3 d & -14 a-15 b-13 c+d \\
18 a+21 b+19 c+3 d & -6 a-7 b-7 c-3 d
\end{array}\right]
$$

To find the eigenvalues and eigenvectors of S we will build a matrix representation and analyze the matrix. Since Theorem EER 571 places no restriction on the choice of the basis B, we may as well use a basis that is easy to work with. So set

$$
B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Then to build the matrix representation of S relative to B compute,

$$
\rho_{B}\left(S\left(\mathbf{x}_{1}\right)\right)=\rho_{B}\left(\left[\begin{array}{cc}
0 & -14 \\
18 & -6
\end{array}\right]\right)=\rho_{B}\left(0 \mathbf{x}_{1}+(-14) \mathbf{x}_{2}+18 \mathbf{x}_{3}+(-6) \mathbf{x}_{4}\right)=\left[\begin{array}{c}
0 \\
-14 \\
18 \\
-6
\end{array}\right]
$$

$$
\begin{aligned}
& \rho_{B}\left(S\left(\mathbf{x}_{2}\right)\right)=\rho_{B}\left(\left[\begin{array}{cc}
-1 & -15 \\
21 & -7
\end{array}\right]\right)=\rho_{B}\left((-1) \mathbf{x}_{1}+(-15) \mathbf{x}_{2}+21 \mathbf{x}_{3}+(-7) \mathbf{x}_{4}\right)=\left[\begin{array}{c}
-1 \\
-15 \\
21 \\
-7
\end{array}\right] \\
& \rho_{B}\left(S\left(\mathbf{x}_{3}\right)\right)=\rho_{B}\left(\left[\begin{array}{cc}
-1 & -13 \\
19 & -7
\end{array}\right]\right)=\rho_{B}\left((-1) \mathbf{x}_{1}+(-13) \mathbf{x}_{2}+19 \mathbf{x}_{3}+(-7) \mathbf{x}_{4}\right)=\left[\begin{array}{c}
-1 \\
-13 \\
19 \\
-7
\end{array}\right] \\
& \rho_{B}\left(S\left(\mathbf{x}_{4}\right)\right)=\rho_{B}\left(\left[\begin{array}{cc}
-3 & 1 \\
3 & -3
\end{array}\right]\right)=\rho_{B}\left((-3) \mathbf{x}_{1}+1 \mathbf{x}_{2}+3 \mathbf{x}_{3}+(-3) \mathbf{x}_{4}\right)=\left[\begin{array}{c}
-3 \\
1 \\
3 \\
-3
\end{array}\right]
\end{aligned}
$$

So by Definition MR 527, we have

$$
M=M_{B, B}^{S}=\left[\begin{array}{cccc}
0 & -1 & -1 & -3 \\
-14 & -15 & -13 & 1 \\
18 & 21 & 19 & 3 \\
-6 & -7 & -7 & -3
\end{array}\right]
$$

Now compute eigenvalues and eigenvectors of the matrix representation of M with the techniques of Section EE 389. First the characteristic polynomial,

$$
p_{M}(x)=\operatorname{det}\left(M-x I_{4}\right)=x^{4}-x^{3}-10 x^{2}+4 x+24=(x-3)(x-2)(x+2)^{2}
$$

We could now make statements about the eigenvalues of M, but in light of Theorem EER 571 we can refer to the eigenvalues of S and mildly abuse (or extend) our notation for multiplicities to write

$$
\alpha_{S}(3)=1 \quad \alpha_{S}(2)=1 \quad \alpha_{S}(-2)=2
$$

Now compute the eigenvectors of M,

$$
\begin{array}{cc}
\lambda=3 & M-3 I_{4}= \\
\mathcal{E}_{M}(3)=\mathcal{N}\left(M-3 I_{4}\right)=\left\langle\left\{\begin{array}{cccc}
-3 & -1 & -1 & -3 \\
-14 & -18 & -13 & 1 \\
18 & 21 & 16 & 3 \\
-6 & -7 & -7 & -6
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
{\left[\begin{array}{c}
1 \\
0 \\
0 \\
3 \\
0 \\
0 \\
0
\end{array}\right]} & 0 & 0 & 0 \\
1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]\right. \\
\lambda=2 \\
M-2 I_{4}=\left[\begin{array}{cccc}
-2 & -1 & -1 & -3 \\
-14 & -17 & -13 & 1 \\
18 & 21 & 17 & 3 \\
-6 & -7 & -7 & -5
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{M}(2)=\mathcal{N}\left(M-2 I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
4 \\
-3 \\
1
\end{array}\right]\right\}\right\rangle
\end{array}
$$

$$
\begin{aligned}
\lambda=-2 \quad M-(-2) I_{4} & =\left[\begin{array}{cccc}
2 & -1 & -1 & -3 \\
-14 & -13 & -13 & 1 \\
18 & 21 & 21 & 3 \\
-6 & -7 & -7 & -1
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & \frac{1}{1} & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{M}(-2) & =\mathcal{N}\left(M-(-2) I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

According to Theorem EER [571 the eigenvectors just listed as basis vectors for the eigenspaces of M are vector representations (relative to B) of eigenvectors for S. So the application if the inverse function ρ_{B}^{-1} will convert these column vectors into elements of the vector space $M_{22}(2 \times 2$ matrices $)$ that are eigenvectors of S. Since ρ_{B} is an isomorphism Theorem VRILT 519), so is ρ_{B}^{-1}. Applying the inverse function will then preserve linear independence and spanning properties, so with a sweeping application of the Coordinatization Principle 522 and some extensions of our previous notation for eigenspaces and geometric multiplicities, we can write,

$$
\begin{aligned}
& \rho_{B}^{-1}\left(\left[\begin{array}{c}
-1 \\
3 \\
-3 \\
1
\end{array}\right]\right)=(-1) \mathbf{x}_{1}+3 \mathbf{x}_{2}+(-3) \mathbf{x}_{3}+1 \mathbf{x}_{4}=\left[\begin{array}{ll}
-1 & 3 \\
-3 & 1
\end{array}\right] \\
& \rho_{B}^{-1}\left(\left[\begin{array}{c}
-2 \\
4 \\
-3 \\
1
\end{array}\right]\right)=(-2) \mathbf{x}_{1}+4 \mathbf{x}_{2}+(-3) \mathbf{x}_{3}+1 \mathbf{x}_{4}=\left[\begin{array}{ll}
-2 & 4 \\
-3 & 1
\end{array}\right] \\
& \rho_{B}^{-1}\left(\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]\right)=0 \mathbf{x}_{1}+(-1) \mathbf{x}_{2}+1 \mathbf{x}_{3}+0 \mathbf{x}_{4}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
& \rho_{B}^{-1}\left(\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]\right)=1 \mathbf{x}_{1}+(-1) \mathbf{x}_{2}+0 \mathbf{x}_{3}+1 \mathbf{x}_{4}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

So

$$
\begin{aligned}
\mathcal{E}_{S}(3) & =\left\langle\left\{\left[\begin{array}{ll}
-1 & 3 \\
-3 & 1
\end{array}\right]\right\}\right\rangle \\
\mathcal{E}_{S}(2) & =\left\langle\left\{\left[\begin{array}{ll}
-2 & 4 \\
-3 & 1
\end{array}\right]\right\}\right\rangle \\
\mathcal{E}_{S}(-2) & =\left\langle\left\{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

with geometric multiplicities given by

$$
\gamma_{S}(3)=1 \quad \gamma_{S}(2)=1 \quad \gamma_{S}(-2)=2
$$

Suppose we now decided to build another matrix representation of S, only now relative to a linearly independent set of eigenvectors of S, such as

$$
C=\left\{\left[\begin{array}{ll}
-1 & 3 \\
-3 & 1
\end{array}\right],\left[\begin{array}{ll}
-2 & 4 \\
-3 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\right\}
$$

At this point you should have computed enough matrix representations to predict that the result of representing S relative to C will be a diagonal matrix. Computing this representation is an example of how Theorem SCB 568 generalizes the diagonalizations from Section SD 425 . For the record, here is the diagonal representation,

$$
M_{C, C}^{S}=\left[\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

Our interest in this example is not necessarily building nice representations, but instead we want to demonstrate how eigenvalues and eigenvectors are an intrinsic property of a linear transformation, independent of any particular representation. To this end, we will repeat the foregoing, but replace B by another basis. We will make this basis different, but not extremely so,

$$
D=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}\right\}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\}
$$

Then to build the matrix representation of S relative to D compute,

$$
\begin{aligned}
& \rho_{D}\left(S\left(\mathbf{y}_{1}\right)\right)=\rho_{D}\left(\left[\begin{array}{cc}
0 & -14 \\
18 & -6
\end{array}\right]\right)=\rho_{D}\left(14 \mathbf{y}_{1}+(-32) \mathbf{y}_{2}+24 \mathbf{y}_{3}+(-6) \mathbf{y}_{4}\right)=\left[\begin{array}{c}
14 \\
-32 \\
24 \\
-6
\end{array}\right] \\
& \rho_{D}\left(S\left(\mathbf{y}_{2}\right)\right)=\rho_{D}\left(\left[\begin{array}{cc}
-1 & -29 \\
39 & -13
\end{array}\right]\right)=\rho_{D}\left(28 \mathbf{y}_{1}+(-68) \mathbf{y}_{2}+52 \mathbf{y}_{3}+(-13) \mathbf{y}_{4}\right)=\left[\begin{array}{c}
28 \\
-68 \\
52 \\
-13
\end{array}\right] \\
& \rho_{D}\left(S\left(\mathbf{y}_{3}\right)\right)=\rho_{D}\left(\left[\begin{array}{ll}
-2 & -42 \\
58 & -20
\end{array}\right]\right)=\rho_{D}\left(40 \mathbf{y}_{1}+(-100) \mathbf{y}_{2}+78 \mathbf{y}_{3}+(-20) \mathbf{y}_{4}\right)=\left[\begin{array}{c}
40 \\
-100 \\
78 \\
-20
\end{array}\right] \\
& \rho_{D}\left(S\left(\mathbf{y}_{4}\right)\right)=\rho_{D}\left(\left[\begin{array}{ll}
-5 & -41 \\
61 & -23
\end{array}\right]\right)=\rho_{D}\left(36 \mathbf{y}_{1}+(-102) \mathbf{y}_{2}+84 \mathbf{y}_{3}+(-23) \mathbf{y}_{4}\right)=\left[\begin{array}{c}
36 \\
-102 \\
84 \\
-23
\end{array}\right]
\end{aligned}
$$

So by Definition MR 527 we have

$$
N=M_{D, D}^{S}=\left[\begin{array}{cccc}
14 & 28 & 40 & 36 \\
-32 & -68 & -100 & -102 \\
24 & 52 & 78 & 84 \\
-6 & -13 & -20 & -23
\end{array}\right]
$$

Now compute eigenvalues and eigenvectors of the matrix representation of N with the techniques of Section EE 389. First the characteristic polynomial,

$$
p_{N}(x)=\operatorname{det}\left(N-x I_{4}\right)=x^{4}-x^{3}-10 x^{2}+4 x+24=(x-3)(x-2)(x+2)^{2}
$$

Of course this is not news. We now know that $M=M_{B, B}^{S}$ and $N=M_{D, D}^{S}$ are similar matrices Theorem SCB 568]). But Theorem SMEE 427 told us long ago that similar matrices have identical characteristic
polynomials. Now compute eigenvectors for the matrix representation, which will be different than what we found for M,

$$
\begin{aligned}
& \lambda=3 \quad N-3 I_{4}=\left[\begin{array}{cccc}
11 & 28 & 40 & 36 \\
-32 & -71 & -100 & -102 \\
24 & 52 & 75 & 84 \\
-6 & -13 & -20 & -26
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & -6 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{E}_{N}(3)=\mathcal{N}\left(N-3 I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
-4 \\
6 \\
-4 \\
1
\end{array}\right]\right\}\right\rangle \\
& \lambda=2 \quad N-2 I_{4}=\left[\begin{array}{cccc}
12 & 28 & 40 & 36 \\
-32 & -70 & -100 & -102 \\
24 & 52 & 76 & 84 \\
-6 & -13 & -20 & -25
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & -7 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{E}_{N}(2)=\mathcal{N}\left(N-2 I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
-6 \\
7 \\
-4 \\
1
\end{array}\right]\right\}\right\rangle \\
& \lambda=-2 \quad N-(-2) I_{4}=\left[\begin{array}{cccc}
16 & 28 & 40 & 36 \\
-32 & -66 & -100 & -102 \\
24 & 52 & 80 & 84 \\
-6 & -13 & -20 & -21
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & -1 & -3 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{E}_{N}(-2)=\mathcal{N}\left(N-(-2) I_{4}\right)=\left\langle\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
-3 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

Employing Theorem EER 571 we can apply ρ_{D}^{-1} to each of the basis vectors of the eigenspaces of N to obtain eigenvectors for S that also form bases for eigenspaces of S,

$$
\begin{aligned}
& \rho_{D}^{-1}\left(\left[\begin{array}{c}
-4 \\
6 \\
-4 \\
1
\end{array}\right]\right)=(-4) \mathbf{y}_{1}+6 \mathbf{y}_{2}+(-4) \mathbf{y}_{3}+1 \mathbf{y}_{4}=\left[\begin{array}{ll}
-1 & 3 \\
-3 & 1
\end{array}\right] \\
& \rho_{D}^{-1}\left(\left[\begin{array}{c}
-6 \\
7 \\
-4 \\
1
\end{array}\right]\right)=(-6) \mathbf{y}_{1}+7 \mathbf{y}_{2}+(-4) \mathbf{y}_{3}+1 \mathbf{y}_{4}=\left[\begin{array}{cc}
-2 & 4 \\
-3 & 1
\end{array}\right] \\
& \rho_{D}^{-1}\left(\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right]\right)=1 \mathbf{y}_{1}+(-2) \mathbf{y}_{2}+1 \mathbf{y}_{3}+0 \mathbf{y}_{4}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
& \rho_{D}^{-1}\left(\left[\begin{array}{c}
3 \\
-3 \\
0 \\
1
\end{array}\right]\right)=3 \mathbf{y}_{1}+(-3) \mathbf{y}_{2}+0 \mathbf{y}_{3}+1 \mathbf{y}_{4}=\left[\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

The eigenspaces for the eigenvalues of algebraic multiplicity 1 are exactly as before,

$$
\begin{aligned}
& \mathcal{E}_{S}(3)=\left\langle\left\{\left[\begin{array}{ll}
-1 & 3 \\
-3 & 1
\end{array}\right]\right\}\right\rangle \\
& \mathcal{E}_{S}(2)=\left\langle\left\{\left[\begin{array}{ll}
-2 & 4 \\
-3 & 1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

However, the eigenspace for $\lambda=-2$ would at first glance appear to be different. Here are the two eigenspaces for $\lambda=-2$, first the eigenspace obtained from $M=M_{B, B}^{S}$, then followed by the eigenspace obtained from $M=M_{D, D}^{S}$.

$$
\mathcal{E}_{S}(-2)=\left\langle\left\{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\right\}\right\rangle \quad \mathcal{E}_{S}(-2)=\left\langle\left\{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right]\right\}\right\rangle
$$

Subspaces generally have many bases, and that is the situation here. With a careful proof of set equality, you can show that these two eigenspaces are equal sets. The key observation to make such a proof go is that

$$
\left[\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

which will establish that the second set is a subset of the first. With equal dimensions, Theorem EDYES 352 will finish the task. So the eigenvalues of a linear transformation are independent of the matrix representation employed to compute them!

Another example, this time a bit larger and with complex eigenvalues.

Example CELT

Complex eigenvectors of a linear transformation

Consider the linear transformation $Q: P_{4} \mapsto P_{4}$ defined by

$$
\begin{aligned}
& Q\left(a+b x+c x^{2}+d x^{3}+e x^{4}\right) \\
& =(-46 a-22 b+13 c+5 d+e)+(117 a+57 b-32 c-15 d-4 e) x+ \\
& \quad(-69 a-29 b+21 c-7 e) x^{2}+(159 a+73 b-44 c-13 d+2 e) x^{3}+ \\
& \quad(-195 a-87 b+55 c+10 d-13 e) x^{4}
\end{aligned}
$$

Choose a simple basis to compute with, say

$$
B=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}
$$

Then it should be apparent that the matrix representation of Q relative to B is

$$
M=M_{B, B}^{Q}=\left[\begin{array}{ccccc}
-46 & -22 & 13 & 5 & 1 \\
117 & 57 & -32 & -15 & -4 \\
-69 & -29 & 21 & 0 & -7 \\
159 & 73 & -44 & -13 & 2 \\
-195 & -87 & 55 & 10 & -13
\end{array}\right]
$$

Compute the characteristic polynomial, eigenvalues and eigenvectors according to the techniques of Section EE (389,

$$
\begin{aligned}
p_{Q}(x) & =-x^{5}+6 x^{4}-x^{3}-88 x^{2}+252 x-208 \\
& =-(x-2)^{2}(x+4)\left(x^{2}-6 x+13\right)
\end{aligned}
$$

$$
=-(x-2)^{2}(x+4)(x-(3+2 i))(x-(3-2 i))
$$

$$
\alpha_{Q}(2)=2 \quad \alpha_{Q}(-4)=1 \quad \alpha_{Q}(3+2 i)=1 \quad \alpha_{Q}(3-2 i)=1
$$

$$
\begin{aligned}
\lambda & =2 \\
M-(2) I_{5} & =\left[\begin{array}{ccccc}
-48 & -22 & 13 & 5 & 1 \\
117 & 55 & -32 & -15 & -4 \\
-69 & -29 & 19 & 0 & -7 \\
159 & 73 & -44 & -15 & 2 \\
-195 & -87 & 55 & 10 & -15
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{lllll}
1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} \\
0 & 1 & 0 & -\frac{5}{2} & -\frac{5}{2} \\
0 & 0 & 1 & -2 & -6 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{E}_{M}(2) & =\mathcal{N}\left(M-(2) I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{5}{2} \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{2} \\
\frac{5}{2} \\
6 \\
0 \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
-1 \\
5 \\
4 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
5 \\
12 \\
0 \\
2
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

$$
\lambda=-4
$$

$$
M-(-4) I_{5}=\left[\begin{array}{ccccc}
-42 & -22 & 13 & 5 & 1 \\
117 & 61 & -32 & -15 & -4 \\
-69 & -29 & 25 & 0 & -7 \\
159 & 73 & -44 & -9 & 2 \\
-195 & -87 & 55 & 10 & -9
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\mathcal{E}_{M}(-4)=\mathcal{N}\left(M-(-4) I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
3 \\
1 \\
2 \\
1
\end{array}\right]\right\}\right\rangle
$$

$$
\begin{aligned}
& \lambda=3+2 i \\
& M-(3+2 i) I_{5}=\left[\begin{array}{ccccc}
-49-2 i & -22 & 13 & 5 & 1 \\
117 & 54-2 i & -32 & -15 & -4 \\
-69 & -29 & 18-2 i & 0 & -7 \\
159 & 73 & -44 & -16-2 i & 2 \\
-195 & -87 & 55 & 10 & -16-2 i
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -\frac{3}{4}+\frac{i}{4} \\
0 & 1 & 0 & 0 & \frac{7}{4}-\frac{i}{4} \\
0 & 0 & 1 & 0 & -\frac{1}{2}+\frac{i}{2} \\
0 & 0 & 0 & 1 & \frac{7}{4}-\frac{i}{4} \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{E}_{M}(3+2 i)=\mathcal{N}\left(M-(3+2 i) I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
\frac{3}{4}-\frac{i}{4} \\
-\frac{7}{4}+\frac{i}{4} \\
\frac{1}{2}-\frac{i}{2} \\
-\frac{7}{4}+\frac{i}{4} \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
3-i \\
-7+i \\
2-2 i \\
-7+i \\
4
\end{array}\right]\right\}\right\rangle \\
& \lambda=3-2 i \\
& M-(3-2 i) I_{5}=\left[\begin{array}{ccccc}
-49+2 i & -22 & 13 & 5 & 1 \\
117 & 54+2 i & -32 & -15 & -4 \\
-69 & -29 & 18+2 i & 0 & -7 \\
159 & 73 & -44 & -16+2 i & 2 \\
-195 & -87 & 55 & 10 & -16+2 i
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -\frac{3}{4}-\frac{i}{4} \\
0 & 1 & 0 & 0 & \frac{7}{4}+\frac{i}{4} \\
0 & 0 & 1 & 0 & -\frac{1}{2}-\frac{i}{2} \\
0 & 0 & 0 & 1 & \frac{7}{4}+\frac{i}{4} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\mathcal{E}_{M}(3-2 i)=\mathcal{N}\left(M-(3-2 i) I_{5}\right)=\left\langle\left\{\left[\begin{array}{c}
\frac{3}{4}+\frac{i}{4} \\
-\frac{7}{4}-\frac{i}{4} \\
\frac{1}{2}+\frac{i}{2} \\
-\frac{7}{4}-\frac{i}{4} \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{c}
3+i \\
-7-i \\
2+2 i \\
-7-i \\
4
\end{array}\right]\right\}\right\rangle
$$

It is straightforward to convert each of these basis vectors for eigenspaces of M back to elements of P_{4} by applying the isomorphism ρ_{B}^{-1},

$$
\begin{aligned}
& \rho_{B}^{-1}\left(\left[\begin{array}{c}
-1 \\
5 \\
4 \\
2 \\
0
\end{array}\right]\right)=-1+5 x+4 x^{2}+2 x^{3} \\
& \rho_{B}^{-1}\left(\left[\begin{array}{c}
1 \\
5 \\
12 \\
0 \\
2
\end{array}\right]\right)=1+5 x+12 x^{2}+2 x^{4} \\
& \rho_{B}^{-1}\left(\left[\begin{array}{c}
-1 \\
3 \\
1 \\
2 \\
1
\end{array}\right]\right)=-1+3 x+x^{2}+2 x^{3}+x^{4} \\
& \rho_{B}^{-1}\left(\left[\begin{array}{c}
3-i \\
-7+i \\
2-2 i \\
-7+i \\
4
\end{array}\right]\right)=(3-i)+(-7+i) x+(2-2 i) x^{2}+(-7+i) x^{3}+4 x^{4} \\
& \rho_{B}^{-1}\left(\left[\begin{array}{c}
3+i \\
-7-i \\
2+2 i \\
-7-i \\
4
\end{array}\right]\right)=(3+i)+(-7-i) x+(2+2 i) x^{2}+(-7-i) x^{3}+4 x^{4} \\
&
\end{aligned}
$$

So we apply Theorem EER 571 and the Coordinatization Principle 522 to get the eigenspaces for Q,

$$
\begin{aligned}
\mathcal{E}_{Q}(2) & =\left\langle\left\{-1+5 x+4 x^{2}+2 x^{3}, 1+5 x+12 x^{2}+2 x^{4}\right\}\right\rangle \\
\mathcal{E}_{Q}(-4) & =\left\langle\left\{-1+3 x+x^{2}+2 x^{3}+x^{4}\right\}\right\rangle \\
\mathcal{E}_{Q}(3+2 i) & =\left\langle\left\{(3-i)+(-7+i) x+(2-2 i) x^{2}+(-7+i) x^{3}+4 x^{4}\right\}\right\rangle \\
\mathcal{E}_{Q}(3-2 i) & =\left\langle\left\{(3+i)+(-7-i) x+(2+2 i) x^{2}+(-7-i) x^{3}+4 x^{4}\right\}\right\rangle
\end{aligned}
$$

with geometric multiplicities

$$
\gamma_{Q}(2)=2 \quad \gamma_{Q}(-4)=1 \quad \gamma_{Q}(3+2 i)=1 \quad \gamma_{Q}(3-2 i)=1
$$

Subsection READ

Reading Questions

1. The change-of-basis matrix is a matrix representation of which linear transformation?
2. Find the change-of-basis matrix, $C_{B, C}$, for the two bases of \mathbb{C}^{2}

$$
B=\left\{\left[\begin{array}{l}
2 \\
3
\end{array}\right],\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\} \quad C=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

3. What is the third "surprise," and why is it surprising?

Subsection EXC
 Exercises
 ■■ா

C20 In Example CBCV 564 we computed the vector representation of \mathbf{y} relative to $C, \rho_{C}(\mathbf{y})$, as an example of Theorem CB [561. Compute this same representation directly. In other words, apply Definition VR 513 rather than Theorem CB 561.
Contributed by Robert Beezer
C21 Perform a check on Example MRCM 566 by computing $M_{B, D}^{Q}$ directly. In other words, apply Definition MR [527) rather than Theorem MRCB 566.
Contributed by Robert Beezer Solution [582
C30 Find a basis for the vector space P_{3} composed of eigenvectors of the linear transformation T. Then find a matrix representation of T relative to this basis.

$$
T: P_{3} \mapsto P_{3}, \quad T\left(a+b x+c x^{2}+d x^{3}\right)=(a+c+d)+(b+c+d) x+(a+b+c) x^{2}+(a+b+d) x^{3}
$$

Contributed by Robert Beezer Solution 582
C40 Let S_{22} be the vector space of 2×2 symmetric matrices. Find a basis B for S_{22} that yields a diagonal matrix representation of the linear transformation R. (15 points)

$$
R: S_{22} \mapsto S_{22}, \quad R\left(\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\right)=\left[\begin{array}{cc}
-5 a+2 b-3 c & -12 a+5 b-6 c \\
-12 a+5 b-6 c & 6 a-2 b+4 c
\end{array}\right]
$$

Contributed by Robert Beezer Solution 583
C41 Let S_{22} be the vector space of 2×2 symmetric matrices. Find a basis for S_{22} composed of eigenvectors of the linear transformation $Q: S_{22} \mapsto S_{22}$. (15 points)

$$
Q\left(\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\right)=\left[\begin{array}{cc}
25 a+18 b+30 c & -16 a-11 b-20 c \\
-16 a-11 b-20 c & -11 a-9 b-12 c
\end{array}\right]
$$

Contributed by Robert Beezer Solution 584
T10 Suppose that $T: V \mapsto V$ is an invertible linear transformation with a nonzero eigenvalue λ. Prove that $\frac{1}{\lambda}$ is an eigenvalue of T^{-1}.
Contributed by Robert Beezer Solution 584
T15 Suppose that V is a vector space and $T: V \mapsto V$ is a linear transformation. Prove that T is injective if and only if $\lambda=0$ is not an eigenvalue of T.
Contributed by Robert Beezer

Subsection SOL Solutions

C21 Contributed by Robert Beezer Statement 581
Apply Definition MR 527,

$$
\begin{aligned}
& \rho_{D}\left(Q\left(\left[\begin{array}{cc}
5 & -3 \\
-3 & -2
\end{array}\right]\right)\right)=\rho_{D}\left(19+14 x-2 x^{2}-28 x^{3}\right) \\
& =\rho_{D}\left((-39)\left(2+x-2 x^{2}+3 x^{3}\right)+62\left(-1-2 x^{2}+3 x^{3}\right)+(-53)\left(-3-x+x^{3}\right)+(-44)\left(-x^{2}+x^{3}\right)\right) \\
& =\left[\begin{array}{c}
-39 \\
62 \\
-53 \\
-44
\end{array}\right] \\
& \rho_{D}\left(Q\left(\left[\begin{array}{cc}
2 & -3 \\
-3 & 0
\end{array}\right]\right)\right)=\rho_{D}\left(16+9 x-7 x^{2}-14 x^{3}\right) \\
& =\rho_{D}\left((-23)\left(2+x-2 x^{2}+3 x^{3}\right)+(34)\left(-1-2 x^{2}+3 x^{3}\right)+(-32)\left(-3-x+x^{3}\right)+(-15)\left(-x^{2}+x^{3}\right)\right) \\
& =\left[\begin{array}{c}
-23 \\
34 \\
-32 \\
-15
\end{array}\right] \\
& \rho_{D}\left(\begin{array}{c}
\left.Q\left(\left[\begin{array}{cc}
1 & 2 \\
2 & 4
\end{array}\right]\right)\right)=\rho_{D}\left(25+9 x+3 x^{2}+4 x^{3}\right) \\
=\rho_{D}\left((14)\left(2+x-2 x^{2}+3 x^{3}\right)+(-12)\left(-1-2 x^{2}+3 x^{3}\right)+5\left(-3-x+x^{3}\right)+(-7)\left(-x^{2}+x^{3}\right)\right) \\
=\left[\begin{array}{c}
14 \\
-12 \\
5 \\
-7
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

These three vectors are the columns of the matrix representation,

$$
M_{B, D}^{Q}=\left[\begin{array}{ccc}
-39 & -23 & 14 \\
62 & 34 & -12 \\
-53 & -32 & 5 \\
-44 & -15 & -7
\end{array}\right]
$$

which coincides with the result obtained in Example MRCM 566 .
C30 Contributed by Robert Beezer Statement 581
With the domain and codomain being identical, we will build a matrix representation using the same basis for both the domain and codomain. The eigenvalues of the matrix representation will be the eigenvalues of the linear transformation, and we can obtain the eigenvectors of the linear transformation by uncoordinatizing (Theorem EER 571). Since the method does not depend on which basis we choose, we can choose a natural basis for ease of computation, say,

$$
B=\left\{1, x, x^{2}, x^{3}\right\}
$$

The matrix representation is then,

$$
M_{B, B}^{T}=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

The eigenvalues and eigenvectors of this matrix were computed in Example ESMS4 400. A basis for \mathbb{C}^{4}, composed of eigenvectors of the matrix representation is,

$$
C=\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
1
\end{array}\right]\right\}
$$

Applying ρ_{B}^{-1} to each vector of this set, yields a basis of P_{3} composed of eigenvectors of T,

$$
D=\left\{1+x+x^{2}+x^{3},-1+x,-x^{2}+x^{3},-1-x+x^{2}+x^{3}\right\}
$$

The matrix representation of T relative to the basis D will be a diagonal matrix with the corresponding eigenvalues along the diagonal, so in this case we get

$$
M_{D, D}^{T}=\left[\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

C40 Contributed by Robert Beezer Statement 581
Begin with a matrix representation of R, any matrix representation, but use the same basis for both instances of S_{22}. We'll choose a basis that makes it easy to compute vector representations in S_{22}.

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Then the resulting matrix representation of R Definition MR 527) is

$$
M_{B, B}^{R}=\left[\begin{array}{ccc}
-5 & 2 & -3 \\
-12 & 5 & -6 \\
6 & -2 & 4
\end{array}\right]
$$

Now, compute the eigenvalues and eigenvectors of this matrix, with the goal of diagonalizing the matrix (Theorem DC 429),

$$
\begin{array}{ll}
\lambda=2 & \mathcal{E}_{M_{B, B}^{R}}(2)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]\right\}\right\rangle \\
\lambda=1 & \mathcal{E}_{M_{B, B}^{R}}(1)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]\right\}\right\rangle
\end{array}
$$

The three vectors that occur as basis elements for these eigenspaces will together form a linearly independent set (check this!). So these column vectors may be employed in a matrix that will diagonalize the matrix representation. If we "un-coordinatize" these three column vectors relative to the basis B, we
will find three linearly independent elements of S_{22} that are eigenvectors of the linear transformation R (Theorem EER [571). A matrix representation relative to this basis of eigenvectors will be diagonal, with the eigenvalues $(\lambda=2,1)$ as the diagonal elements. Here we go,

$$
\begin{aligned}
\rho_{B}^{-1}\left(\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]\right) & =(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+(-2)\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+1\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
-2 & 1
\end{array}\right] \\
\rho_{B}^{-1}\left(\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right]\right) & =(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+0\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right] \\
\rho_{B}^{-1}\left(\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]\right) & =1\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+3\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+0\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 0
\end{array}\right]
\end{aligned}
$$

So the requested basis of S_{22}, yielding a diagonal matrix representation of R, is

$$
\left\{\left[\begin{array}{cc}
-1 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & 3 \\
3 & 0
\end{array}\right]\right\}
$$

C41 Contributed by Robert Beezer Statement 581
Use a single basis for both the domain and codomain, since they are equal.

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

The matrix representation of Q relative to B is

$$
M=M_{B, B}^{Q}=\left[\begin{array}{ccc}
25 & 18 & 30 \\
-16 & -11 & -20 \\
-11 & -9 & -12
\end{array}\right]
$$

We can analyze this matrix with the techniques of Section EE 389 and then apply Theorem EER 571 . The eigenvalues of this matrix are $\lambda=-2,1,3$ with eigenspaces

$$
\mathcal{E}_{M}(-2)=\left\langle\left\{\left[\begin{array}{c}
-6 \\
4 \\
3
\end{array}\right]\right\}\right\rangle \quad \mathcal{E}_{M}(1)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\}\right\rangle \quad \mathcal{E}_{M}(3)=\left\langle\left\{\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]\right\}\right\rangle
$$

Because the three eigenvalues are distinct, the three basis vectors from the three eigenspaces for a linearly independent set (Theorem EDELI [413]). Theorem EER [571 says we can uncoordinatize these eigenvectors to obtain eigenvectors of Q. By Theorem ILTLI 472 the resulting set will remain linearly independent. Set

$$
C=\left\{\rho_{B}^{-1}\left(\left[\begin{array}{c}
-6 \\
4 \\
3
\end{array}\right]\right), \rho_{B}^{-1}\left(\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right), \rho_{B}^{-1}\left(\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]\right)\right\}=\left\{\left[\begin{array}{cc}
-6 & 4 \\
4 & 3
\end{array}\right],\left[\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
-3 & 2 \\
2 & 1
\end{array}\right]\right\}
$$

Then C is a linearly independent set of size 3 in the vector space M_{22}, which has dimension 3 as well. By Theorem G 349, C is a basis of M_{22}.
T10 Contributed by Robert Beezer Statement 581 Let \mathbf{v} be an eigenvector of T for the eigenvalue λ. Then,

$$
T^{-1}(\mathbf{v})=\frac{1}{\lambda} \lambda T^{-1}(\mathbf{v}) \quad \lambda \neq 0
$$

$$
\begin{array}{lr}
=\frac{1}{\lambda} T^{-1}(\lambda \mathbf{v}) & \\
=\frac{\text { Theorem ILTLT 498 }}{\lambda} T^{-1}(T(\mathbf{v})) & \\
=\frac{\mathbf{v} \text { eigenvector of } T}{\lambda} I_{V}(\mathbf{v}) & \\
=\frac{1}{\lambda} \mathbf{v} & \\
\hline \text { Definition IVLT 495 } \\
& \\
\text { Definition IDLT 495 }
\end{array}
$$

which says that $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} with eigenvector \mathbf{v}. Note that it is possible to prove that any eigenvalue of an invertible linear transformation is never zero. So the hypothesis that λ be nonzero is just a convenience for this problem.

Section OD

Orthonormal Diagonalization

This Section Under Construction

Theorems \& definitions complete, needs examples
We have seen in Section SD 425 that under the right conditions a square matrix is similar to a diagonal matrix. We recognize now, via Theorem SCB 568, that a similarity transformation is a change of basis on a matrix representation. So we can now discuss the choice of a basis used to build a matrix representation, and decide if some bases are better than others for this purpose. This will be the tone of this section. We will also see that every matrix has a reasonably useful matrix representation, and we will discover a new class of diagonalizable linear transformations. First we need some basic facts about triangular matrices.

Subsection TM
 Triangular Matrices

An upper, or lower, triangular matrix is exactly what it sounds like it should be, but here are the two relevant definitions.

Definition UTM

Upper Triangular Matrix

The $n \times n$ square matrix A is upper triangular if $[A]_{i j}=0$ whenever $i>j$.

Definition LTM

Lower Triangular Matrix

The $n \times n$ square matrix A is lower triangular if $[A]_{i j}=0$ whenever $i<j$.
Obviously, properties of a lower triangular matrices will have analogues for upper triangular matrices. Rather than stating two very similar theorems, we will say that matrices are "triangular of the same type" as a convenient shorthand to cover both possibilities and then give a proof for just one type.

Theorem PTMT

Product of Triangular Matrices is Triangular

Suppose that A and B are square matrices of size n that are triangular of the same type. Then $A B$ is also triangular of that type.
Proof We prove this for lower triangular matrices and leave the proof for upper triangular matrices to you. Suppose that A and B are both lower triangular. We need only establish that certain entries of the product $A B$ are zero. Suppose that $i<j$, then

$$
\begin{aligned}
{[A B]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}[B]_{k j} & & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{j-1}[A]_{i k}[B]_{k j}+\sum_{k=j}^{n}[A]_{i k}[B]_{k j} & & \text { Property AACN 666 } \\
& =\sum_{k=1}^{j-1}[A]_{i k} 0+\sum_{k=j}^{n}[A]_{i k}[B]_{k j} & & k<j, \text { Definition LTM 587 } \\
& =\sum_{k=1}^{j-1}[A]_{i k} 0+\sum_{k=j}^{n} 0[B]_{k j} & & i<j \leq k, \text { Definition LTM 587 }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{j-1} 0+\sum_{k=j}^{n} 0 \\
& =0
\end{aligned}
$$

Since $[A B]_{i j}=0$ whenever $i<j$, by Definition LTM 587, $A B$ is lower triangular.
The inverse of a triangular matrix is triangular, of the same type.

Theorem ITMT

Inverse of a Triangular Matrix is Triangular

Suppose that A is a nonsingular matrix of size n that is triangular. Then the inverse of A, A^{-1}, is triangular of the same type. Furthermore, the diagonal entries of A^{-1} are the reciprocals of the corresonding diagonal entries of A. More precisely, $\left[A^{-1}\right]_{i i}=[A]_{i i}^{-1}$.
Proof We give the proof for the case when A is lower triangular, and leave the case when A is upper triangular for you. Consider the process for computing the inverse of a matrix that is outlined in the proof of Theorem CINM 213. We augment A with the size n identity matrix, I_{n}, and row-reduce the $n \times 2 n$ matrix to reduced row-echelon form via the algorithm in Theorem REMEF 31. The proof involves tracking the peculiarities of this process in the case of a lower triangular matrix. Let $M=\left[A \mid I_{n}\right]$.

First, none of the diagonal elements of A are zero. By repeated expansion about the first row, the determinant of a lower triangular matrix can be seen to be the product of the diagonal entries Theorem DER (369). If just one of these diagonal elements was zero, then the determinant of A is zero and A is singular by Theorem SMZD 383. Slightly violating the exact algorithm for row reduction we can form a matrix, M^{\prime}, that is row-equivalent to M, by mutiplying row i by the nonzero scalar $[A]_{i i}^{-1}$, for $1 \leq i \leq n$. This sets $\left[M^{\prime}\right]_{i i}=1$ and $\left[M^{\prime}\right]_{i, n+1}=[A]_{i i}^{-1}$, and leaves every zero entry of M unchanged.

Let M_{j} denote the matrix obtained form M^{\prime} after converting column j to a pivot column. We can convert column j of M_{j-1} into a pivot column with a set of $n-j-1$ row operations of the form $\alpha R_{j}+R_{k}$ with $j+1 \leq k \leq n$. The key observation here is that we add multiples of row j only to higher-numbered rows. This means that none of the entries in rows 1 through $j-1$ is changed, and since row j has zeros in columns $j+1$ through n, none of the entries in rows $j+1$ through n is changed in columns $j+1$ through n. The first n columns of M^{\prime} form a lower triangular matrix with 1^{\prime} 's on the diagonal. In its conversion to the identity matrix through this sequence of row operations, it remains lower triangular with 1's on the diagonal.

What happens in columns $n+1$ through $2 n$ of M^{\prime} ? These columns began in M as the identity matrix, and in M^{\prime} each diagonal entry was scaled to a reciprocal of the corresponding diagonal entry of A. Notice that trivially, these final n columns of M^{\prime} form a lower triangular matrix. Just as we argued for the first n columns, the row operations that convert M_{j-1} into M_{j} will preserve the lower triangular form in the final n columns and preserve the exact values of the diagonal entries. By Theorem CINM 213, the final n columns of M_{n} is the inverse of A, and this matrix has the necessary properties advertised in the conclusion of this theorem.

Subsection UTMR

Upper Triangular Matrix Representation

Not every matrix is diagonalizable, but every linear transformation has a matrix representation that is an upper triangular matrix, and the basis that achieves this representation is especially pleasing. Here's the theorem.

Theorem UTMR

Upper Triangular Matrix Representation

Suppose that $T: V \mapsto V$ is a linear transformation. Then there is a basis B for V such that the matrix
representation of T relative to $B, M_{B, B}^{T}$, is an upper triangular matrix. Each diagonal entry is an eigenvalue of T, and if λ is an eigenvalue of T, then λ occurs $\alpha_{T}(\lambda)$ times on the diagonal.

Proof We begin with a proof by induction Technique I 680) of the first statement in the conclusion of the theorem. We use induction on the dimension of V to show that if $T: V \mapsto V$ is a linear transformation, then there is a basis B for V such that the matrix representation of T relative to $B, M_{B, B}^{T}$, is an upper triangular matrix.

To start suppose that $\operatorname{dim}(V)=1$. Choose any nonzero vector $\mathbf{v} \in V$ and realize that $V=\langle\{\mathbf{v}\}\rangle$. Then we can describe T completely by $T(\mathbf{v})=\beta \mathbf{v}$ for some $\beta \in \mathbb{C}$ Theorem LTDB 450). This description of T also gives us a matrix representation relative to the basis $B=\{\mathbf{v}\}$ as the 1×1 matrix with lone entry equal to β. And this matrix representation is upper triangular (Definition UTM 587).

For the induction step let $\operatorname{dim}(V)=m$, and assume the theorem is true for every linear transformation defined on a vector space of dimension less than m. By Theorem EMHE 393 (suitably converted to the setting of a linear transformation), T has at least one eigenvalue, and we denote this eigenvalue as λ. (We will remark later about how critical this step is.) We now consider properties of the linear transformation $T-\lambda I_{V}: V \mapsto V$.

Let \mathbf{x} be an eigenvector of T for λ. By definition $\mathbf{x} \neq \mathbf{0}$. Then

$$
\begin{aligned}
\left(T-\lambda I_{V}\right)(\mathbf{x}) & =T(\mathbf{x})-\lambda I_{V}(\mathbf{x}) \\
& =T(\mathbf{x})-\lambda \mathbf{x} \\
& =\lambda \mathbf{x}-\lambda \mathbf{x} \\
& =\mathbf{0}
\end{aligned}
$$

Theorem VSLT 456
Definition IDLT 495
Definition EELT 559 Property AI 276

So $T-\lambda I_{V}$ is not injective, as it has a nontrivial kernel (Theorem KILT 471). With an application of Theorem RPNDD 503 we bound the rank of $T-\lambda I_{V}$,

$$
r\left(T-\lambda I_{V}\right)=\operatorname{dim}(V)-n\left(T-\lambda I_{V}\right) \leq m-1
$$

Define W to be the subspace of V that is the range of $T-\lambda I_{V}, W=\mathcal{R}\left(T-\lambda I_{V}\right)$. We define a new linear transformation S, on W,

$$
S: W \mapsto W \quad S(\mathbf{w})=T(\mathbf{w})
$$

This does not look we have accomplished much, since the action of S is identical to the action of T. For our purposes this will be a good thing. What is different is the domain and codomain. S is defined on W, a vector space with dimension less than m, and so is susceptible to our induction hypothesis. Verifying that S is really a linear transformation is almost entirely routine, with one exception. Employing T in our definition of S raises the possibility that the outputs of S will not be contained within W (but instead will lie inside V, but outside W). To examine this possibility, suppose that $\mathbf{w} \in W$.

$$
S(\mathbf{w})=T(\mathbf{w})
$$

$$
=T(\mathbf{w})+\mathbf{0} \quad \text { Property } \mathrm{Z} 276
$$

$$
=T(\mathbf{w})+\left(\lambda I_{V}(\mathbf{w})-\lambda I_{V}(\mathbf{w})\right) \quad \text { Property AI } 276
$$

$$
=\left(T(\mathbf{w})-\lambda I_{V}(\mathbf{w})\right)+\lambda I_{V}(\mathbf{w}) \quad \text { Property AA } 275
$$

$$
=\left(T(\mathbf{w})-\lambda I_{V}(\mathbf{w})\right)+\lambda \mathbf{w} \quad \text { Definition IDLT } 495
$$

$$
=\left(T-\lambda I_{V}\right)(\mathbf{w})+\lambda \mathbf{w} \quad \text { Theorem VSLT } 456
$$

Since W is the range of $T-\lambda I_{V},\left(T-\lambda I_{V}\right)(\mathbf{w}) \in W$. And by Property SC 275, $\lambda \mathbf{w} \in W$. Finally, applying Property AC 275 we see by closure that the sum is in W and so we conclude that $S(\mathbf{w}) \in W$. This argument convinces us that it is legitimate to define S as we did with W as the codomain.
S is a linear transformation defined on a vector space with dimension less than m, so we can apply the induction hypothesis and conclude that W has a basis, $C=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \ldots, \mathbf{w}_{k}\right\}$, such that the matrix representation of S relative to C is an upper triangular matrix.

By Theorem DSFOS 356 there exists a second subspace of V, which we will call U, so that V is a direct sum of W and $U, V=W \oplus U$. Choose a basis $D=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{\ell}\right\}$ for U. So $m=k+\ell$ by Theorem DSD 358, and $B=C \cup D$ is basis for V by Theorem DSLI 358 and Theorem G 349. B is the basis we desire. What does a matrix representation of T look like, relative to B ?

Since the definition of T and S agree on W, the first k columns of $M_{B, B}^{T}$ will have the upper triangular matrix representation of S in the first k rows. The remaining $\ell=m-k$ rows of these first k columns will be all zeros since the outputs of T on C are all contained in W. The situation for T on D is not quite as pretty, but it is close.

For $1 \leq i \leq \ell$, consider

$$
\begin{array}{rlrl}
\rho_{B}\left(T\left(\mathbf{u}_{i}\right)\right) & =\rho_{B}\left(T\left(\mathbf{u}_{i}\right)+\mathbf{0}\right) & & \text { Property Z 276 } \\
& =\rho_{B}\left(T\left(\mathbf{u}_{i}\right)+\left(\lambda I_{V}\left(\mathbf{u}_{i}\right)-\lambda I_{V}\left(\mathbf{u}_{i}\right)\right)\right) & & \text { Property AI 276 } \\
& =\rho_{B}\left(\left(T\left(\mathbf{u}_{i}\right)-\lambda I_{V}\left(\mathbf{u}_{i}\right)\right)+\lambda I_{V}\left(\mathbf{u}_{i}\right)\right) & & \text { Property AA } 275 \\
& =\rho_{B}\left(\left(T\left(\mathbf{u}_{i}\right)-\lambda I_{V}\left(\mathbf{u}_{i}\right)\right)+\lambda \mathbf{u}_{i}\right) & & \text { Definition IDLT 495 } \\
& =\rho_{B}\left(\left(T-\lambda I_{V}\right)\left(\mathbf{u}_{i}\right)+\lambda \mathbf{u}_{i}\right) & & \text { Theorem VSLT 456 } \\
& =\rho_{B}\left(a_{1} \mathbf{w}_{1}+a_{2} \mathbf{w}_{2}+a_{3} \mathbf{w}_{3}+\cdots+a_{k} \mathbf{w}_{k}+\lambda \mathbf{u}_{i}\right) & & \text { Definition RLT 483 } \\
& {\left[\begin{array}{cc}
a_{1} \\
a_{2} \\
\vdots \\
a_{k} \\
0 \\
\vdots \\
& \\
& \\
& \\
& \\
& \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]} & & \\
& & & \\
& &
\end{array}
$$

In the penultimate step of this proof, we have rewritten an element of the range of $T-\lambda I_{V}$ as a linear combination of the basis vectors, C, for the range of $T-\lambda I_{V}, W$, using the scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$. If we incorporate these ℓ column vectors into the matrix representation $M_{B, B}^{T}$ we find ℓ occurences of λ on the diagonal, and any nonzero entries lying only in the first k rows. Together with the $k \times k$ upper triangular representation in the upper left-hand corner, the entire matrix representation is now clearly upper triangular. This completes the induction step, so for any linear transformation there is a basis that creates an upper triangular matrix representation.

We have one more statement in the conclusion of the theorem to verify. The eigenvalues of T, and their multiplicities, can be computed with the techniques of Chapter E 389 relative to any matrix representation (Theorem EER [571]). We take this approach with our upper triangular matrix representation $M_{B, B}^{T}$. Let d_{i} be the diagonal entry of $M_{B, B}^{T}$ in row i and column i. Then the characteristic polynomial, computed as a determinant (Definition CP 396) with repeated expansions about the first column, is

$$
p_{M_{B, B}^{T}}(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right) \cdots\left(d_{m}-x\right)
$$

The roots of the polynomial equation $p_{M_{B, B}^{T}}(x)=0$ are the eigenvalues of the linear transformation Theorem EMRCP 397). So each diagonal entry is an eigenvalue, and is repeated on the diagonal exactly
$\alpha_{T}(\lambda)$ times Definition AME 399).
A key step in this proof was the construction of the subspace W with dimension strictly less than that of V. This required an eigenvalue/eigenvector pair, which was guaranteed to us by Theorem EMHE 393. Digging deeper, the proof of Theorem EMHE 393 requires that we can factor polynomials completely, into linear factors. This will not always happen if our set of scalars is the reals, \mathbb{R}. So this is our final explanation of our choice of the complex numbers, \mathbb{C}, as our set of scalars. In \mathbb{C} polynomials factor completely, so every matrix has at least one eigenvalue, and an inductive argument will get us to upper triangular matrix representations.

In the case of linear transformations defined on \mathbb{C}^{m}, we can use the inner product (Definition IP 164) profitably to fine-tune the basis that yields an upper triangular matrix representation. Recall that the adjoint of matrix A Definition A 184) is written as A^{*}.

Theorem OBUTR

Orthonormal Basis for Upper Triangular Representation

Suppose that A is a square matrix. Then there is a unitary matrix U, and an upper triangular matrix T, such that

$$
U^{*} A U=T
$$

and T has the eigenvalues of A as the entries of the diagonal.
Proof This theorem is a statement about matrices and similarity. We can convert it to a statement about linear transformations, matrix representations and bases Theorem SCB 568). Suppose that A is an $n \times n$ matrix, and define the linear transformation $S: \mathbb{C}^{n} \mapsto \mathbb{C}^{n}$ by $S(\mathbf{x})=A \mathbf{x}$. Then Theorem UTMR 633 gives us a basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ for \mathbb{C}^{n} such that a matrix representation of S relative to $B, M_{B, B}^{S}$, is upper triangular.

Now convert the basis B into an orthogonal basis, C, by an application of the Gram-Schmidt procedure (Theorem GSPCV (170). This is a messy business computationally, but here we have an excellent illustration of the power of the Gram-Schmidt procedure. We need only be sure that B is linearly independent and spans \mathbb{C}^{n}, and then we know that C is linearly independent, spans \mathbb{C}^{n} and is also an orthogonal set. We will now consider the matrix representation of S relative to C (rather than B). Write the new basis as $C=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{n}\right\}$. The application of the Gram-Schmidt procedure creates each vector of C, say \mathbf{y}_{j}, as the difference of \mathbf{v}_{j} and a linear combination of $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{j-1}$. We are not concerned here with the actual values of the scalars in this linear combination, so we will write

$$
\mathbf{y}_{j}=\mathbf{v}_{j}-\sum_{k=1}^{j-1} b_{j k} \mathbf{y}_{k}
$$

where the $b_{j k}$ are shorthand for the scalars. The equation above is in a form useful for creating the basis C from B. To better understand the relationship between B and C convert it to read

$$
\mathbf{v}_{j}=\mathbf{y}_{j}+\sum_{k=1}^{j-1} b_{j k} \mathbf{y}_{k}
$$

In this form, we recognize that the change-of-basis matrix $C_{B, C}=M_{B, C}^{I_{C} n}$ (Definition CBM 560) is an upper triangular matrix. By Theorem SCB 568 we have

$$
M_{C, C}^{S}=C_{B, C} M_{B, B}^{S} C_{B, C}^{-1}
$$

The inverse of an upper triangular matrix is upper triangular (Theorem ITMT [588]), and the product of two upper triangular matrices is again upper triangular Theorem PTMT 587). So $M_{C, C}^{S}$ is an upper triangular matrix.

Now, multiply each vector of C by a nonzero scalar, so that the result has norm 1. In this way we create a new basis D which is an orthonormal set (Definition ONS 172). Note that the change-of-basis matrix $C_{C, D}$ is a diagonal matrix with nonzero entries equal to the norms of the vectors in C.

Now we can convert our results into the language of matrices. Let E be the basis of \mathbb{C}^{n} formed with the standard unit vectors (Definition SUV 210). Then the matrix representation of S relative to E is simply $A, A=M_{E, E}^{S}$. The change-of-basis matrix $C_{D, E}$ has columns that are simply the vectors in D, the orthonormal basis. As such, Theorem CUMOS 225 tells us that $C_{D, E}$ is a unitary matrix, and by Definition UM 224 has an inverse equal to its adjoint. Write $U=C_{D, E}$. We have

$$
\begin{aligned}
U^{*} A U & =U^{-1} A U & & \text { Theorem UMT } 225 \\
& =C_{D, E}^{-1} M_{E, E}^{S} C_{D, E} & & \\
& =M_{D, D}^{S} & & \text { Theorem SCB } 568 \\
& =C_{C, D} M_{C, C}^{S} C_{C, D}^{-1} & & \text { Theorem SCB } 568
\end{aligned}
$$

The inverse of a diagonal matrix is also a diagonal matrix, and so this final expression is the product of three upper triangular matrices, and so is again upper triangular (Theorem PTMT 587). Thus the desired upper triangular matrix, T, is the matrix representation of S relative to the orthonormal basis D, $M_{D, D}^{S}$.

Subsection NM
 Normal Matrices

Normal matrices comprise a broad class of interesting matrices, many of which we have met already. But they are most interesting since they define exactly which matrices we can diagonalize via a unitary matrix. This is the upcoming Theorem OD 593. Here's the definition.

Definition NRML

Normal Matrix
The square matrix A is normal if $A^{*} A=A A^{*}$.
So a normal matrix commutes with its adjoint. Part of the beauty of this definition is that it includes many other types of matrices. A diagonal matrix will commute with its adjoint, since the adjoint is again diagonal and the entries are just conjugates of the entries of the original diagonal matrix. A Hermitian (self-adjoint) matrix Definition HM 200) will trivially commute with its adjoint, since the two matrices are the same. A real, symmeteric matrix is Hermitian, so these matrices are also normal. A unitary matrix (Definition UM 224) has its adjoint as its inverse, and inverses commute Theorem OSIS 222), so unitary matrices are normal. Another class of normal matrices is the skew-symmetric matrices. However, these broad descriptions still do not capture all of the normal matrices, as the next example shows.

Example ANM

A normal matrix

Let

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

Then

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

so we see by Definition NRML 592 that A is normal. However, A is not symmetric (hence, as a real matrix, not Hermetian), not unitary, and not skew-symmetric.

Subsection OD
 Orthonormal Diagonalization

■ா

A diagonal matrix is very easy to work with in matrix multiplication (Example HPDM 434) and an orthonormal basis also has many advantages Theorem COB 328). How about converting a matrix to a diagonal matrix through a similarity transformation using a unitary matrix (i.e. build a diagonal matrix representation with an orthonormal matrix)? That'd be fantastic! When can we do this? We can always accomplish this feat when the matrix is normal, and normal matrices are the only ones that behave this way. Here's the theorem.

Theorem OD

Orthonormal Diagonalization

Suppose that A is a square matrix. Then there is a unitary matrix U and a diagonal matrix D, with diagonal entries equal to the eigenvalues of A, such that $U^{*} A U=D$ if and only if A is a normal matrix.
Proof $\quad(\Rightarrow) \quad$ Suppose there is a unitary matrix U that diagonalizes A, resulting in D, i.e. $U^{*} A U=D$. We check the normality of A,

$$
\begin{aligned}
A^{*} A & =I_{n} A^{*} I_{n} A I_{n} & & \text { Theorem MMIM 195 } \\
& =U U^{*} A^{*} U U^{*} A U U^{*} & & \text { Definition UM 224 } \\
& =U U^{*} A^{*} U D U^{*} & & \\
& =U U^{*} A^{*}\left(U^{*}\right)^{*} D U^{*} & & \text { Theorem AA 185 } \\
& =U\left(U^{*} A U\right)^{*} D U^{*} & & \text { Adjoint of a product } \\
& =U D^{*} D U^{*} & & \\
& =U(\bar{D})^{t} D U^{*} & & \text { Definition A 184 } \\
& =U \bar{D} D U^{*} & & \text { Diagonal matrix } \\
& =U D \bar{D} U^{*} & & \text { Property MCCN 666 } \\
& =U D(\bar{D})^{t} U^{*} & & \text { Diagonal matrix } \\
& =U D D^{*} U^{*} & & \text { Definition A 184 } \\
& =U D\left(U^{*} A U\right)^{*} U^{*} & & \\
& =U D U^{*} A^{*}\left(U^{*}\right)^{*} U^{*} & & \text { Adjoint of a product } \\
& =U D U^{*} A^{*} U U^{*} & & \text { Theorem AA 185 } \\
& =U U^{*} A U U^{*} A^{*} U U^{*} & & \\
& =I_{n} A I_{n} A^{*} I_{n} & & \text { Definition UM 224 } \\
& =A A^{*} & & \text { Theorem MMIM 195 }
\end{aligned}
$$

So by Definition NRML 592, A is a normal matrix.
(\Leftarrow) For the converse, suppose that A is a normal matrix. Whether or not A is normal, Theorem OBUTR 591 provides a unitary matrix U and an upper triangular matrix T, whose diagonal entries are the eigenvalues of A, and such that $U^{*} A U=T$. With the added condition that A is normal, we will determine that the entries of T above the diagonal must be all zero. Here we go. First we show that T is normal.

$$
\begin{aligned}
T^{*} T & =\left(U^{*} A U\right)^{*} U^{*} A U & & \\
& =U^{*} A^{*}\left(U^{*}\right)^{*} U^{*} A U & & \text { Adjoint of a product } \\
& =U^{*} A^{*} U U^{*} A U & & \text { Theorem AA 185 } \\
& =U^{*} A^{*} I_{n} A U & & \text { Definition UM 224 }
\end{aligned}
$$

$$
\begin{aligned}
& =U^{*} A^{*} A U \\
& =U^{*} A A^{*} U \\
& =U^{*} A I_{n} A^{*} U \\
& =U^{*} A U U^{*} A^{*} U \\
& =U^{*} A U U^{*} A^{*}\left(U^{*}\right)^{*} \\
& =U^{*} A U\left(U^{*} A U\right)^{*} \\
& =T T^{*}
\end{aligned}
$$

So by Definition NRML 592, T is a normal matrix.
We can translate the normality of T into the statement $T T^{*}-T^{*} T=\mathcal{O}$. We now establish an equality we will use repeatedly. For $1 \leq i \leq n$,

$$
\begin{aligned}
& 0=[\mathcal{O}]_{i i} \quad \text { Definition ZM } 180 \\
& =\left[T T^{*}-T^{*} T\right]_{i i} \quad \text { Definition NRML } 592 \\
& \begin{array}{ll}
=\left[T T^{*}\right]_{i i}-\left[T^{*} T\right]_{i i} & \text { Definition MA 177 }
\end{array} \\
& =\sum_{k=1}^{n}[T]_{i k}\left[T^{*}\right]_{k i}-\sum_{k=1}^{n}\left[T^{*}\right]_{i k}[T]_{k i} \quad \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n}[T]_{i k} \overline{[T]_{i k}}-\sum_{k=1}^{n} \overline{[T]_{k i}}[T]_{k i} \quad \text { Definition A } 184 \\
& =\sum_{k=i}^{n}[T]_{i k} \overline{[T]_{i k}}-\sum_{k=1}^{i} \overline{[T]_{k i}}[T]_{k i} \quad \text { Definition UTM 587 } \\
& =\sum_{k=i}^{n}\left|[T]_{i k}\right|^{2}-\sum_{k=1}^{i}\left|[T]_{k i}\right|^{2} \quad \text { Definition MCN 668 }
\end{aligned}
$$

To conclude, we use the above equality repeatedly, beginning with $i=1$, and discover, row by row, that the entries above the diagonal of T are all zero. The key observation is that a sum of squares can only equal zero when each term of the sum is zero. For $i=1$ we have

$$
0=\sum_{k=1}^{n}\left|[T]_{1 k}\right|^{2}-\sum_{k=1}^{1}\left|[T]_{k 1}\right|^{2}=\sum_{k=2}^{n}\left|[T]_{1 k}\right|^{2}
$$

which forces the conclusions

$$
[T]_{12}=0 \quad[T]_{13}=0 \quad[T]_{14}=0 \quad \cdots \quad[T]_{1 n}=0
$$

For $i=2$ we use the same equality, but also incorporate the portion of the above conclusions that says $[T]_{12}=0$,

$$
0=\sum_{k=2}^{n}\left|[T]_{2 k}\right|^{2}-\sum_{k=1}^{2}\left|[T]_{k 2}\right|^{2}=\sum_{k=2}^{n}\left|[T]_{2 k}\right|^{2}-\sum_{k=2}^{2}\left|[T]_{k 2}\right|^{2}=\sum_{k=3}^{n}\left|[T]_{2 k}\right|^{2}
$$

which forces the conclusions

$$
[T]_{23}=0 \quad[T]_{24}=0 \quad[T]_{25}=0 \quad \cdots \quad \quad[T]_{2 n}=0
$$

We can repeat this process for the subsequent values of $i=3,4,5 \ldots, n-1$. Notice that it is critical we do this in order, since we need to employ portions of each of the previous conclusions about rows having
zero entries in order to successfully get the same conclusion for later rows. Eventually, we conclude that all of the nondiagonal entries of T are zero, so the extra assumption of normality forces T to be diagonal.

The columns of the unitary matrix in Theorem OD 593 create an especially nice basis for use with the normal matrix. We record this observation as a theorem.

Theorem OBNM

Orthonormal Bases and Normal Matrices

Suppose that A is a normal matrix of size n. Then there is an orthonormal basis of \mathbb{C}^{n} composed of eigenvectors of A.

Proof Let U be the unitary matrix promised by Theorem OD 593 and let D be the resulting diagonal matrix. The desired set of vectors is formed by collecting the columns of U into a set. Theorem CUMOS 225 says this set of columns is orthonormal. Since U is nonsingular (Theorem UMI 225), Theorem CNMB 326 says the set is a basis.

Since A is diagonalized by U, the diagonal entries of the matrix D are the eigenvalues of A. An argument exactly like the second half of the proof of Theorem DC 429 shows that each vector of the basis is an eigenvector of A.

In a vague way Theorem OBNM 595 is an improvement on Theorem HMOE 422 which said that eigenvectors of a Hermitian matrix for different eigenvalues are always orthogonal. Hermitian matrices are normal and we see that we can find at least one basis where every pair of eigenvectors is orthogonal. Notice that this is not a generalization, since Theorem HMOE 422 states a weak result which applies to many (but not all) pairs of eigenvectors, while Theorem OBNM 595 is a seemingly stronger result, but only asserts that there is one collection of eigenvectors with the stronger property.

Section NLT
 Nilpotent Linear Transformations

Draft: This Section Complete, But Subject To Change

We have seen that some matrices are diagonalizable and some are not. Some authors refer to a nondiagonalizable matrix as defective, but we will study them carefully anyway. Examples of such matrices include Example EMMS4 399, Example HMEM5 401, and Example CEMS6 402. Each of these matrices has at least one eigenvalue with geometric multiplicity strictly less than its geometric multiplicity, and therefore Theorem DMFE 431 tells us these matrices are not diagonalizable.

Given a square matrix A, it is likely similar to many, many other matrices. Of all these possibilities, which is the best? "Best" is a subjective term, but we might agree that a diagonal matrix is certainly a very nice choice. Unfortunately, as we have seen, this will not always be possible. What form of a matrix is "next-best"? Our goal, which will take us several sections to reach, is to show that every matrix is similar to a matrix that is "nearly-diagonal" (Section JCF 633). More precisely, every matrix is similar to a matrix with elements on the diagonal, and zeros and ones on the diagonal just above the main diagonal (the "super diagonal"), with zeros everywhere else. In the language of equivalence relations (see Theorem SER 426), we are determining a systematic representative for each equivalence class. Such a representative for a set of similar matrices is called a canonical form.

We have just discussed the determination of a canonical form as a question about matrices. However, we know that every square matrix creates a natural linear transformation Theorem MBLT 446) and every linear transformation with identical domain and codomain has a square matrix representation for each choice of a basis, with a change of basis creating a similarity transformation (Theorem SCB 568). So we will state, and prove, theorems using the language of linear transformations on abstract vector spaces, while most of our examples will work with square matrices. You can, and should, mentally translate between the two settings frequently and easily.

Subsection NLT
 Nilpotent Linear Transformations

We will discover that nilpotent linear transformations are the essential obstacle in a non-diagonalizable linear transformation. So we will study them carefully first, both as an object of inherent mathematical interest, but also as the object at the heart of the argument that leads to a pleasing canonical form for any linear transformation. Once we understand these linear transformations thoroughly, we will be able to easily analyze the structure of any linear transformation.

Definition NLT
 Nilpotent Linear Transformation

Suppose that $T: V \mapsto V$ is a linear transformation such that there is an integer $p>0$ such that $T^{p}(\mathbf{v})=\mathbf{0}$ for every $\mathbf{v} \in V$. The smallest p for which this condition is met is called the index of T.

Of course, the linear transformation T defined by $T(\mathbf{v})=\mathbf{0}$ will qualify as nilpotent of index 1 . But are there others?

Example NM64

Nilpotent matrix, size 6, index 4
Recall that our definitions and theorems are being stated for linear transformations on abstract vector spaces, while our examples will work with square matrices (and use the same terms interchangeably). In
this case, to demonstrate the existence of nontrivial nilpotent linear transformations, we desire a matrix such that some power of the matrix is the zero matrix. Consider

$$
A=\left[\begin{array}{cccccc}
-3 & 3 & -2 & 5 & 0 & -5 \\
-3 & 5 & -3 & 4 & 3 & -9 \\
-3 & 4 & -2 & 6 & -4 & -3 \\
-3 & 3 & -2 & 5 & 0 & -5 \\
-3 & 3 & -2 & 4 & 2 & -6 \\
-2 & 3 & -2 & 2 & 4 & -7
\end{array}\right]
$$

and compute powers of A,

$$
\begin{aligned}
A^{2} & =\left[\begin{array}{cccccc}
1 & -2 & 1 & 0 & -3 & 4 \\
0 & -2 & 1 & 1 & -3 & 4 \\
3 & 0 & 0 & -3 & 0 & 0 \\
1 & -2 & 1 & 0 & -3 & 4 \\
0 & -2 & 1 & 1 & -3 & 4 \\
-1 & -2 & 1 & 2 & -3 & 4
\end{array}\right] \\
A^{3} & =\left[\begin{array}{cccccc}
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0
\end{array}\right] \\
A^{4} & =\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Thus we can say that A is nilpotent of index 4 .
Because it will presage some upcoming theorems, we will record some extra information about the eigenvalues and eigenvectors of A here. A has just one eigenvalue, $\lambda=0$, with algebraic multiplicity 6 and geometric multiplicity 2 . The eigenspace for this eigenvalue is

$$
\mathcal{E}_{A}(0)=\left\langle\left[\begin{array}{l}
2 \\
2 \\
5 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
-5 \\
-1 \\
0 \\
1
\end{array}\right]\right\rangle
$$

If there were degrees of singularity, we might say this matrix was very singular, since zero is an eigenvalue with maximum algebraic multiplicity (Theorem SMZE 414, Theorem ME (419). Notice too that A is "far" from being diagonalizable Theorem DMFE 431).

Another example.

Example NM62

Nilpotent matrix, size 6, index 2

Consider the matrix

$$
B=\left[\begin{array}{cccccc}
-1 & 1 & -1 & 4 & -3 & -1 \\
1 & 1 & -1 & 2 & -3 & -1 \\
-9 & 10 & -5 & 9 & 5 & -15 \\
-1 & 1 & -1 & 4 & -3 & -1 \\
1 & -1 & 0 & 2 & -4 & 2 \\
4 & -3 & 1 & -1 & -5 & 5
\end{array}\right]
$$

and compute the second power of B,

$$
B^{2}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So B is nilpotent of index 2. Again, the only eigenvalue of B is zero, with algebraic multiplicity 6 . The geometric multiplicity of the eigenvalue is 3 , as seen in the eigenspace,

$$
\mathcal{E}_{B}(0)=\left\langle\left[\begin{array}{l}
1 \\
3 \\
6 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-4 \\
-7 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1 \\
0 \\
0 \\
1
\end{array}\right]\right\rangle
$$

Again, Theorem DMFE 431 tells us that B is far from being diagonalizable.
\boxtimes
On a first encounter with the definition of a nilpotent matrix, you might wonder if such a thing was possible at all. That a high power of a nonzero object could be zero is so very different from our experience with scalars that it seems very unnatural. Hopefully the two previous examples were somewhat surprising. But we have seen that matrix algebra does not always behave the way we expect (Example MMNC 193), and we also now recognize matrix products not just as arithmetic, but as function composition Theorem MRCLT 534). We will now turn to some examples of nilpotent matrices which might be more transparent.

Definition JB

Jordan Block

Given the scalar $\lambda \in \mathbb{C}$, the Jordan block $J_{n}(\lambda)$ is the $n \times n$ matrix defined by

$$
\left[J_{n}(\lambda)\right]_{i j}= \begin{cases}\lambda & i=j \\ 1 & j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

(This definition contains Notation JB.)

Example JB4

Jordan block, size 4

A simple example of a Jordan block,

$$
J_{4}(5)=\left[\begin{array}{llll}
5 & 1 & 0 & 0 \\
0 & 5 & 1 & 0 \\
0 & 0 & 5 & 1 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

We will return to general Jordan blocks later, but in this section we are just interested in Jordan blocks where $\lambda=0$. Here's an example of why we are specializing in these matrices now.

Example NJB5

Nilpotent Jordan block, size 5
Consider

$$
J_{5}(0)=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and compute powers,

$$
\begin{aligned}
& \left(J_{5}(0)\right)^{2}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \left(J_{5}(0)\right)^{3}
\end{aligned}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

So $J_{5}(0)$ is nilpotent of index 5 . As before, we record some information about the eigenvalues and eigenvectors of this matrix. The only eigenvalue is zero, with algebraic multiplicity 5 , the maximum possible (Theorem ME 419). The geometric multiplicity of this eigenvalue is just 1 , the minimum possible Theorem ME 419), as seen in the eigenspace,

$$
\mathcal{E}_{J_{5}(0)}(0)=\left\langle\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right\rangle
$$

There should not be any real surprises in this example. We can watch the ones in the powers of $J_{5}(0)$ slowly march off to the upper-right hand corner of the powers. In some vague way, the eigenvalues and
eigenvectors of this matrix are equally extreme.
We can form combinations of Jordan blocks to build a variety of nilpotent matrices. Simply place Jordan blocks on the diagonal of a matrix with zeros everywhere else, to create a block diagonal matrix.

Example NM83

Nilpotent matrix, size 8, index 3

Consider the matrix

$$
C=\left[\begin{array}{ccc}
J_{3}(0) & \mathcal{O} & \mathcal{O} \\
\mathcal{O} & J_{3}(0) & \mathcal{O} \\
\mathcal{O} & \mathcal{O} & J_{2}(0)
\end{array}\right]=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and compute powers,

$$
\begin{aligned}
C^{2} & =\left[\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
C^{3} & =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

So C is nilpotent of index 3. You should notice how block diagonal matrices behave in products (much like diagonal matrices) and that it was the largest Jordan block that determined the index of this combination. All eight eigenvalues are zero, and each of the three Jordan blocks contributes one eigenvector to a basis for the eigenspace, resulting in zero having a geometric multiplicity of 3 .

It would appear that nilpotent matrices only have zero as an eigenvalue, so the algebraic multiplicity will be the maximum possible. However, by creating block diagonal matrices with Jordan blocks on the diagonal you should be able to attain any desired geometric multiplicity for this lone eigenvalue. Likewise, the size of the largest Jordan block employed will determine the index of the matrix. So nilpotent matrices with various combinations of index and geometric multiplicities are easy to manufacture. The predictable properties of block diagonal matrices in matrix products and eigenvector computations, along with the next theorem, make this possible. You might find Example NJB5 600 a useful companion to this proof.

Theorem NJB

Nilpotent Jordan Blocks

The Jordan block $J_{n}(0)$ is nilpotent of index n.
Proof While not phrased as an if-then statement, the statement in the theorem is understood to mean that if we have a specific matrix $\left(J_{n}(0)\right)$ then we need to establish it is nilpotent of a specified index. The
first column of $J_{n}(0)$ is the zero vector, and the remaining $n-1$ columns are the standard unit vectors \mathbf{e}_{i}, $1 \leq i \leq n-1$ Definition SUV 210), which are also the first $n-1$ columns of the size n identity matrix I_{n}. As shorthand, write $J=J_{n}(0)$.

$$
J=\left[\mathbf{0}\left|\mathbf{e}_{1}\right| \mathbf{e}_{2}\left|\mathbf{e}_{3}\right| \ldots \mid \mathbf{e}_{n-1}\right]
$$

We will use the definition of matrix multiplication (Definition MM 192), together with a proof by induction (Technique I 680), to study the powers of J. Our claim is that

$$
J^{k}=\left[\mathbf{0}|\mathbf{0}| \ldots|\mathbf{0}| \mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \ldots \mid \mathbf{e}_{n-k}\right]
$$

for $1 \leq k \leq n$. For the base case, $k=1$, and the definition of $J^{1}=J_{n}(0)$ establishes the claim. For the induction step, first note that $J \mathbf{e}_{\mathbf{1}}=\mathbf{0}$ and $J \mathbf{e}_{i}=\mathbf{e}_{i-1}$ for $2 \leq i \leq n$. Then, assuming the claim is true for k, we examine the $k+1$ case,

$$
\begin{aligned}
J^{k+1} & =J J^{k} \\
& =J\left[\mathbf{0}|\mathbf{0}| \ldots|\mathbf{0}| \mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \ldots \mid \mathbf{e}_{n-k}\right] \\
& =\left[J \mathbf{0}|J \mathbf{0}| \ldots|J \mathbf{0}| J \mathbf{e}_{1}\left|J \mathbf{e}_{2}\right| \ldots \mid J \mathbf{e}_{n}\right. \\
& =\left[\mathbf{0}|\mathbf{0}| \ldots|\mathbf{0}| \mathbf{0}\left|\mathbf{e}_{1}\right| \mathbf{e}_{2}|\ldots| \mathbf{e}_{n-k-1}\right] \\
& =\left[\mathbf{0}|\mathbf{0}| \ldots|\mathbf{0}| \mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \ldots \mid \mathbf{e}_{n-(k+1)}\right]
\end{aligned}
$$

$$
=J\left[\mathbf{0}|\mathbf{0}| \ldots|\mathbf{0}| \mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \ldots \mid \mathbf{e}_{n-k}\right] \quad \text { Induction Hypothesis }
$$

$$
=\left[J \mathbf{0}|J \mathbf{0}| \ldots|J \mathbf{0}| J \mathbf{e}_{1}\left|J \mathbf{e}_{2}\right| \ldots \mid J \mathbf{e}_{n-k}\right] \quad \text { Definition MM } 192
$$

$$
=\left[\mathbf{0}|\mathbf{0}| \ldots|\mathbf{0}| \mathbf{0}\left|\mathbf{e}_{1}\right| \mathbf{e}_{2}|\ldots| \mathbf{e}_{n-k-1}\right] \quad \text { Definition MVP } 189
$$

This concludes the induction. So J^{k} has a nonzero entry (a one) in row $n-k$ and column n, for $1 \leq k \leq n-1$, and is therefore a nonzero matrix. However, $J^{n}=[\mathbf{0}|\mathbf{0}| \ldots \mid \mathbf{0}]=\mathcal{O}$. By Definition NLT 597, J is nilpotent of index n.

Subsection PNLT
 Properties of Nilpotent Linear Transformations

In this subsection we collect some basic properties of nilpotent linear transformations. After studying the examples in the previous section, some of these will be no surprise.

Theorem ENLT

Eigenvalues of Nilpotent Linear Transformations

Suppose that $T: V \mapsto V$ is a linear transformation and λ is an eigenvalue of T. Then $\lambda=0$.
Proof Let \mathbf{x} be an eigenvector of T for the eigenvalue λ, and suppose that T is nilpotent with index p. Then

$$
\begin{aligned}
\mathbf{0} & =T^{p}(\mathbf{x}) \\
& =\lambda^{p} \mathbf{x}
\end{aligned}
$$

Definition NLT 597
Theorem EOMP 415
Because \mathbf{x} is an eigenvector, it is nonzero, and therefore Theorem SMEZV 284 tells us that $\lambda^{p}=0$ and so $\lambda=0$.

Paraphrasing, all of the eigenvalues of a nilpotent linear transformation are zero. So in particular, the characteristic polynomial of a nilpotent linear transformation, T, on a vector space of dimension n, is simply $p_{T}(x)=x^{n}$.

The next theorem is not critical for what follows, but it will explain our interest in nilpotent linear transformations. More specifically, it is the first step in backing up the assertion that nilpotent linear transformations are the essential obstacle in a non-diagonalizable linear transformation. While it is not obvious from the statement of the theorem, it says that a nilpotent linear transformation is not diagonalizable, unless it is trivially so.

Theorem DNLT

Diagonalizable Nilpotent Linear Transformations

Suppose the linear transformation $T: V \mapsto V$ is nilpotent. Then T is diagonalizable if and only T is the zero linear transformation.

Proof We start with the easy direction. Let $n=\operatorname{dim}(V)$.
(\Leftarrow) The linear transformation $Z: V \mapsto V$ defined by $Z(\mathbf{v})=\mathbf{0}$ for all $\mathbf{v} \in V$ is nilpotent of index $p=1$ and a matrix repesentation relative to any basis of V is the $n \times n$ zero matrix, \mathcal{O}. Quite obviously, the zero matrix is a diagonal matrix (Definition DIM 428) and hence Z is diagonalizable (Definition DZM 428).
(\Rightarrow) Assume now that T is diagonalizable, so $\gamma_{T}(\lambda)=\alpha_{T}(\lambda)$ for every eigenvalue λ Theorem DMFE 431). By Theorem ENLT 602, T has only one eigenvalue (zero), which therefore must have algebraic multiplicity n (Theorem NEM 419). So the geometric multiplicity of zero will be n as well, $\gamma_{T}(0)=n$.

Let B be a basis for the eigenspace $\mathcal{E}_{T}(0)$. Then B is a linearly independent subset of V of size n, and by Theorem G 349 will be a basis for V. For any $\mathbf{x} \in B$ we have

$$
\begin{array}{rlrl}
T(\mathbf{x}) & =0 \mathbf{x} & & \text { Definition EM } 397 \\
& =\mathbf{0} & & \text { Theorem ZSSM } 282 \\
\hline
\end{array}
$$

So T is identically zero on a basis for B, and since the action of a linear transformation on a basis determines all of the values of the linear transformation Theorem LTDB 450), it is easy to see that $T(\mathbf{v})=\mathbf{0}$ for every $\mathbf{v} \in V$.

So, other than one trivial case (the zero matrix), every nilpotent linear transformation is not diagonalizable. It remains to see what is so "essential" about this broad class of non-diagonalizable linear transformations. For this we now turn to a discussion of kernels of powers of nilpotent linear transformations, beginning with a result about general linear transformations that may not necessarily be nilpotent.

Theorem KPLT

Kernels of Powers of Linear Transformations

Suppose $T: V \mapsto V$ is a linear transformation, where $\operatorname{dim}(V)=n$. Then there is an integer $m, 0 \leq m \leq n$, such that

$$
\{\mathbf{0}\}=\mathcal{K}\left(T^{0}\right) \subsetneq \mathcal{K}\left(T^{1}\right) \subsetneq \mathcal{K}\left(T^{2}\right) \subsetneq \cdots \subsetneq \mathcal{K}\left(T^{m}\right)=\mathcal{K}\left(T^{m+1}\right)=\mathcal{K}\left(T^{m+2}\right)=\cdots
$$

Proof There are several items to verify in the conclusion as stated. First, we show that $\mathcal{K}\left(T^{k}\right) \subseteq \mathcal{K}\left(T^{k+1}\right)$ for any k. Choose $\mathbf{z} \in \mathcal{K}\left(T^{k}\right)$. Then

$$
\begin{aligned}
T^{k+1}(\mathbf{z}) & =T\left(T^{k}(\mathbf{z})\right) & & \text { Definition LTC 456 } \\
& =T(\mathbf{0}) & & \text { Definition KLT 468 } \\
& =\mathbf{0} & & \text { Theorem LTTZZ 445 }
\end{aligned}
$$

So by Definition KLT 468, $\mathbf{z} \in \mathcal{K}\left(T^{k+1}\right)$ and by Definition SSET 669 we have $\mathcal{K}\left(T^{k}\right) \subseteq \mathcal{K}\left(T^{k+1}\right)$.
Second, we demonstrate the existence of a power m where consecutive powers result in equal kernels. A by-product will be the condition that m can be chosen so that $m \leq n$. To the contrary, suppose that

$$
\{\mathbf{0}\}=\mathcal{K}\left(T^{0}\right) \subsetneq \mathcal{K}\left(T^{1}\right) \subsetneq \mathcal{K}\left(T^{2}\right) \subsetneq \cdots \subsetneq \mathcal{K}\left(T^{n-1}\right) \subsetneq \mathcal{K}\left(T^{n}\right) \subsetneq \mathcal{K}\left(T^{n+1}\right) \subsetneq \cdots
$$

Since $\mathcal{K}\left(T^{k}\right) \subsetneq \mathcal{K}\left(T^{k+1}\right)$, Theorem PSSD 352 implies that $\operatorname{dim}\left(\mathcal{K}\left(T^{k+1}\right)\right) \geq \operatorname{dim}\left(\mathcal{K}\left(T^{k}\right)\right)+1$. Repeated application of this observation yields

$$
\operatorname{dim}\left(\mathcal{K}\left(T^{n+1}\right)\right) \geq \operatorname{dim}\left(\mathcal{K}\left(T^{n}\right)\right)+1
$$

$$
\begin{aligned}
& \geq \operatorname{dim}\left(\mathcal{K}\left(T^{n-1}\right)\right)+2 \\
& \quad \vdots \\
& \geq \operatorname{dim}\left(\mathcal{K}\left(T^{0}\right)\right)+(n+1) \\
& =\operatorname{dim}(\{\mathbf{0}\})+n+1 \\
& =n+1
\end{aligned}
$$

Thus, $\mathcal{K}\left(T^{n+1}\right)$ has a basis of size at least $n+1$, which is a linearly independent set of size greater than n in the vector space V of dimension n. This contradicts Theorem G 349].

This contradiction yields the existence of an integer k such that $\mathcal{K}\left(T^{k}\right)=\mathcal{K}\left(T^{k+1}\right)$, so we can define m to be smallest such integer with this property. From the argument above about dimensions resulting from a strictly increasing chain of subspaces, it should be clear that $m \leq n$.

It remains to show that once two consecutive kernels are equal, then all of the remaining kernels are equal. More formally, if $\mathcal{K}\left(T^{m}\right)=\mathcal{K}\left(T^{m+1}\right)$, then $\mathcal{K}\left(T^{m}\right)=\mathcal{K}\left(T^{m+j}\right)$ for all $j \geq 1$. We will give a proof by induction on j Technique I 680). The base case $(j=1)$ is precisely our defining property for m.

In the induction step, we assume that $\mathcal{K}\left(T^{m}\right)=\mathcal{K}\left(T^{m+j}\right)$ and endeavor to show that $\mathcal{K}\left(T^{m}\right)=$ $\mathcal{K}\left(T^{m+j+1}\right)$. At the outset of this proof we established that $\mathcal{K}\left(T^{m}\right) \subseteq \mathcal{K}\left(T^{m+j+1}\right)$. So Definition SE 670 requires only that we establish the subset inclusion in the opposite direction. To wit, choose $\mathbf{z} \in$ $\mathcal{K}\left(T^{m+j+1}\right)$. Then

$$
\begin{aligned}
\mathbf{0} & =T^{m+j+1}(\mathbf{z}) \\
& =T^{m+j}(T(\mathbf{z})) \\
& =T^{m}(T(\mathbf{z})) \\
& =T^{m+1}(\mathbf{z}) \\
& =T^{m}(\mathbf{z})
\end{aligned}
$$

Definition KLT 468
Definition LTC 456
Induction Hypothesis
Definition LTC 456
Base Case

So by Definition KLT 468, $\mathbf{z} \in \mathcal{K}\left(T^{m}\right)$ as desired.
We now specialize Theorem KPLT 603 to the case of nilpotent linear transformations, which buys us just a bit more precision in the conclusion.

Theorem KPNLT

Kernels of Powers of Nilpotent Linear Transformations

Suppose $T: V \mapsto V$ is a nilpotent linear transformation with index p and $\operatorname{dim}(V)=n$. Then $0 \leq p \leq n$ and

$$
\{\mathbf{0}\}=\mathcal{K}\left(T^{0}\right) \subsetneq \mathcal{K}\left(T^{1}\right) \subsetneq \mathcal{K}\left(T^{2}\right) \subsetneq \cdots \subsetneq \mathcal{K}\left(T^{p}\right)=\mathcal{K}\left(T^{p+1}\right)=\cdots=V
$$

Proof Since $T^{p}=0$ it follows that $T^{p+j}=0$ for all $j \geq 0$ and thus $\mathcal{K}\left(T^{p+j}\right)=V$ for $j \geq 0$. So the value of m guaranteed by Theorem KPLT 603 is at most p. The only remaining aspect of our conclusion that does not follow from Theorem KPLT 603 is that $m=p$. To see this we must show that $\mathcal{K}\left(T^{k}\right) \subsetneq \mathcal{K}\left(T^{k+1}\right)$ for $0 \leq k \leq p-1$. If $\mathcal{K}\left(T^{k}\right)=\mathcal{K}\left(T^{k+1}\right)$ for some $k<p$, then $\mathcal{K}\left(T^{k}\right)=\mathcal{K}\left(T^{p}\right)=V$. This implies that $T^{k}=0$, violating the fact that T has index p. So the smallest value of m is indeed p, and we learn that $p<n$.

The structure of the kernels of powers of nilpotent linear transformations will be crucial to what follows. But immediately we can see a practical benefit. Suppose we are confronted with the question of whether or not an $n \times n$ matrix, A, is nilpotent or not. If we don't quickly find a low power that equals the zero matrix, when do we stop trying higher and higher powers? Theorem KPNLT 604 gives us the answer: if we don't see a zero matrix by the time we finish computing A^{n}, then it is not going to ever happen. We'll now take a look at one example of Theorem KPNLT 604 in action.

Example KPNLT

Kernels of powers of a nilpotent linear transformation

We will recycle the nilpotent matrix A of index 4 from Example NM64 597. We now know that would have only needed to look at the first 6 powers of A if the matrix had not been nilpotent. We list bases for the null spaces of the powers of A. (Notice how we are using null spaces for matrices interchangeably with kernels of linear transformations, see Theorem KNSI 537 for justification.)

$$
\begin{aligned}
& \mathcal{N}(A)=\mathcal{N}\left(\left[\begin{array}{llllcl}
-3 & 3 & -2 & 5 & 0 & -5 \\
-3 & 5 & -3 & 4 & 3 & -9 \\
-3 & 4 & -2 & 6 & -4 & -3 \\
-3 & 3 & -2 & 5 & 0 & -5 \\
-3 & 3 & -2 & 4 & 2 & -6 \\
-2 & 3 & -2 & 2 & 4 & -7
\end{array}\right]\right)=\left\langle\left\{\left[\begin{array}{l}
2 \\
2 \\
5 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
-5 \\
-1 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \mathcal{N}\left(A^{2}\right)=\mathcal{N}\left(\left[\begin{array}{cccccc}
1 & -2 & 1 & 0 & -3 & 4 \\
0 & -2 & 1 & 1 & -3 & 4 \\
3 & 0 & 0 & -3 & 0 & 0 \\
1 & -2 & 1 & 0 & -3 & 4 \\
0 & -2 & 1 & 1 & -3 & 4 \\
-1 & -2 & 1 & 2 & -3 & 4
\end{array}\right]\right)=\left\langle\left\{\left[\begin{array}{l}
0 \\
1 \\
2 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-3 \\
0 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \mathcal{N}\left(A^{3}\right)=\mathcal{N}\left(\left[\begin{array}{llllll}
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0
\end{array}\right]\right)=\left\langle\left\{\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \mathcal{N}\left(A^{4}\right)=\mathcal{N}\left(\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\right)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

With the exception of some convenience scaling of the basis vectors in $\mathcal{N}\left(A^{2}\right)$ these are exactly the basis vectors described in Theorem BNS 138. We can see that the dimension of $\mathcal{N}(A)$ equals the geometric multiplicity of the zero eigenvalue. Why is this not an accident? We can see the dimensions of the kernels consistently increasing, and we can see that $\mathcal{N}\left(A^{4}\right)=\mathbb{C}^{6}$. But Theorem KPNLT 604 says a little more. Each successive kernel should be a superset of the previous one. We ought to be able to begin with a basis of $\mathcal{N}(A)$ and extend it to a basis of $\mathcal{N}\left(A^{2}\right)$. Then we should be able to extend a basis of $\mathcal{N}\left(A^{2}\right)$ into a basis of $\mathcal{N}\left(A^{3}\right)$, all with repeated applications of Theorem ELIS 349. Verify the following,

$$
\mathcal{N}(A)=\left\langle\left\{\left[\begin{array}{l}
2 \\
2 \\
5 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
-5 \\
-1 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

$$
\begin{aligned}
& \mathcal{N}\left(A^{2}\right)=\left\langle\left\{\left[\begin{array}{l}
2 \\
2 \\
5 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
-5 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-3 \\
0 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \mathcal{N}\left(A^{3}\right)=\left\langle\left\{\left[\begin{array}{l}
2 \\
2 \\
5 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
-5 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-3 \\
0 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \mathcal{N}\left(A^{4}\right)=\left\langle\left\{\left[\begin{array}{l}
2 \\
2 \\
5 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
-5 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-3 \\
0 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

Do not be concerned at the moment about how these bases were constructed since we are not describing the applications of Theorem ELIS 349] here. Do verify carefully for each alleged basis that, (1) it is a superset of the basis for the previous kernel, (2) the basis vectors really are members of the kernel of the right power of $A,(3)$ the basis is a linearly independent set, (4) the size of the basis is equal to the size of the basis found previously for each kernel. With these verifications, Theorem G 349 will tell us that we have successfully demonstrated what Theorem KPNLT 604 guarantees.

Subsection CFNLT
 Canonical Form for Nilpotent Linear Transformations

Our main purpose in this section is to find a basis so that a nilpotent linear transformation will have a pleasing, nearly-diagonal matrix representation. Of course, we will not have a definition for "pleasing," nor for "nearly-diagonal." But the short answer is that our preferred matrix representation will be built up from Jordan blocks, $J_{n}(0)$. Here's the theorem. You will find Example CFNLT 610 helpful as you study this proof, since it uses the same notation, and is large enough to (barely) illustrate the full generality of the theorem (see).

Theorem CFNLT

Canonical Form for Nilpotent Linear Transformations

Suppose that $T: V \mapsto V$ is a nilpotent linear transformation of index p. Then there is a basis for V so that the matrix representation, $M_{B, B}^{T}$, is block diagonal with each block being a Jordan block, $J_{n}(0)$. The size of the largest block is the index p, and the total number of blocks is the nullity of $T, n(T)$.

Proof We will explicitly construct the desired basis, so the proof is constructive (Technique C 675), and can be used in practice. As we begin, the basis vectors will not be in the proper order, but we will rearrange them at the end of the proof. For convenience, define $n_{i}=n\left(T^{i}\right)$, so for example, $n_{0}=0$, $n_{1}=n(T)$ and $n_{p}=n\left(T^{p}\right)=\operatorname{dim}(V)$. Define $s_{i}=n_{i}-n_{i-1}$, for $1 \leq i \leq p$, so we can think of s_{i} as "how much bigger" $\mathcal{K}\left(T^{i}\right)$ is than $\mathcal{K}\left(T^{i-1}\right)$. In particular, Theorem KPNLT 604 implies that $s_{i}>0$ for $1 \leq i \leq p$.

We are going to build a set of vectors $\mathbf{z}_{i, j}, 1 \leq i \leq p, 1 \leq j \leq s_{i}$. Each $\mathbf{z}_{i, j}$ will be an element of $\mathcal{K}\left(T^{i}\right)$ and not an element of $\mathcal{K}\left(T^{i-1}\right)$. In total, we will obtain a linearly independent set of $\sum_{i=1}^{p} s_{i}=$ $\sum_{i=1}^{p} n_{i}-n_{i-1}=n_{p}-n_{0}=\operatorname{dim}(V)$ vectors that form a basis of V. We construct this set in pieces, starting at the "wrong" end. Our procedure will build a series of subspaces, Z_{i}, each lying in between $\mathcal{K}\left(T^{i-1}\right)$ and $\mathcal{K}\left(T^{i}\right)$, having bases $\mathbf{z}_{i, j}, 1 \leq j \leq s_{i}$, and which together equal V as a direct sum. Now would be a good time to review the results on direct sums collected in Subsection PD.DS 355. OK, here we go.

We build the subspace Z_{p} first (this is what we meant by "starting at the wrong end"). $\mathcal{K}\left(T^{p-1}\right)$ is a proper subspace of $\mathcal{K}\left(T^{p}\right)=V$ (Theorem KPNLT [604). Theorem DSFOS 356 says that there is a subspace of V that will pair with the subspace $\mathcal{K}\left(T^{p-1}\right)$ to form a direct sum of V. Call this subspace Z_{p}, and choose vectors $\mathbf{z}_{p, j}, 1 \leq j \leq s_{p}$ as a basis of Z_{p}, which we will denote as B_{p}. Note that we have a fair amount of freedom in how to choose these first basis vectors. Several observations will be useful in the next step. First $V=\mathcal{K}\left(T^{p-1}\right) \oplus Z_{p}$. The basis $B_{p}=\left\{\mathbf{z}_{p, 1}, \mathbf{z}_{p, 2}, \mathbf{z}_{p, 3}, \ldots, \mathbf{z}_{p, s_{p}}\right\}$ is linearly independent. For $1 \leq j \leq s_{i}, \mathbf{z}_{p, j} \in \mathcal{K}\left(T^{p}\right)=V$. Since the two subspaces of a direct sum have no nonzero vectors in common Theorem DSZI 357), for $1 \leq j \leq s_{i}, \mathbf{z}_{p, j} \notin \mathcal{K}\left(T^{p-1}\right)$. That was comparably easy.

If obtaining Z_{p} was easy, getting Z_{p-1} will be harder. We will repeat the next step $p-1$ times, and so will do it carefully the first time. Eventually, Z_{p-1} will have dimension s_{p-1}. However, the first s_{p} vectors of a basis are straightforward. Define $\mathbf{z}_{p-1, j}=T\left(\mathbf{z}_{p, j}\right), 1 \leq j \leq s_{p}$. Notice that we have no choice in creating these vectors, they are a consequence of our choices for $\mathbf{z}_{p, j}$. In retrospect (i.e. on a second reading of this proof), you will recognize this as the key step in realizing a matrix representation of a nilpotent linear transformation with Jordan blocks. We need to know that this set of vectors in linearly independent, so start with a relation of linear dependence Definition RLD 305), and massage it,

$$
\begin{array}{rlr}
\mathbf{0} & =a_{1} \mathbf{z}_{p-1,1}+a_{2} \mathbf{z}_{p-1,2}+a_{3} \mathbf{z}_{p-1,3}+\cdots+a_{s_{p}} \mathbf{z}_{p-1, s_{p}} \\
& =a_{1} T\left(\mathbf{z}_{p, 1}\right)+a_{2} T\left(\mathbf{z}_{p, 2}\right)+a_{3} T\left(\mathbf{z}_{p, 3}\right)+\cdots+a_{s_{p}} T\left(\mathbf{z}_{p, s_{p}}\right) \\
& =T\left(a_{1} \mathbf{z}_{p, 1}+a_{2} \mathbf{z}_{p, 2}+a_{3} \mathbf{z}_{p, 3}+\cdots+a_{s_{p}} \mathbf{z}_{p, s_{p}}\right) & \text { Theorem LTLC 449 }
\end{array}
$$

Define $\mathbf{x}=a_{1} \mathbf{z}_{p, 1}+a_{2} \mathbf{z}_{p, 2}+a_{3} \mathbf{z}_{p, 3}+\cdots+a_{s_{p}} \mathbf{z}_{p, s_{p}}$. The statement just above means that $\mathbf{x} \in \mathcal{K}(T) \subseteq \mathcal{K}\left(T^{p-1}\right)$ (Definition KLT 468, Theorem KPNLT 604). As defined, \mathbf{x} is a linear combination of the basis vectors B_{p}, and therefore $\mathbf{x} \in Z_{p}$. Thus $\mathbf{x} \in \mathcal{K}\left(T^{p-1}\right) \cap Z_{p}$ (Definition SI 671]). Because $V=\mathcal{K}\left(T^{p-1}\right) \oplus Z_{p}$, Theorem DSZI 357 tells us that $\mathbf{x}=\mathbf{0}$. Now we recognize the definition of \mathbf{x} as a relation of linear dependence on the linearly independent set B_{p}, and therefore $a_{1}=a_{2}=\cdots=a_{s_{p}}=0$ (Definition LI (305). This establishes the linear independence of $\mathbf{z}_{p-1, j}, 1 \leq j \leq s_{p}$ (Definition LI 305).

We also need to know where the vectors $\mathbf{z}_{p-1, j}, 1 \leq j \leq s_{p}$ live. First we demonstrate that they are members of $\mathcal{K}\left(T^{p-1}\right)$.

$$
\begin{aligned}
T^{p-1}\left(\mathbf{z}_{p-1, j}\right) & =T^{p-1}\left(T\left(\mathbf{z}_{p, j}\right)\right) \\
& =T^{p}\left(\mathbf{z}_{p, j}\right) \\
& =\mathbf{0}
\end{aligned}
$$

So $\mathbf{z}_{p-1, j} \in \mathcal{K}\left(T^{p-1}\right), 1 \leq j \leq s_{p}$. However, we now show that these vectors are not elements of $\mathcal{K}\left(T^{p-2}\right)$. Suppose to the contrary Technique CD 678) that $\mathbf{z}_{p-1, j} \in \mathcal{K}\left(T^{p-2}\right)$. Then

$$
\begin{aligned}
\mathbf{0} & =T^{p-2}\left(\mathbf{z}_{p-1, j}\right) \\
& =T^{p-2}\left(T\left(\mathbf{z}_{p, j}\right)\right) \\
& =T^{p-1}\left(\mathbf{z}_{p, j}\right)
\end{aligned}
$$

which contradicts the earlier statement that $\mathbf{z}_{p, j} \notin \mathcal{K}\left(T^{p-1}\right)$. So $\mathbf{z}_{p-1, j} \notin \mathcal{K}\left(T^{p-2}\right), 1 \leq j \leq s_{p}$.

Now choose a basis $C_{p-2}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n_{p-2}}\right\}$ for $\mathcal{K}\left(T^{p-2}\right)$. We want to extend this basis by adding in the $\mathbf{z}_{p-1, j}$ to span a subspace of $\mathcal{K}\left(T^{p-1}\right)$. But first we want to know that this set is linearly independent. Let $a_{k}, 1 \leq k \leq n_{p-2}$ and $b_{j}, 1 \leq j \leq s_{p}$ be the scalars in a relation of linear dependence,

$$
\mathbf{0}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{n_{p-2}} \mathbf{u}_{n_{p-2}}+b_{1} \mathbf{z}_{p-1,1}+b_{2} \mathbf{z}_{p-1,2}+\cdots+b_{s_{p}} \mathbf{z}_{p-1, s_{p}}
$$

Then,

$$
\begin{aligned}
\mathbf{0}= & T^{p-2}(\mathbf{0}) \\
= & T^{p-2}\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{n_{p-2}} \mathbf{u}_{n_{p-2}}+b_{1} \mathbf{z}_{p-1,1}+b_{2} \mathbf{z}_{p-1,2}+\cdots+b_{s_{p}} \mathbf{z}_{p-1, s_{p}}\right) \\
= & a_{1} T^{p-2}\left(\mathbf{u}_{1}\right)+a_{2} T^{p-2}\left(\mathbf{u}_{2}\right)+\cdots+a_{n_{p-2}} T^{p-2}\left(\mathbf{u}_{n_{p-2}}\right)+ \\
& b_{1} T^{p-2}\left(\mathbf{z}_{p-1,1}\right)+b_{2} T^{p-2}\left(\mathbf{z}_{p-1,2}\right)+\cdots+b_{s_{p}} T^{p-2}\left(\mathbf{z}_{p-1, s_{p}}\right) \\
= & a_{1} \mathbf{0}+a_{2} \mathbf{0}+\cdots+a_{n_{p-2}} \mathbf{0}+b_{1} T^{p-2}\left(\mathbf{z}_{p-1,1}\right)+b_{2} T^{p-2}\left(\mathbf{z}_{p-1,2}\right)+\cdots+b_{s_{p}} T^{p-2}\left(\mathbf{z}_{p-1, s_{p}}\right) \\
= & b_{1} T^{p-2}\left(\mathbf{z}_{p-1,1}\right)+b_{2} T^{p-2}\left(\mathbf{z}_{p-1,2}\right)+\cdots+b_{s_{p}} T^{p-2}\left(\mathbf{z}_{p-1, s_{p}}\right) \\
= & b_{1} T^{p-2}\left(T\left(\mathbf{z}_{p, 1}\right)\right)+b_{2} T^{p-2}\left(T\left(\mathbf{z}_{p, 2}\right)\right)+\cdots+b_{s_{p}} T^{p-2}\left(T\left(\mathbf{z}_{p, s_{p}}\right)\right) \\
= & b_{1} T^{p-1}\left(\mathbf{z}_{p, 1}\right)+b_{2} T^{p-1}\left(\mathbf{z}_{p, 2}\right)+\cdots+b_{s_{p}} T^{p-1}\left(\mathbf{z}_{p, s_{p}}\right) \\
= & T^{p-1}\left(b_{1} \mathbf{z}_{p, 1}+b_{2} \mathbf{z}_{p, 2}+\cdots+b_{s_{p}} \mathbf{z}_{p, s_{p}}\right)
\end{aligned}
$$

Define $\mathbf{y}=b_{1} \mathbf{z}_{p, 1}+b_{2} \mathbf{z}_{p, 2}+\cdots+b_{s_{p}} \mathbf{z}_{p, s_{p}}$. The statement just above means that $\mathbf{y} \in \mathcal{K}\left(T^{p-1}\right)$ Definition KLT (468). As defined, \mathbf{y} is a linear combination of the basis vectors B_{p}, and therefore $\mathbf{y} \in Z_{p}$. Thus $\mathbf{y} \in \mathcal{K}\left(T^{p-1}\right) \cap Z_{p}$. Because $V=\mathcal{K}\left(T^{p-1}\right) \oplus Z_{p}$, Theorem DSZI 357 tells us that $\mathbf{y}=\mathbf{0}$. Now we recognize the definition of \mathbf{y} as a relation of linear dependence on the linearly independent set B_{p}, and therefore $b_{1}=b_{2}=\cdots=b_{s_{p}}=0$ (Definition LI 305). Return to the full relation of linear dependence with both sets of scalars (the a_{i} and b_{j}). Now that we know that $b_{j}=0$ for $1 \leq j \leq s_{p}$, this relation of linear dependence simplifies to a relation of linear dependence on just the basis C_{p-1}. Therefore, $a_{i}=0,1 \leq a_{i} \leq n_{p-1}$ and we have the desired linear independence.

Define a new subspace of $\mathcal{K}\left(T^{p-1}\right)$ as

$$
Q_{p-1}=\left\langle\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n_{p-1}}, \mathbf{z}_{p-1,1}, \mathbf{z}_{p-1,2}, \mathbf{z}_{p-1,3}, \ldots, \mathbf{z}_{p-1, s_{p}}\right\}\right\rangle
$$

By Theorem DSFOS 356 there exists a subspace of $\mathcal{K}\left(T^{p-1}\right)$ which will pair with Q_{p-1} to form a direct sum. Call this subspace R_{p-1}, so by definition, $\mathcal{K}\left(T^{p-1}\right)=Q_{p-1} \oplus R_{p-1}$. We are interested in the dimension of R_{p-1}. Note first, that since the spanning set of Q_{p-1} is linearly independent, $\operatorname{dim}\left(Q_{p-1}\right)=n_{p-2}+s_{p}$. Then

$$
\begin{aligned}
\operatorname{dim}\left(R_{p-1}\right) & =\operatorname{dim}\left(\mathcal{K}\left(T^{p-1}\right)\right)-\operatorname{dim}\left(Q_{p-1}\right) \\
& =n_{p-1}-\left(n_{p-2}+s_{p}\right) \\
& =\left(n_{p-1}-n_{p-2}\right)-s_{p} \\
& =s_{p-1}-s_{p}
\end{aligned}
$$

Notice that if $s_{p-1}=s_{p}$, then R_{p-1} is trivial. Now choose a basis of R_{p-1}, and denote these $s_{p-1}-s_{p}$ vectors as $\mathbf{z}_{p-1, s_{p}+1}, \mathbf{z}_{p-1, s_{p}+2}, \mathbf{z}_{p-1, s_{p}+3}, \ldots, \mathbf{z}_{p-1, s_{p-1}}$. This is another occassion to notice that we have some freedom in this choice.

We now have $\mathcal{K}\left(T^{p-1}\right)=Q_{p-1} \oplus R_{p-1}$, and we have bases for each of the two subspaces. The union of these two bases will therefore be a linearly independent set in $\mathcal{K}\left(T^{p-1}\right)$ with size

$$
\begin{aligned}
\left(n_{p-2}+s_{p}\right)+\left(s_{p-1}-s_{p}\right) & =n_{p-2}+s_{p-1} \\
& =n_{p-2}+n_{p-1}-n_{p-2} \\
& =n_{p-1}=\operatorname{dim}\left(\mathcal{K}\left(T^{p-1}\right)\right)
\end{aligned}
$$

So, by Theorem G 349, the following set is a basis of $\mathcal{K}\left(T^{p-1}\right)$,

$$
\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n_{p-2}}, \mathbf{z}_{p-1,1}, \mathbf{z}_{p-1,2}, \ldots, \mathbf{z}_{p-1, s_{p}}, \mathbf{z}_{p-1, s_{p}+1}, \mathbf{z}_{p-1, s_{p}+2}, \ldots, \mathbf{z}_{p-1, s_{p-1}}\right\}
$$

We built up this basis in three parts, we will now split it in half. Define the subspace Z_{p-1} by

$$
Z_{p-1}=\left\langle B_{p-1}\right\rangle=\left\langle\left\{\mathbf{z}_{p-1,1}, \mathbf{z}_{p-1,2}, \ldots, \mathbf{z}_{p-1, s_{p-1}}\right\}\right\rangle
$$

where we have implicitly denoted the basis as B_{p-1}. Then Theorem DSFB 355 allows us to split up the basis for $\mathcal{K}\left(T^{p-1}\right)$ as $C_{p-1} \cup B_{p-1}$ and write

$$
\mathcal{K}\left(T^{p-1}\right)=\mathcal{K}\left(T^{p-2}\right) \oplus Z_{p-1}
$$

Whew! This is a good place to recap what we have achieved. The vectors $\mathbf{z}_{i, j}$ form bases for the subspaces Z_{i} and right now

$$
V=\mathcal{K}\left(T^{p-1}\right) \oplus Z_{p}=\mathcal{K}\left(T^{p-2}\right) \oplus Z_{p-1} \oplus Z_{p}
$$

The key feature of this decomposition of V is that the first s_{p} vectors in the basis for Z_{p-1} are outputs of the linear transformation T using the basis vectors of Z_{p} as inputs.

Now we want to further decompose $\mathcal{K}\left(T^{p-2}\right)$ (into $\mathcal{K}\left(T^{p-3}\right)$ and $\left.Z_{p-2}\right)$. The procedure is the same as above, so we will only sketch the key steps. Checking the details procedes in the same manner as above. Technically, we could have set up the preceding as the induction step in a proof by induction Technique I (680), but this probably would make the proof harder to understand.

Hit each element of B_{p-1} with T, to create vectors $\mathbf{z}_{p-2, j}, 1 \leq j \leq s_{p-1}$. These vectors form a linearly independent set, and each is an element of $\mathcal{K}\left(T^{p-2}\right)$, but not an element of $\mathcal{K}\left(T^{p-3}\right)$. Grab a basis C_{p-3} of $\mathcal{K}\left(T^{p-3}\right)$ and tack on the newly-created vectors $\mathbf{z}_{p-2, j}, 1 \leq j \leq s_{p-1}$. This expanded set is linearly independent, and we can define a subspace Q_{p-2} using it as a basis. Theorem DSFOS 356 gives us a subspace R_{p-2} such that $\mathcal{K}\left(T^{p-2}\right)=Q_{p-2} \oplus R_{p-2}$. Vectors $\mathbf{z}_{p-2, j}, s_{p-1}+1 \leq j \leq s_{p-2}$ are chosen as a basis for R_{p-2} once the relevant dimensions have been verified. The union of C_{p-3} and $\mathbf{z}_{p-2, j}, 1 \leq j \leq s_{p-2}$ then form a basis of $\mathcal{K}\left(T^{p-2}\right)$, which can be split into two parts to yield the decomposition

$$
\mathcal{K}\left(T^{p-2}\right)=\mathcal{K}\left(T^{p-3}\right) \oplus Z_{p-2}
$$

Here Z_{p-2} is the subspace of $\mathcal{K}\left(T^{p-2}\right)$ with basis $B_{p-2}=\left\{\mathbf{z}_{p-2, j} \mid 1 \leq j \leq s_{p-2}\right\}$. Finally,

$$
V=\mathcal{K}\left(T^{p-1}\right) \oplus Z_{p}=\mathcal{K}\left(T^{p-2}\right) \oplus Z_{p-1} \oplus Z_{p}=\mathcal{K}\left(T^{p-3}\right) \oplus Z_{p-2} \oplus Z_{p-1} \oplus Z_{p}
$$

Again, the key feature of this decomposition is that the first vectors in the basis of Z_{p-2} are outputs of T using vectors from the basis Z_{p-1} as inputs (and in turn, some of these inputs are outputs of T derived from inputs in Z_{p}).

Now assume we repeat this procedure until we decompose $\mathcal{K}\left(T^{2}\right)$ into subspaces $\mathcal{K}(T)$ and Z_{2}. Finally, decompose $\mathcal{K}(T)$ into subspaces $\mathcal{K}\left(T^{0}\right)=\mathcal{K}\left(I_{n}\right)=\{\mathbf{0}\}$ and Z_{1}, so that we recognize the vectors $\mathbf{z}_{1, j}$, $1 \leq j \leq s_{1}=n_{1}$ as elements of $\mathcal{K}(T)$. The set

$$
B=B_{1} \cup B_{2} \cup B_{3} \cup \cdots \cup B_{p}=\left\{\mathbf{z}_{i, j} \mid 1 \leq i \leq p, 1 \leq j \leq s_{i}\right\}
$$

is linearly independent by Theorem DSLI 358 and has size

$$
\sum_{i=1}^{p} s_{i}=\sum_{i=1}^{p} n_{i}-n_{i-1}=n_{p}-n_{0}=\operatorname{dim}(V)
$$

So by Theorem G 349, B is a basis of V. We desire a matrix representation of T relative to B Definition MR 527), but first we will reorder the elements of B. The following display lists the elements of B in
the desired order, when read across the rows right-to-left in the usual way. Notice that we arrived at these vectors column-by-column, beginning on the right.

$\mathbf{z}_{1,1}$	$\mathbf{z}_{2,1}$	$\mathbf{z}_{3,1}$	\cdots	$\mathbf{z}_{d, 1}$
$\mathbf{z}_{1,2}$	$\mathbf{z}_{2,2}$	$\mathbf{z}_{3,2}$	\cdots	$\mathbf{z}_{d, 2}$
	\vdots		!	
$\mathbf{z}_{1, s_{d}}$	$\mathbf{z}_{2, s_{d}}$	$\mathbf{z}_{3, s_{d}}$	\ldots	$\mathbf{z}_{d, s_{d}}$
$\mathbf{z}_{1, s_{d}+1}$	$\mathbf{z}_{2, s_{d}+1}$	$\mathbf{z}_{3, s_{d}+1}$	\ldots	
	\vdots		\vdots	
$\mathbf{z}_{1, s_{3}}$	$\mathbf{z}_{2, s_{3}}$	$\mathbf{z}_{3, s_{3}}$		
	\vdots			
$\mathbf{z}_{1, s_{2}}$	$\mathbf{z}_{2, s_{2}}$			
	\vdots			
$\mathbf{z}_{1, s_{1}}$				

It is difficult to layout this table with the notation we have been using, nor would it be especially useful to invent some notation to overcome the difficulty. (One approach would be to define something like the inverse of the nonincreasing function, $i \rightarrow s_{i}$.) Do notice that there are $s_{1}=n_{1}$ rows and d columns. Column i is the basis B_{i}. The vectors in the first column are elements of $\mathcal{K}(T)$. Each row is the same length, or shorter, than the one above it. If we apply T to any vector in the table, other than those in the first column, the output is the preceding vector in the row.

Now contemplate the matrix representation of T relative to B as we read across the rows of the table above. In the first row, $T\left(\mathbf{z}_{1,1}\right)=\mathbf{0}$, so the first column of the representation is the zero column. Next, $T\left(\mathbf{z}_{2,1}\right)=\mathbf{z}_{1,1}$, so the second column of the representation is a vector with a single one in the first entry, and zeros elsewhere. Next, $T\left(\mathbf{z}_{3,1}\right)=\mathbf{z}_{2,1}$, so column 3 of the representation is a zero, then a one, then all zeros. Continuing in this vein, we obtain the first d columns of the representation, which is the Jordan block $J_{d}(0)$ followed by rows of zeros.

When we apply T to the basis vectors of the second row, what happens? Applying T to the first vector, the result is the zero vector, so the representation gets a zero column. Applying T to the second vector in the row, the output is simply the first vector in that row, making the next column of the representation all zeros plus a lone one, sitting just above the diagonal. Continuing, we create a Jordan block, sitting on the diagonal of the matrix representation. It is not possible in general to state the size of this block, but since the second row is no longer than the first, it cannot have size larger than d.

Since there are as many rows as the dimension of $\mathcal{K}(T)$, the representation contains as many Jordan blocks as the nullity of $T, n(T)$. Each successive block is smaller than the preceding one, with the first, and largest, having size d. The blocks are Jordan blocks since the basis vectors $\mathbf{z}_{i, j}$ were often defined as the result of applying T to other elements of the basis already determined, and then we rearranged the basis into an order that placed outputs of T just before their inputs, excepting the start of each row, which was an element of $\mathcal{K}(T)$.

The proof of Theorem CFNLT 606 is constructive (Technique C 675), so we can use it to create bases of nilpotent linear transformations with pleasing matrix representations. Recall that Theorem DNLT 603 told us that nilpotent linear transformations are almost never diagonalizable, so this is progress. As we have hinted before, with a nice representation of nilpotent matrices, it will not be difficult to build up representations of other non-diagonalizable matrices. Here is the promised example which illustrates the previous theorem. It is a useful companion to your study of the proof of Theorem CFNLT 606.

Example CFNLT

Canonical form for a nilpotent linear transformation

The 6×6 matrix, A, of Example NM64 597 is nilpotent of index $p=4$. If we define the linear transformation $T: \mathbb{C}^{6} \mapsto \mathbb{C}^{6}$ by $T(\mathbf{x})=A \mathbf{x}$, then T is nilpotent of index 4 and we can seek a basis of \mathbb{C}^{6} that yields a matrix representation with Jordan blocks on the diagonal. The nullity of T is 2 , so from Theorem CFNLT 606 we can expect the largest Jordan block to be $J_{4}(0)$, and there will be just two blocks. This only leaves enough room for the second block to have size 2 .

We will recycle the bases for the null spaces of the powers of A from Example KPNLT 605 rather than recomputing them here. We will also use the same notation used in the proof of Theorem CFNLT 606].

To begin, $s_{4}=n_{4}-n_{3}=6-5=1$, so we need one vector of $\mathcal{K}\left(T^{4}\right)=\mathbb{C}^{6}$, that is not in $\mathcal{K}\left(T^{3}\right)$, to be a basis for Z_{4}. We have a lot of latitude in this choice, and we have not described any sure-fire method for constructing a vector outside of a subspace. Looking at the basis for $\mathcal{K}\left(T^{3}\right)$ we see that if a vector is in this subspace, and has a nonzero value in the first entry, then it must also have a nonzero value in the fourth entry. So the vector

$$
\mathbf{z}_{4,1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

will not be an element of $\mathcal{K}\left(T^{3}\right)$ (notice that many other choices could be made here, so our basis will not be unique). This completes the determination of $Z_{p}=Z_{4}$.

Next, $s_{3}=n_{3}-n_{2}=5-4=1$, so we again need just a single basis vector for Z_{3}. We start by evaluating T with each basis vector of Z_{4},

$$
\mathbf{z}_{3,1}=T\left(\mathbf{z}_{4,1}\right)=A \mathbf{z}_{4,1}=\left[\begin{array}{c}
-3 \\
-3 \\
-3 \\
-3 \\
-3 \\
-2
\end{array}\right]
$$

Since $s_{3}=s_{4}$, the subspace R_{3} is trivial, and there is nothing left to do, $\mathbf{z}_{3,1}$ is the lone basis vector of Z_{3}.
Now $s_{2}=n_{2}-n_{1}=4-2=2$, so the construction of Z_{2} will not be as simple as the construction of Z_{3}. We first apply T to the basis vector of Z_{2},

$$
\mathbf{z}_{2,1}=T\left(\mathbf{z}_{3,1}\right)=A \mathbf{z}_{3,1}=\left[\begin{array}{c}
1 \\
0 \\
3 \\
1 \\
0 \\
-1
\end{array}\right]
$$

The two basis vectors of $\mathcal{K}\left(T^{1}\right)$, together with $\mathbf{z}_{2,1}$, form a basis for Q_{2}. Because $\operatorname{dim}\left(\mathcal{K}\left(T^{2}\right)\right)-\operatorname{dim}\left(Q_{2}\right)=$ $4-3=1$ we need only find a single basis vector for R_{2}. This vector must be an element of $\mathcal{K}\left(T^{2}\right)$, but not an element of Q_{2}. Again, there is a variety of vectors that fit this description, and we have no precise algorithm for finding them. Since they are plentiful, they are not too hard to find. We add up the four basis vectors of $\mathcal{K}\left(T^{2}\right)$, ensuring an element of $\mathcal{K}\left(T^{2}\right)$. Then we check to see if the vector is a linear combination
of three vectors: the two basis vectors of $\mathcal{K}\left(T^{1}\right)$ and $\mathbf{z}_{2,1}$. Having passed the tests, we have chosen

$$
\mathbf{z}_{2,2}=\left[\begin{array}{c}
2 \\
1 \\
2 \\
2 \\
2 \\
1
\end{array}\right]
$$

Thus, $Z_{2}=\left\langle\left\{\mathbf{z}_{2,1}, \mathbf{z}_{2,2}\right\}\right\rangle$.
Lastly, $s_{1}=n_{1}-n_{0}=2-0=2$. Since $s_{2}=s_{1}$, we again have a trivial R_{1} and need only complete our basis by evaluating the basis vectors of Z_{2} with T,

$$
\begin{aligned}
& \mathbf{z}_{1,1}=T\left(\mathbf{z}_{2,1}\right)=A \mathbf{z}_{2,1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
1 \\
1
\end{array}\right] \\
& \mathbf{z}_{1,2}=T\left(\mathbf{z}_{2,2}\right)=A \mathbf{z}_{2,2}=\left[\begin{array}{c}
-2 \\
-2 \\
-5 \\
-2 \\
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Now we reorder these vectors as the desired basis,

$$
B=\left\{\mathbf{z}_{1,1}, \mathbf{z}_{2,1}, \mathbf{z}_{3,1}, \mathbf{z}_{4,1}, \mathbf{z}_{1,2}, \mathbf{z}_{2,2}\right\}
$$

We now apply Definition MR 527 to build a matrix representation of T relative to B,

$$
\begin{aligned}
& \rho_{B}\left(T\left(\mathbf{z}_{1,1}\right)\right)=\rho_{B}\left(A \mathbf{z}_{1,1}\right)=\rho_{B}(\mathbf{0})=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{z}_{2,1}\right)\right)=\rho_{B}\left(A \mathbf{z}_{2,1}\right)=\rho_{B}\left(\mathbf{z}_{1,1}\right)=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{z}_{3,1}\right)\right)=\rho_{B}\left(A \mathbf{z}_{3,1}\right)=\rho_{B}\left(\mathbf{z}_{2,1}\right)=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{B}\left(T\left(\mathbf{z}_{4,1}\right)\right)=\rho_{B}\left(A \mathbf{z}_{4,1}\right)=\rho_{B}\left(\mathbf{z}_{3,1}\right)=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{z}_{1,2}\right)\right)=\rho_{B}\left(A \mathbf{z}_{1,2}\right)=\rho_{B}(\mathbf{0})=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{z}_{2,2}\right)\right)=\rho_{B}\left(A \mathbf{z}_{2,2}\right)=\rho_{B}\left(\mathbf{z}_{1,2}\right)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Installing these vectors as the columns of the matrix representation we have

$$
M_{B, B}^{T}=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

which is a block diagonal matrix with Jordan blocks $J_{4}(0)$ and $J_{2}(0)$. If we constructed the matrix S having the vectors of B as columns, then Theorem SCB 568 tells us that a similarity transformation with S relates the original matrix repreentation of T with the matrix representation consisting of Jordan blocks., i.e. $S^{-1} A S=M_{B, B}^{T}$.

Notice that constructing interesting examples of matrix representations requires domains with dimensions bigger than just two or three. Going forward we will see several more big examples.

Section IS
 Invariant Subspaces

Draft: This Section Complete, But Subject To Change

We have seen in Section NLT 597 that nilpotent linear transformations are almost never diagonalizable (Theorem DNLT (603), yet have matrix representations that are very nearly diagonal (Theorem CFNLT [606]). Our goal in this section, and the next (Section JCF 633), is to obtain a matrix representation of any linear transformation that is very nearly diagonal. A key step in reaching this goal is an understanding of invariant subspaces, and a particular type of invariant subspace that contains vectors known as "generalized eigenvectors."

Subsection IS
 Invariant Subspaces

As is often the case, we start with a definition.

Definition IS

Invariant Subspace

Suppose that $T: V \mapsto V$ is a linear transformation and W is a subspace of V. Suppose further that $T(\mathbf{w}) \in W$ for every $\mathbf{w} \in W$. Then W is an invariant subspace of V relative to T.

We do not have any special notation for an invariant subspace, so it is important to recognize that an invariant subspace is always relative to both a superspace (V) and a linear transformation (T), which will sometimes not be mentioned, yet will be clear from the context. Note also that the linear transformation involved must have an equal domain and codomain - the definition would not make much sense if our outputs were not of the same type as our inputs.

As usual, we begin with an example that demonstrates the existence of invariant subspaces. We will return later to understand how this example was constructed, but for now, just understand how we check the existence of the invariant subspaces.

Example TIS

Two invariant subspaces

Consider the linear transformation $T: \mathbb{C}^{4} \mapsto \mathbb{C}^{4}$ defined by $T(\mathbf{x})=A \mathbf{x}$ where A is given by

$$
A=\left[\begin{array}{cccc}
-8 & 6 & -15 & 9 \\
-8 & 14 & -10 & 18 \\
1 & 1 & 3 & 0 \\
3 & -8 & 2 & -11
\end{array}\right]
$$

Define (with zero motivation),

$$
\mathbf{w}_{\mathbf{1}}=\left[\begin{array}{c}
-7 \\
-2 \\
3 \\
0
\end{array}\right] \quad \mathbf{w}_{\mathbf{2}}=\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right]
$$

and set $W=\left\langle\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}\right\rangle$. We verify that W is an invariant subspace of \mathbb{C}^{4} with respect to T. By the definition of W, any vector chosen from W can be written as a linear combination of \mathbf{w}_{1} and \mathbf{w}_{2}. Suppose that $\mathbf{w} \in W$, and then check the details of the following verification,

$$
T(\mathbf{w})=T\left(a_{1} \mathbf{w}_{1}+a_{2} \mathbf{w}_{2}\right)
$$

Definition SS 295

$$
\begin{align*}
& =a_{1} T\left(\mathbf{w}_{1}\right)+a_{2} T\left(\mathbf{w}_{2}\right) \\
& =a_{1}\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right]+a_{2}\left[\begin{array}{c}
5 \\
-2 \\
-3 \\
2
\end{array}\right] \\
& =a_{1} \mathbf{w}_{2}+a_{2}\left((-1) \mathbf{w}_{1}+2 \mathbf{w}_{2}\right) \\
& =\left(-a_{2}\right) \mathbf{w}_{1}+\left(a_{1}+2 a_{2}\right) \mathbf{w}_{2}
\end{align*}
$$

$$
\in W \quad \text { Definition SS } 295
$$

So, by Definition IS 615, W is an invariant subspace of \mathbb{C}^{4} relative to T. In an entirely similar manner we construct another invariant subspace of T.

With zero motivation, define

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right] \quad \mathbf{x}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right]
$$

and set $X=\left\langle\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}\right\rangle$. We verify that X is an invariant subspace of \mathbb{C}^{4} with respect to T. By the definition of X, any vector chosen from X can be written as a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}. Suppose that $\mathbf{x} \in X$, and then check the details of the following verification,

$$
\begin{aligned}
T(\mathbf{x}) & =T\left(b_{1} \mathbf{x}_{1}+b_{2} \mathbf{x}_{2}\right) \\
& =b_{1} T\left(\mathbf{x}_{1}\right)+b_{2} T\left(\mathbf{x}_{2}\right) \\
& =b_{1}\left[\begin{array}{c}
3 \\
0 \\
-1 \\
1
\end{array}\right]+b_{2}\left[\begin{array}{c}
3 \\
4 \\
-1 \\
-3
\end{array}\right] \\
& =b_{1}\left((-1) \mathbf{x}_{1}+\mathbf{x}_{2}\right)+b_{2}\left((-1) \mathbf{x}_{1}+(-3) \mathbf{x}_{2}\right) \\
& =\left(-b_{1}-b_{2}\right) \mathbf{x}_{1}+\left(b_{1}-3 b_{2}\right) \mathbf{x}_{2}
\end{aligned}
$$

$$
\in X \quad \text { Definition SS } 295
$$

So, by Definition IS 615, X is an invariant subspace of \mathbb{C}^{4} relative to T.
There is a bit of magic in each of these verifications where the two outputs of T happen to equal linear combinations of the two inputs. But this is the essential nature of an invariant subspace. We'll have a peek under the hood later, and it won't look so magical after all.

As a hint of things to come, verify that $B=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a basis of \mathbb{C}^{4}. Splitting this basis in half, Theorem DSFB 355, tells us that $\mathbb{C}^{4}=W \oplus X$. To see why a decomposition of a vector space into a direct sum of invariant subspaces might be interesting, construct the matrix representation of T relative to $B, M_{B, B}^{T}$. Hmmmmmm .

Example TIS 615 is a bit mysterious at this stage. Do we know any other examples of invariant subspaces? Yes, as it turns out, we have already seen quite a few. We'll give some examples now, and in more general situations, describe broad classes of invariant subspaces with theorems. First up is eigenspaces.

Theorem EIS

Eigenspaces are Invariant Subspaces

Suppose that $T: V \mapsto V$ is a linear transformation with eigenvalue λ and associated eigenspace $\mathcal{E}_{T}(\lambda)$.
Let W be any subspace of $\mathcal{E}_{T}(\lambda)$. Then W is an invariant subspace of V relative to T.
Proof Choose $\mathbf{w} \in W$. Then

$$
T(\mathbf{w})=\lambda \mathbf{w}
$$

$$
\in W \quad \text { Property SC } 275
$$

So by Definition IS 615, W is an invariant subspace of V relative to T.
Theorem EIS [616] is general enough to determine that an entire eigenspace is an invariant subspace, or that simply the span of a single eigenvector is an invariant subspace. It is not always the case that any subspace of an invariant subspace is again an invariant subspace, but eigenspaces do have this property. Here is an example of the theorem, which also allows us to very quickly build several several invariant (4 x 4 , 2 evs, 12 x 2 jordan, 12 x 2 diag)

Example EIS

Eigenspaces as invariant subspaces

Define the linear transformation $S: M_{22} \mapsto M_{22}$ by

$$
S\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
-2 a+19 b-33 c+21 d & -3 a+16 b-24 c+15 d \\
-2 a+9 b-13 c+9 d & -a+4 b-6 c+5 d
\end{array}\right]
$$

Build a matrix representation of S relative to the standard basis Definition MR 527, Example BM 322) and compute eigenvalues and eigenspaces of S with the computational techniques of Chapter E 389 in concert with Theorem EER 571. Then

$$
\mathcal{E}_{S}(1)=\left\langle\left\{\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]\right\}\right\rangle \quad \mathcal{E}_{S}(2)=\left\langle\left\{\left[\begin{array}{ll}
6 & 3 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
-9 & -3 \\
0 & 1
\end{array}\right]\right\}\right\rangle
$$

So by Theorem EIS 616, both $\mathcal{E}_{S}(1)$ and $\mathcal{E}_{S}(2)$ are invariant subspaces of M_{22} relative to S. However, Theorem EIS 616] provides even more invariant subspaces. Since $\mathcal{E}_{S}(1)$ has dimension 1 , it has no interesting subspaces, however $\mathcal{E}_{S}(2)$ has dimension 2 and has a plethora of subspaces. For example, set

$$
\mathbf{u}=2\left[\begin{array}{ll}
6 & 3 \\
1 & 0
\end{array}\right]+3\left[\begin{array}{cc}
-9 & -3 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-6 & -3 \\
2 & 3
\end{array}\right]
$$

and define $U=\langle\{\mathbf{u}\}\rangle$. Then since U is a subspace of $\mathcal{E}_{S}(2)$, Theorem EIS 616 says that U is an invariant subspace of M_{22} (or we could check this claim directly based simply on the fact that \mathbf{u} is an eigenvector of $S)$.

For every linear transformation there are some obvious, trivial invariant subspaces. Suppose that $T: V \mapsto V$ is a linear transformation. Then simply because T is a function (Definition LT 441), the subspace V is an invariant subspace of T. In only a minor twist on this theme, the range of $T, \mathcal{R}(T)$, is an invariant subspace of T by Definition RLT 483. Finally, Theorem LTTZZ 445 provides the justification for claiming that $\{\mathbf{0}\}$ is an invariant subspace of T.

That the trivial subspace is always an invariant subspace is a special case of the next theorem. As an easy exercise before reading the next theorem, prove that the kernel of a linear transformation Definition KLT 468$), \mathcal{K}(T)$, is an invariant subspace. We'll wait.

Theorem KPIS

Kernels of Powers are Invariant Subspaces

Suppose that $T: V \mapsto V$ is a linear transformation. Then $\mathcal{K}\left(T^{k}\right)$ is an invariant subspace of V.
Proof Suppose that $\mathbf{z} \in \mathcal{K}\left(T^{k}\right)$. Then

$$
\begin{aligned}
T^{k}(T(\mathbf{z})) & =T^{k+1}(\mathbf{z}) & & \text { Definition LTC 456 } \\
& =T\left(T^{k}(\mathbf{z})\right) & & \text { Definition LTC 456 } \\
& =T(\mathbf{0}) & & \text { Definition KLT 468 } \\
& =\mathbf{0} & & \text { Theorem LTTZZ 445 }
\end{aligned}
$$

So by Definition KLT 468, we see that $T(\mathbf{z}) \in \mathcal{K}\left(T^{k}\right)$. Thus $\mathcal{K}\left(T^{k}\right)$ is an invariant subspace of V relative to T (Definition IS 615).

Two interesting special cases of Theorem KPIS 617 occur when choose $k=0$ and $k=1$. Rather than give an example of this theorem, we will refer you back to Example KPNLT 605 where we work with null spaces of the first four powers of a nilpotent matrix. By Theorem KPIS 617 each of these null spaces is an invariant subspace of the associated linear transformation.

Here's one more example of invariant subspaces we have encountered previously.

Example ISJB

Invariant subspaces and Jordan blocks

Refer back to Example CFNLT 610. We decomposed the vector space \mathbb{C}^{6} into a direct sum of the subspaces $Z_{1}, Z_{2}, Z_{3}, Z_{4}$. The union of the basis vectors for these subspaces is a basis of \mathbb{C}^{6}, which we reordered prior to building a matrix representation of the linear transformation T. A principal reason for this reordering was to create invariant subspaces (though it was not obvious then).

Define

$$
\begin{aligned}
& X_{1}=\left\langle\left\{\mathbf{z}_{1,1}, \mathbf{z}_{2,1}, \mathbf{z}_{3,1}, \mathbf{z}_{4,1}\right\}\right\rangle=\left\langle\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
3 \\
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
-3 \\
-3 \\
-3 \\
-3 \\
-3 \\
-2
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right\}\right\rangle \\
& \left.X_{2}=\left\langle\left\{\mathbf{z}_{1,2}, \mathbf{z}_{2,2}\right\}\right\rangle=\left\langle\left\{\begin{array}{l}
\text { (} \\
-2 \\
-2 \\
-5 \\
-2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
2 \\
2 \\
2 \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

Recall from the proof of Theorem CFNLT 606 or the computations in Example CFNLT 610 that first elements of X_{1} and X_{2} are in the kernel of $T, \mathcal{K}(T)$, and each element of X_{1} and X_{2} is the output of T when evaluated with the subsequent element of the set. This was by design, and it is this feature of these basis vectors that leads to the nearly diagonal matrix representation with Jordan blocks. However, we also recognize now that this property of these basis vectors allow us to conclude easily that X_{1} and X_{2} are invariant subspaces of \mathbb{C}^{6} relative to T.

Furthermore, $\mathbb{C}^{6}=X_{1} \oplus X_{2}$ Theorem DSFB 355). So the domain of T is the direct sum of invariant subspaces and the resulting matrix representation has a block diagonal form. Hmmmmm.

Subsection GEE
 Generalized Eigenvectors and Eigenspaces

We now define a new type of invariant subspace and explore its key properties. This generalization of eigenvalues and eigenspaces will allow us to move from diagonal matrix representations of diagonalizable matrices to nearly diagonal matrix representations of arbitrary matrices. Here are the definitions.

Definition GEV

Generalized Eigenvector

Suppose that $T: V \mapsto V$ is a linear transformation. Suppose further that for $\mathbf{x} \neq \mathbf{0},\left(T-\lambda I_{V}\right)^{k}(\mathbf{x})=\mathbf{0}$ for some $k>0$. Then \mathbf{x} is a generalized eigenvector of T with eigenvalue λ.

Definition GES

Generalized Eigenspace

Suppose that $T: V \mapsto V$ is a linear transformation. Define the generalized eigenspace of T for λ as

$$
\mathcal{G}_{T}(\lambda)=\left\{\mathbf{x} \mid\left(T-\lambda I_{V}\right)^{k}(\mathbf{x})=\mathbf{0} \text { for some } k \geq 0\right\}
$$

(This definition contains Notation GES.)
So the generalized eigenspace is composed of generalized eigenvectors, plus the zero vector. As the name implies, the generalized eigenspace is a subspace of V. But more topically, it is an invariant subspace of V relative to T.

Theorem GESIS

Generalized Eigenspace is an Invariant Subspace

Suppose that $T: V \mapsto V$ is a linear transformation. Then the generalized eigenspace $\mathcal{G}_{T}(\lambda)$ is an invariant subspace of V relative to T.
Proof First we establish that $\mathcal{G}_{T}(\lambda)$ is a subspace of V. First $\left(T-\lambda I_{V}\right)^{1}(\mathbf{0})=\mathbf{0}$ by Theorem LTTZZ 445, so $\mathbf{0} \in \mathcal{G}_{T}(\lambda)$.

Suppose that $\mathbf{x}, \mathbf{y} \in \mathcal{G}_{T}(\lambda)$. Then there are integers k, ℓ such that $\left(T-\lambda I_{V}\right)^{k}(\mathbf{x})=\mathbf{0}$ and $\left(T-\lambda I_{V}\right)^{\ell}(\mathbf{y})=$ 0. Set $m=k+\ell$,

$$
\begin{aligned}
\left(T-\lambda I_{V}\right)^{m}(\mathbf{x}+\mathbf{y})= & \left(T-\lambda I_{V}\right)^{m}(\mathbf{x})+\left(T-\lambda I_{V}\right)^{m}(\mathbf{y}) & & \text { Definition LT 441 } \\
= & \left(T-\lambda I_{V}\right)^{k+\ell}(\mathbf{x})+\left(T-\lambda I_{V}\right)^{k+\ell}(\mathbf{y}) & & \\
= & \left(T-\lambda I_{V}\right)^{\ell}\left(\left(T-\lambda I_{V}\right)^{k}(\mathbf{x})\right)+ & & \\
& \left(T-\lambda I_{V}\right)^{k}\left(\left(T-\lambda I_{V}\right)^{\ell}(\mathbf{y})\right) & & \text { Definition LTC 456 } \\
= & \left(T-\lambda I_{V}\right)^{\ell}(\mathbf{0})+\left(T-\lambda I_{V}\right)^{k}(\mathbf{0}) & & \text { Definition GES 619 } \\
= & \mathbf{0}+\mathbf{0} & & \text { Theorem LTTZZ 445 } \\
= & \mathbf{0} & & \text { Property Z 276 }
\end{aligned}
$$

So $\mathbf{x}+\mathbf{y} \in \mathcal{G}_{T}(\lambda)$.
Suppose that $\mathbf{x} \in \mathcal{G}_{T}(\lambda)$ and $\alpha \in \mathbb{C}$. Then there is an integer k such that $\left(T-\lambda I_{V}\right)^{k}(\mathbf{x})=\mathbf{0}$.

$$
\begin{aligned}
\left(T-\lambda I_{V}\right)^{k}(\alpha \mathbf{x}) & =\alpha\left(T-\lambda I_{V}\right)^{k}(\mathbf{x}) & & \text { Definition LT } 441 \\
& =\alpha \mathbf{0} & & \text { Definition GES 619 } \\
& =\mathbf{0} & & \text { Theorem ZVSM } 282
\end{aligned}
$$

So $\alpha \mathbf{x} \in \mathcal{G}_{T}(\lambda)$. By Theorem TSS 290, $\mathcal{G}_{T}(\lambda)$ is a subspace of V.
Now we show that $\mathcal{G}_{T}(\lambda)$ is invariant relative to T. Suppose that $\mathbf{x} \in \mathcal{G}_{T}(\lambda)$. Then there is an integer k such that $\left(T-\lambda I_{V}\right)^{k}(\mathbf{x})=\mathbf{0}$. Recognize also that $\left(T-\lambda I_{V}\right)^{k}$ is a polynomial in T, and therefore commutes with T (that is, $T \circ p(T)=p(T) \circ T$ for any polynomial $p(x)$). Now,

$$
\left(T-\lambda I_{V}\right)^{k}(T(\mathbf{x}))=T\left(\left(T-\lambda I_{V}\right)^{k}(\mathbf{x})\right)
$$

$$
=T(\mathbf{0}) \quad \text { Definition GES } 619
$$

$$
=\mathbf{0} \quad \text { Theorem LTTZZ } 445
$$

This qualifies $T(\mathbf{x})$ for membership in $\mathcal{G}_{T}(\lambda)$, so by Definition GES 619, $\mathcal{G}_{T}(\lambda)$ is invariant relative to T.

Before we compute some generalized eigenspaces, we state and prove one theorem that will make it much easier to create a generalized eigenspace, since it will allow us to use tools we already know well, and will remove some the ambiguity of the clause "for some k " in the definition.

Theorem GEK

Generalized Eigenspace as a Kernel

Suppose that $T: V \mapsto V$ is a linear transformation, $\operatorname{dim}(V)=n$, and λ is an eigenvalue of T. Then $\mathcal{G}_{T}(\lambda)=\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{n}\right)$.

Proof The conclusion of this theorem is a set equality, so we will apply Definition SE 670 by establishing two set inclusions. First, suppose that $\mathbf{x} \in \mathcal{G}_{T}(\lambda)$. Then there is an integer k such that $\left(T-\lambda I_{V}\right)^{k}(\mathbf{x})=\mathbf{0}$. This is equivalent to the statement that $\mathbf{x} \in \mathcal{K}\left(\left(T-\lambda I_{V}\right)^{k}\right)$. No matter what the value of k is, Theorem KPLT 603 gives

$$
\mathbf{x} \in \mathcal{K}\left(\left(T-\lambda I_{V}\right)^{k}\right) \subseteq \mathcal{K}\left(\left(T-\lambda I_{V}\right)^{n}\right)
$$

So, $\mathcal{G}_{T}(\lambda) \subseteq \mathcal{K}\left(\left(T-\lambda I_{V}\right)^{n}\right)$. For the opposite inclusion, suppose $\mathbf{y} \in \mathcal{K}\left(\left(T-\lambda I_{V}\right)^{n}\right)$. Then $\left(T-\lambda I_{V}\right)^{n}(\mathbf{y})=$ $\mathbf{0}$, so $\mathbf{y} \in \mathcal{G}_{T}(\lambda)$ and thus $\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{n}\right) \subseteq \mathcal{G}_{T}(\lambda)$. By Definition SE 670 we have the desired equality of sets.

Theorem GEK 620 allows us to compute generalized eigenspaces as a single kernel (or null space of a matrix representation) with tools like Theorem KNSI 537] and Theorem BNS 138. Also, we do not need to consider all possible powers k and can simply consider the case where $k=n$. It is worth noting that the "regular" eigenspace is a subspace of the generalized eigenspace since

$$
\mathcal{E}_{T}(\lambda)=\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{1}\right) \subseteq \mathcal{K}\left(\left(T-\lambda I_{V}\right)^{n}\right)=\mathcal{G}_{T}(\lambda)
$$

where the subset inclusion is a consequence of Theorem KPLT 603. Also, there is no such thing as a "generalized eigenvalue." If λ is not an eigenvalue of T, then the kernel of $T-\lambda I_{V}$ is trivial and therefore subsequent powers of $T-\lambda I_{V}$ also have trivial kernels Theorem KPLT 603). So the generalized eigenspace of a scalar that is not already an eigenvalue would be trivial. Alright, we know enough now to compute some generalized eigenspaces. We will record some information about algebraic and geometric multiplicities of eigenvalues (Definition AME 399, Definition GME 399) as we go, since these observations will be of interest in light of some future theorems.

Example GE4

Generalized eigenspaces, dimension 4 domain

In Example TIS 615 we presented two invariant subspaces of \mathbb{C}^{4}. There was some mystery about just how these were constructed, but we can now reveal that they are generalized eigenspaces. Example TIS 615 featured $T: \mathbb{C}^{4} \mapsto \mathbb{C}^{4}$ defined by $T(\mathbf{x})=A \mathbf{x}$ with A given by

$$
A=\left[\begin{array}{cccc}
-8 & 6 & -15 & 9 \\
-8 & 14 & -10 & 18 \\
1 & 1 & 3 & 0 \\
3 & -8 & 2 & -11
\end{array}\right]
$$

A matrix representation of T relative to the standard basis Definition SUV 210) will equal A. So we can analyze A with the techniques of Chapter E 389. Doing so, we find two eigenvalues, $\lambda=1$, -2 , with multiplicities,

$$
\begin{aligned}
\alpha_{T}(1) & =2 & \gamma_{T}(1) & =1 \\
\alpha_{T}(-2) & =2 & \gamma_{T}(-2) & =1
\end{aligned}
$$

To apply Theorem GEK 620 we subtract each eigenvalue from the diagonal entries of A, raise the result to the power $\operatorname{dim}\left(\mathbb{C}^{4}\right)=4$, and compute a basis for the null space.

$$
\begin{aligned}
\lambda=-2 & \left(A-(-2) I_{4}\right)^{4}
\end{aligned}=\left[\begin{array}{cccc}
648 & -1215 & 729 & -1215 \\
-324 & 486 & -486 & 486 \\
-405 & 729 & -486 & 729 \\
297 & -486 & 405 & -486
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

In Example TIS 615 we concluded that these two invariant subspaces formed a direct sum of \mathbb{C}^{4}, only at that time, they were called X and W. Now we can write

$$
\mathbb{C}^{4}=\mathcal{G}_{T}(1) \oplus \mathcal{G}_{T}(-2)
$$

This is no accident. Notice that the dimension of each of these invariant subspaces is equal to the algebraic multiplicity of the associated eigenvalue. Not an accident either. (See the upcoming Theorem GESD 635.)

Example GE6

Generalized eigenspaces, dimension 6 domain

Define the linear transformation $S: \mathbb{C}^{6} \mapsto \mathbb{C}^{6}$ by $S(\mathbf{x})=B \mathbf{x}$ where

$$
\left[\begin{array}{cccccc}
2 & -4 & 25 & -54 & 90 & -37 \\
2 & -3 & 4 & -16 & 26 & -8 \\
2 & -3 & 4 & -15 & 24 & -7 \\
10 & -18 & 6 & -36 & 51 & -2 \\
8 & -14 & 0 & -21 & 28 & 4 \\
5 & -7 & -6 & -7 & 8 & 7
\end{array}\right]
$$

Then B will be the matrix representation of S relative to the standard basis (Definition SUV 210) and we can use the techniques of Chapter E 389 applied to B in order to find the eigenvalues of S.

$$
\begin{aligned}
\alpha_{S}(3) & =2 & \gamma_{S}(3) & =1 \\
\alpha_{S}(-1) & =4 & \gamma_{S}(-1) & =2
\end{aligned}
$$

To find the generalized eigenspaces of S we need to subtract an eigenvalue from the diagonal elements of B, raise the result to the power $\operatorname{dim}\left(\mathbb{C}^{6}\right)=6$ and compute the null space. Here are the results for the two
eigenvalues of S,

$$
\begin{aligned}
& \lambda=3 \quad\left(B-3 I_{6}\right)^{6}=\left[\begin{array}{cccccc}
64000 & -152576 & -59904 & 26112 & -95744 & 133632 \\
15872 & -39936 & -11776 & 8704 & -29184 & 36352 \\
12032 & -30208 & -9984 & 6400 & -20736 & 26368 \\
-1536 & 11264 & -23040 & 17920 & -17920 & -1536 \\
-9728 & 27648 & -6656 & 9728 & -1536 & -17920 \\
-7936 & 17920 & 5888 & 1792 & 4352 & -14080
\end{array}\right] \\
& \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & -4 & 5 \\
0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{G}_{S}(3)=\left\langle\left\{\left[\begin{array}{l}
4 \\
1 \\
1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
-1 \\
-1 \\
-1 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \lambda=-1 \quad\left(B-(-1) I_{6}\right)^{6}=\left[\begin{array}{cccccc}
6144 & -16384 & 18432 & -36864 & 57344 & -18432 \\
4096 & -8192 & 4096 & -16384 & 24576 & -4096 \\
4096 & -8192 & 4096 & -16384 & 24576 & -4096 \\
18432 & -32768 & 6144 & -61440 & 90112 & -6144 \\
14336 & -24576 & 2048 & -45056 & 65536 & -2048 \\
10240 & -16384 & -2048 & -28672 & 40960 & 2048
\end{array}\right] \\
& \xrightarrow{\text { RREF }}\left[\begin{array}{cccccc}
1 & 0 & -5 & 2 & -4 & 5 \\
0 & 1 & -3 & 3 & -5 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{G}_{S}(-1)=\left\{\left\{\left[\begin{array}{l}
5 \\
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
\end{aligned}
$$

If we take the union of the two bases for these two invariant subspaces we obtain the set

$$
\begin{aligned}
C & =\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}\right\} \\
& \left.=\left\{\begin{array}{l}
4 \\
1 \\
1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
-5 \\
-1 \\
-1 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

You can check that this set is linearly independent (right now we have no guarantee this will happen). Once this is verified, we have a linearly independent set of size 6 inside a vector space of dimension 6 , so by

Theorem G 349, the set C is a basis for \mathbb{C}^{6}. This is enough to apply Theorem DSFB 355 and conclude that

$$
\mathbb{C}^{6}=\mathcal{G}_{S}(3) \oplus \mathcal{G}_{S}(-1)
$$

This is no accident. Notice that the dimension of each of these invariant subspaces is equal to the algebraic multiplicity of the associated eigenvalue. Not an accident either. (See the upcoming Theorem GESD 635.)

Subsection RLT
 Restrictions of Linear Transformations

Generalized eigenspaces will prove to be an important type of invariant subspace. A second reason for our interest in invariant subspaces is they provide us with another method for creating new linear transformations from old ones.

Definition LTR

Linear Transformation Restriction

Suppose that $T: V \mapsto V$ is a linear transformation, and U is an invariant subspace of V relative to T. Define the restriction of T to U by

$$
\left.T\right|_{U}: U \mapsto U
$$

$$
\left.T\right|_{U}(\mathbf{u})=T(\mathbf{u})
$$

(This definition contains Notation LTR.)
It might appear that this definition has not accomplished anything, as $\left.T\right|_{U}$ would appear to take on exactly the same values as T. And this is true. However, $\left.T\right|_{U}$ differs from T in the choice of domain and codomain. We tend to give little attention to the domain and codomain of functions, while their defining rules get the spotlight. But the restriction of a linear transformation is all about the choice of domain and codomain. We are restricting the rule of the function to a smaller subspace. Notice the importance of only using this construction with an invariant subspace, since otherwise we cannot be assured that the outputs of the function are even contained in the codomain. Maybe this observation should be the key step in the proof of a theorem saying that $\left.T\right|_{U}$ is also a linear transformation, but we won't bother.

Example LTRGE

Linear transformation restriction on generalized eigenspace

In order to gain some expereince with restrictions of linear transformations, we construct one and then also construct a matrix representation for the restriction. Furthermore, we will use a generalized eigenspace as the invariant subspace for the construction of the restriction.

Consider the linear transformation $T: \mathbb{C}^{5} \mapsto \mathbb{C}^{5}$ defined by $T(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left[\begin{array}{ccccc}
-22 & -24 & -24 & -24 & -46 \\
3 & 2 & 6 & 0 & 11 \\
-12 & -16 & -6 & -14 & -17 \\
6 & 8 & 4 & 10 & 8 \\
11 & 14 & 8 & 13 & 18
\end{array}\right]
$$

One of the eigenvalues of A is $\lambda=2$, with geometric multiplicity $\gamma_{T}(2)=1$, and algebraic multiplicity
$\alpha_{T}(2)=3$. We get the generalized eigenspace in the usual manner,

$$
W=\mathcal{G}_{T}(2)=\mathcal{K}\left(\left(T-2 I_{\mathbb{C}^{5}}\right)^{5}\right)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
2 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle=\left\langle\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}\right\rangle
$$

By Theorem GESIS [619, we know W is invariant relative to T, so we can employ Definition LTR 623 to form the restriction, $\left.T\right|_{W}: W \mapsto W$.

To better understand exactly what a restriction is (and isn't), we'll form a matrix representation of $\left.T\right|_{W}$. This will also be a skill we will use in subsequent examples. For a basis of W we will use $C=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$. Notice that $\operatorname{dim}(W)=3$, so our matrix representation will be a square matrix of size 3. Applying Definition MR 527, we compute

$$
\begin{aligned}
& \rho_{C}\left(T\left(\mathbf{w}_{1}\right)\right)=\rho_{C}\left(A \mathbf{w}_{1}\right)=\rho_{C}\left(\left[\begin{array}{c}
-4 \\
2 \\
2 \\
0 \\
0
\end{array}\right]\right)=\rho_{C}\left(\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-4 \\
2 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
& \rho_{C}\left(T\left(\mathbf{w}_{2}\right)\right)=\rho_{C}\left(A \mathbf{w}_{2}\right)=\rho_{C}\left(\left[\begin{array}{c}
0 \\
-2 \\
2 \\
2 \\
-1
\end{array}\right]\right)=\rho_{C}\left(\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
-4 \\
2 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right] \\
& \rho_{C}\left(T\left(\mathbf{w}_{3}\right)\right)=\rho_{C}\left(A \mathbf{w}_{3}\right)=\rho_{C}\left(\left[\begin{array}{c}
-6 \\
3 \\
-1 \\
0 \\
2
\end{array}\right]\right)=\rho_{C}\left((-1)\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right]+2\left[\begin{array}{c}
-4 \\
2 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right]
\end{aligned}
$$

So the matrix representation of $\left.T\right|_{W}$ relative to C is

$$
M_{C, C}^{T \mid W}=\left[\begin{array}{ccc}
2 & 2 & -1 \\
0 & 2 & 0 \\
0 & -1 & 2
\end{array}\right]
$$

The question arises: how do we use a 3×3 matrix to compute with vectors from \mathbb{C}^{5} ? To answer this question, consider the randomly chosen vector

$$
\mathbf{w}=\left[\begin{array}{c}
-4 \\
4 \\
4 \\
-2 \\
-1
\end{array}\right]
$$

First check that $\mathbf{w} \in \mathcal{G}_{T}(2)$. There are two ways to do this, first verify that

$$
\left(T-2 I_{\mathbb{C}^{5}}\right)^{5}(\mathbf{w})=\left(A-2 I_{5}\right)^{5} \mathbf{w}=\mathbf{0}
$$

meeting Definition GES 619 (with $k=5$). Or, express w as a linear combination of the basis C for W, to wit, $\mathbf{w}=4 \mathbf{w}_{1}-2 \mathbf{w}_{2}-\mathbf{w}_{3}$. Now compute $\left.T\right|_{W}(\mathbf{w})$ directly using Definition LTR 623,

$$
\left.T\right|_{W}(\mathbf{w})=T(\mathbf{w})=A \mathbf{w}=\left[\begin{array}{c}
-10 \\
9 \\
5 \\
-4 \\
0
\end{array}\right]
$$

It was necessary to verify that $\mathbf{w} \in \mathcal{G}_{T}(2)$, and if we trust our work so far, then this output will also be an element of W, but it would be wise to check this anyway (using either of the methods we used for \mathbf{w}). We'll wait.

Now we will repeat this sample computation, but instead using the matrix representation of $\left.T\right|_{W}$ relative to C.

$$
\begin{aligned}
\left.T\right|_{W}(\mathbf{w}) & =\rho_{C}^{-1}\left(M_{C, C}^{\left.T\right|_{W}} \rho_{C}(\mathbf{w})\right) \\
& =\rho_{C}^{-1}\left(M_{C, C}^{\left.T\right|_{W}} \rho_{C}\left(4 \mathbf{w}_{1}-2 \mathbf{w}_{2}-\mathbf{w}_{3}\right)\right) \\
& =\rho_{C}^{-1}\left(\left[\begin{array}{ccc}
2 & 2 & -1 \\
0 & 2 & 0 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
4 \\
-2 \\
-1
\end{array}\right]\right) \\
& =\rho_{C}^{-1}\left(\left[\begin{array}{c}
5 \\
-4 \\
0
\end{array}\right]\right) \\
& =5 \mathbf{w}_{1}-4 \mathbf{w}_{2}+0 \mathbf{w}_{3} \\
& =5\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+(-4)\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-4 \\
2 \\
0 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-10 \\
9 \\
5 \\
-4 \\
0
\end{array}\right]
\end{aligned}
$$

$$
=5 \mathbf{w}_{1}-4 \mathbf{w}_{2}+0 \mathbf{w}_{3} \quad \text { Definition VR } 513
$$

which matches the previous computation. Notice how the "action" of $\left.T\right|_{W}$ is accomplished by a 3×3 matrix multiplying a column vector of size 3 . If you would like more practice with these sorts of computations, mimic the above using the other eigenvalue of T, which is $\lambda=-2$. The generalized eigenspace has dimension 2 , so the matrix representation of the restriction to the generalized eigenspace will be a 2×2 matrix.

Suppose that T : $V \mapsto V$ is a linear transformation and we can find a decomposition of V as a direct sum, say $V=U_{1} \oplus U_{2} \oplus U_{3} \oplus \cdots \oplus U_{m}$ where each U_{i} is an invariant subspace of V relative to T. Then, for any $\mathbf{v} \in V$ there is a unique decomposition $\mathbf{v}=\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}+\cdots+\mathbf{u}_{m}$ with $\mathbf{u}_{i} \in U_{i}, 1 \leq i \leq m$ and furthermore

$$
\begin{aligned}
T(\mathbf{v}) & =T\left(\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}+\cdots+\mathbf{u}_{m}\right) \\
& =T\left(\mathbf{u}_{1}\right)+T\left(\mathbf{u}_{2}\right)+T\left(\mathbf{u}_{3}\right)+\cdots+T\left(\mathbf{u}_{m}\right) \\
& =\left.T\right|_{U_{1}}\left(\mathbf{u}_{1}\right)+\left.T\right|_{U_{2}}\left(\mathbf{u}_{2}\right)+\left.T\right|_{U_{3}}\left(\mathbf{u}_{3}\right)+\cdots+\left.T\right|_{U_{m}}\left(\mathbf{u}_{m}\right)
\end{aligned}
$$

So in a very real sense, we obtain a decomposition of the linear transformation T into the restrictions $\left.T\right|_{U_{i}}$, $1 \leq i \leq m$. If we wanted to be more careful, we could extend each restriction to a linear transformation defined on V by setting the output of $\left.T\right|_{U_{i}}$ to be the zero vector for inputs outside of U_{i}. Then T would be exactly equal to the sum (Definition LTA 454) of these extended restrictions. However, the irony of extending our restrictions is more than we could handle right now.

Our real interest is in the matrix representation of a linear transformation when the domain decomposes as a direct sum of invariant subspaces. Consider forming a basis B of V as the union of bases B_{i} from the individual U_{i}, i.e. $B=\cup_{i=1}^{m} B_{i}$. Now form the matrix representation of T relative to B. The result will be block diagonal, where each block is the matrix representation of a restriction $\left.T\right|_{U_{i}}$ relative to a basis B_{i}, $M_{B_{i}, B_{i}}^{T \mid U_{i}}$. Though we did not have the definitions to describe it then, this is exactly what was going on in the latter portion of the proof of Theorem CFNLT 606. Two examples should help to clarify these ideas.

Example ISMR4

Invariant subspaces, matrix representation, dimension 4 domain

 Example TIS 615 and Example GE4 620 describe a basis of \mathbb{C}^{4} which is derived from bases for two invariant subspaces (both generalized eigenspaces). In this example we will construct a matrix representation of the linear transformation T relative to this basis. Recycling the notation from Example TIS 615, we work with the basis,$$
B=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\left\{\left[\begin{array}{c}
-7 \\
-2 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

Now we compute the matrix representation of T relative to B, borrowing some computations from Example TIS 615,

$$
\begin{aligned}
& \rho_{B}\left(T\left(\mathbf{w}_{1}\right)\right)=\rho_{B}\left(\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right]\right)=\rho_{B}\left((0) \mathbf{w}_{1}+(1) \mathbf{w}_{2}\right)=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{w}_{2}\right)\right)=\rho_{B}\left(\left[\begin{array}{c}
5 \\
-2 \\
-3 \\
2
\end{array}\right]\right)=\rho_{B}\left((-1) \mathbf{w}_{1}+(2) \mathbf{w}_{2}\right)=\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{x}_{1}\right)\right)=\rho_{B}\left(\left[\begin{array}{c}
3 \\
0 \\
-1 \\
1
\end{array}\right]\right)=\rho_{B}\left((-1) \mathbf{x}_{1}+(1) \mathbf{x}_{2}\right)=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right] \\
& \rho_{B}\left(T\left(\mathbf{x}_{2}\right)\right)=\rho_{B}\left(\left[\begin{array}{c}
3 \\
4 \\
-1 \\
-3
\end{array}\right]\right)=\rho_{B}\left((-1) \mathbf{x}_{1}+(-3) \mathbf{x}_{2}\right)=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
-3
\end{array}\right]
\end{aligned}
$$

Applying Definition MR 527, we have

$$
M_{B, B}^{T}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & -3
\end{array}\right]
$$

The interesting feature of this representation is the two 2×2 blocks on the diagonal that arise from the decomposition of \mathbb{C}^{4} into a direct sum (of generalized eigenspaces). Or maybe the interesting feature of this matrix is the two 2×2 submatrices in the "other" corners that are all zero. You decide.

Example ISMR6

Invariant subspaces, matrix representation, dimension 6 domain
In Example GE6 [621] we computed the generalized eigenspaces of the linear transformation $S: \mathbb{C}^{6} \mapsto \mathbb{C}^{6}$ by $S(\mathrm{x})=B \mathrm{x}$ where

$$
\left[\begin{array}{cccccc}
2 & -4 & 25 & -54 & 90 & -37 \\
2 & -3 & 4 & -16 & 26 & -8 \\
2 & -3 & 4 & -15 & 24 & -7 \\
10 & -18 & 6 & -36 & 51 & -2 \\
8 & -14 & 0 & -21 & 28 & 4 \\
5 & -7 & -6 & -7 & 8 & 7
\end{array}\right]
$$

From this we found the basis

$$
\begin{aligned}
C & =\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}\right\} \\
& \left.=\left\{\begin{array}{l}
4 \\
1 \\
1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
-5 \\
-1 \\
-1 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

of \mathbb{C}^{6} where $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis of $\mathcal{G}_{S}(3)$ and $\left\{\mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}\right\}$ is a basis of $\mathcal{G}_{S}(-1)$. We can employ C in the construction of a matrix representation of S (Definition MR [527). Here are the computations,

$$
\begin{aligned}
& \rho_{C}\left(S\left(\mathbf{v}_{1}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
11 \\
3 \\
3 \\
7 \\
4 \\
1
\end{array}\right]\right)=\rho_{C}\left(4 \mathbf{v}_{1}+1 \mathbf{v}_{2}\right)=\left[\begin{array}{l}
4 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{C}\left(S\left(\mathbf{v}_{2}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
-14 \\
-3 \\
-3 \\
-4 \\
-1 \\
2
\end{array}\right]\right)=\rho_{C}\left((-1) \mathbf{v}_{1}+2 \mathbf{v}_{2}\right)=\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \rho_{C}\left(S\left(\mathbf{v}_{3}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
23 \\
5 \\
5 \\
2 \\
-2 \\
-2
\end{array}\right]\right)=\rho_{C}\left(5 \mathbf{v}_{3}+2 \mathbf{v}_{4}+(-2) \mathbf{v}_{5}+(-2) \mathbf{v}_{6}\right)=\left[\begin{array}{c}
0 \\
0 \\
5 \\
2 \\
-2 \\
-2
\end{array}\right] \\
& \rho_{C}\left(S\left(\mathbf{v}_{4}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
-46 \\
-11 \\
-10 \\
-2 \\
5 \\
4
\end{array}\right]\right)=\rho_{C}\left((-10) \mathbf{v}_{3}+(-2) \mathbf{v}_{4}+5 \mathbf{v}_{5}+4 \mathbf{v}_{6}\right)=\left[\begin{array}{c}
0 \\
0 \\
-10 \\
-2 \\
5 \\
4
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{C}\left(S\left(\mathbf{v}_{5}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
78 \\
19 \\
17 \\
1 \\
-10 \\
-7
\end{array}\right]\right)=\rho_{C}\left(17 \mathbf{v}_{3}+1 \mathbf{v}_{4}+(-10) \mathbf{v}_{5}+(-7) \mathbf{v}_{6}\right)=\left[\begin{array}{c}
0 \\
0 \\
17 \\
1 \\
-10 \\
-7
\end{array}\right] \\
& \rho_{C}\left(S\left(\mathbf{v}_{6}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
-35 \\
-9 \\
-8 \\
2 \\
6 \\
3
\end{array}\right]\right)=\rho_{C}\left((-8) \mathbf{v}_{3}+2 \mathbf{v}_{4}+6 \mathbf{v}_{5}+3 \mathbf{v}_{6}\right)=\left[\begin{array}{c}
0 \\
0 \\
-8 \\
2 \\
6 \\
3
\end{array}\right]
\end{aligned}
$$

These column vectors are the columns of the matrix representation, so we obtain

$$
M_{C, C}^{S}=\left[\begin{array}{cccccc}
4 & -1 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & -10 & 17 & -8 \\
0 & 0 & 2 & -2 & 1 & 2 \\
0 & 0 & -2 & 5 & -10 & 6 \\
0 & 0 & -2 & 4 & -7 & 3
\end{array}\right]
$$

As before, the key feature of this representation is the 2×2 and 4×4 blocks on the diagonal. We will discover in the final theorem of this section Theorem RGEN (628) that we already understand these blocks fairly well. For now, we recognize them as arising from generalized eigenspaces and suspect that their sizes are equal to the algebraic multiplicities of the eigenvalues.

The paragraph prior to these last two examples is worth repeating. A basis derived from a direct sum decomposition into invariant subspaces will provide a matrix representation of a linear transformation with a block diagonal form.

Diagonalizing a linear transformation is the most extreme example of decomposing a vector space into invariant subspaces. When a linear transformation is diagonalizable, then there is a basis composed of eigenvectors Theorem DC 429). Each of these basis vectors can be used individually as the lone element of a spanning set for an invariant subspace (Theorem EIS [616). So the domain decomposes into a direct sum of one-dimensional invariant subspaces (Theorem DSFB 355). The corresponding matrix representation is then block diagonal with all the blocks of size 1, i.e. the matrix is diagonal. Section NLT 597, Section IS 615 and Section JCF 633 are all devoted to generalizing this extreme situation when there are not enough eigenvectors available to make such a complete decomposition and arrive at such an elegant matrix representation.

One last theorem will roll up much of this section and Section NLT 597 into one nice, neat package.

Theorem RGEN

Restriction to Generalized Eigenspace is Nilpotent

Suppose $T: V \mapsto V$ is a linear transformation with eigenvalue λ. Then the linear transformation $\left.T\right|_{\mathcal{G}_{T}(\lambda)}-$ $\lambda I_{\mathcal{G}_{T}(\lambda)}$ is nilpotent.
Proof Notice first that every subspace of V is invariant with respect to I_{V}, so $I_{\mathcal{G}_{T}(\lambda)}=\left.I_{V}\right|_{\mathcal{G}_{T}(\lambda)}$. Let $n=\operatorname{dim}(V)$ and choose $\mathbf{v} \in \mathcal{G}_{T}(\lambda)$. Then

$$
\begin{aligned}
\left(\left.T\right|_{\mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}(\lambda)}\right)^{n}(\mathbf{v}) & =\left(T-\lambda I_{V}\right)^{n}(\mathbf{v}) & & \text { Definition LTR } 623 \\
& =\mathbf{0} & & \text { Theorem GEK } 620
\end{aligned}
$$

So by Definition NLT 597, $\left.T\right|_{\mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}(\lambda)}$ is nilpotent.
The proof of Theorem RGEN 628 indicates that the index of the nilpotent linear transformation is less than or equal to the dimension of V. In practice, it will be less than or equal to the dimension of the
domain of the linear transformation, $\mathcal{G}_{T}(\lambda)$. In any event, the exact value of this index will be of some interest, so we define it now. Notice that this is a property of the eigenvalue λ, similar to the algebraic and geometric multiplicities (Definition AME 399, Definition GME [399]).

Definition IE

Index of an Eigenvalue

Suppose $T: V \mapsto V$ is a linear transformation with eigenvalue λ. Then the index of $\lambda, \iota_{T}(\lambda)$, is the index of the nilpotent linear transformation $\left.T\right|_{\mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}(\lambda)}$.
(This definition contains Notation IE.)

Example GENR6

Generalized eigenspaces and nilpotent restrictions, dimension 6 domain

 In Example GE6 621 we computed the generalized eigenspaces of the linear transformation $S: \mathbb{C}^{6} \mapsto \mathbb{C}^{6}$ defined by $S(\mathrm{x})=B \mathrm{x}$ where$$
\left[\begin{array}{cccccc}
2 & -4 & 25 & -54 & 90 & -37 \\
2 & -3 & 4 & -16 & 26 & -8 \\
2 & -3 & 4 & -15 & 24 & -7 \\
10 & -18 & 6 & -36 & 51 & -2 \\
8 & -14 & 0 & -21 & 28 & 4 \\
5 & -7 & -6 & -7 & 8 & 7
\end{array}\right]
$$

The generalized eigenspace, $\mathcal{G}_{S}(3)$, has dimension 2 , while $\mathcal{G}_{S}(-1)$, has dimension 4 . We'll investigate each thoroughly in turn, with the intent being to illustrate Theorem RGEN 628. Much of our computations will be repeats of those done in Example ISMR6 627.

For $U=\mathcal{G}_{S}(3)$ we compute a matrix representation of $\left.S\right|_{U}$ using the basis found in Example GE6 621,

$$
B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}=\left\{\left[\begin{array}{l}
4 \\
1 \\
1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
-1 \\
-1 \\
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

Since B has size 2, we obtain a 2×2 matrix representation (Definition MR 527) from

$$
\begin{aligned}
& \rho_{B}\left(\left.S\right|_{U}\left(\mathbf{u}_{1}\right)\right)=\rho_{B}\left(\left[\begin{array}{c}
11 \\
3 \\
3 \\
7 \\
4 \\
1
\end{array}\right]\right)=\rho_{B}\left(4 \mathbf{u}_{1}+\mathbf{u}_{2}\right)=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \\
& \rho_{B}\left(\left.S\right|_{U}\left(\mathbf{u}_{2}\right)\right)=\rho_{B}\left(\left[\begin{array}{c}
-14 \\
-3 \\
-3 \\
-4 \\
-1 \\
2
\end{array}\right]\right)=\rho_{B}\left((-1) \mathbf{u}_{1}+2 \mathbf{u}_{2}\right)=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\end{aligned}
$$

Thus

$$
M=M_{U, U}^{\left.S\right|_{U}}=\left[\begin{array}{cc}
4 & -1 \\
1 & 2
\end{array}\right]
$$

Now we can illustrate Theorem RGEN 628 with powers of the matrix representation (rather than the restriction itself),

$$
M-3 I_{2}=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right] \quad\left(M-3 I_{2}\right)^{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

So $M-3 I_{2}$ is a nilpotent matrix of index 2 (meaning that $\left.S\right|_{U}-3 I_{U}$ is a nilpotent linear transformation of index 2) and according to Definition IE 629 we say $\iota_{S}(3)=2$.

For $W=\mathcal{G}_{S}(-1)$ we compute a matrix representation of $\left.S\right|_{W}$ using the basis found in Example GE6 621,

$$
C=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}\right\}=\left\{\left[\begin{array}{l}
5 \\
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Since C has size 4, we obtain a 4×4 matrix representation (Definition MR 527) from

$$
\begin{aligned}
& \rho_{C}\left(\left.S\right|_{W}\left(\mathbf{w}_{1}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
23 \\
5 \\
5 \\
2 \\
-2 \\
-2
\end{array}\right]\right)=\rho_{C}\left(5 \mathbf{w}_{1}+2 \mathbf{w}_{2}+(-2) \mathbf{w}_{3}+(-2) \mathbf{w}_{4}\right)=\left[\begin{array}{c}
5 \\
2 \\
-2 \\
-2
\end{array}\right] \\
& \rho_{C}\left(\left.S\right|_{W}\left(\mathbf{w}_{2}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
-46 \\
-11 \\
-10 \\
-2 \\
5 \\
4
\end{array}\right]\right)=\rho_{C}\left((-10) \mathbf{w}_{1}+(-2) \mathbf{w}_{2}+5 \mathbf{w}_{3}+4 \mathbf{w}_{4}\right)=\left[\begin{array}{c}
-10 \\
-2 \\
5 \\
4
\end{array}\right] \\
& \rho_{C}\left(\left.S\right|_{W}\left(\mathbf{w}_{3}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
78 \\
19 \\
17 \\
1 \\
-10 \\
-7
\end{array}\right]\right)=\rho_{C}\left(17 \mathbf{w}_{1}+\mathbf{w}_{2}+(-10) \mathbf{w}_{3}+(-7) \mathbf{w}_{4}\right)=\left[\begin{array}{c}
17 \\
1 \\
-10 \\
-7
\end{array}\right] \\
& \rho_{C}\left(\left.S\right|_{W}\left(\mathbf{w}_{4}\right)\right)=\rho_{C}\left(\left[\begin{array}{c}
-35 \\
-9 \\
-8 \\
2 \\
6 \\
3
\end{array}\right]\right)=\rho_{C}\left((-8) \mathbf{w}_{1}+2 \mathbf{w}_{2}+6 \mathbf{w}_{3}+3 \mathbf{w}_{4}\right)=\left[\begin{array}{c}
-8 \\
2 \\
6 \\
3
\end{array}\right]
\end{aligned}
$$

Thus

$$
N=M_{W, W}^{\left.S\right|_{W}}=\left[\begin{array}{cccc}
5 & -10 & 17 & -8 \\
2 & -2 & 1 & 2 \\
-2 & 5 & -10 & 6 \\
-2 & 4 & -7 & 3
\end{array}\right]
$$

Now we can illustrate Theorem RGEN 628] with powers of the matrix representation (rather than the restriction itself),

$$
\begin{aligned}
N-(-1) I_{4} & =\left[\begin{array}{cccc}
6 & -10 & 17 & -8 \\
2 & -1 & 1 & 2 \\
-2 & 5 & -9 & 6 \\
-2 & 4 & -7 & 4
\end{array}\right] \\
\left(N-(-1) I_{4}\right)^{2} & =\left[\begin{array}{cccc}
-2 & 3 & -5 & 2 \\
4 & -6 & 10 & -4 \\
4 & -6 & 10 & -4 \\
2 & -3 & 5 & -2
\end{array}\right] \\
\left(N-(-1) I_{4}\right)^{3} & =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

So $N-(-1) I_{4}$ is a nilpotent matrix of index 3 (meaning that $\left.S\right|_{W}-(-1) I_{W}$ is a nilpotent linear transformation of index 3) and according to Definition IE 629 we say $\iota_{S}(-1)=3$.

Notice that if we were to take the union of the two bases of the generalized eigenspaces, we would have a basis for \mathbb{C}^{6}. Then a matrix representation of S relative to this basis would be the same block diagonal matrix we found in Example ISMR6 627, only we now understand each of these blocks as being very close to being a nilpotent matrix.

Invariant subspaces, and restrictions of linear transformations, are topics you will see again and again if you continue with further study of linear algebra. Our reasons for discussing them now is to arrive at a nice matrix representation of the restriction of a linear transformation to one of its generalized eigenspaces. Here's the theorem.

Theorem MRRGE

Matrix Representation of a Restriction to a Generalized Eigenspace

Suppose that $T: V \mapsto V$ is a linear transformation with eigenvalue λ. Then there is a basis of the the generalized eigenspace $\mathcal{G}_{T}(\lambda)$ such that the restriction $\left.T\right|_{\mathcal{G}_{T}(\lambda)}: \mathcal{G}_{T}(\lambda) \mapsto \mathcal{G}_{T}(\lambda)$ has a matrix representation that is block diagonal where each block is a Jordan block of the form $J_{n}(\lambda)$.
Proof Theorem RGEN 628 tells us that $\left.T\right|_{\mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}(\lambda)}$ is a nilpotent linear transformation. Theorem CFNLT 606 tells us that a nilpotent linear transformation has a basis for its domain that yields a matrix representation that is block diagonal where the blocks are Jordan blocks of the form $J_{n}(0)$. Let B be a basis of $\mathcal{G}_{T}(\lambda)$ that yields such a matrix representation for $\left.T\right|_{\mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}(\lambda)}$.

By Definition LTA 454, we can write

$$
\left.T\right|_{\mathcal{G}_{T}(\lambda)}=\left(\left.T\right|_{\mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}(\lambda)}\right)+\lambda I_{\mathcal{G}_{T}(\lambda)}
$$

The matrix representation of $\lambda I_{\mathcal{G}_{T}(\lambda)}$ relative to the basis B is then simply the diagonal matrix λI_{m}, where $m=\operatorname{dim}\left(\mathcal{G}_{T}(\lambda)\right)$. By Theorem MRSLT 533 we have the rather unweildy expression,

$$
\begin{aligned}
M_{B, B}^{T \mid \mathcal{G}_{T}(\lambda)} & \left.=M_{B, B}^{\left(\left.T\right|_{\mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}}(\lambda)\right.}\right)+\lambda I_{\mathcal{G}_{T}(\lambda)} \\
& =M_{B, B}^{T \mid \mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}(\lambda)}+M_{B, B}^{I_{\mathcal{G}_{T}(\lambda)}}
\end{aligned}
$$

The first of these matrix representations has Jordan blocks with zero in every diagonal entry, while the second matrix representation has λ in every diagonal entry. The result of adding the two representations is to convert the Jordan blocks from the form $J_{n}(0)$ to the form $J_{n}(\lambda)$.

Of course, Theorem CFNLT 606 provides some extra information on the sizes of the Jordan blocks in a representation and we could carry over this information to Theorem MRRGE 631, but will save that for a subsequent application of this result.

Section JCF
 Jordan Canonical Form

This Section Under Construction
 (Just Lacking JCF Examples)

We have seen in Section IS 615 that generalized eigenspaces are invariant subspaces that in every instance have led to a direct sum decomposition of the domain of the associated linear transformation. This allows us to create a block diagonal matrix representation Example ISMR4 626, Example ISMR6 [627). We also know from Theorem RGEN 628 that the restriction of a linear transformation to a generalized eigenspace is almost a nilpotent linear transformation. Of course, we understand nilpotent linear transformations very well from Section NLT 597 and we have carefully determined a nice matrix representation for them.

So here is the game plan for the final push. Prove that the domain of a linear transformation always decomposes into a direct sum of generalized eigenspaces. We have unravelled Theorem RGEN 628 at Theorem MRRGE 631 so that we can formulate the matrix representations of the restrictions on the generalized eigenspaces using our storehouse of results about nilpotent linear transformations. Arrive at a matrix representation of any linear transformation that is block diagonal with each block being a Jordan block.

We will be strictly theoretical at first, proving two major theorems without any explanatory examples, so hang on. Then we can state our main result and move on to several interesting examples.

Subsection UTMR
 Upper Triangular Matrix Representation

Our theorems in this section will each assert that certain bases exist, but what we are really after is the matrix representation that arises from the basis (this is the style of Theorem CFNLT 606).

Theorem UTMR

Upper Triangular Matrix Representation

Suppose that $T: V \mapsto V$ is a linear transformation. Then there is a basis, B, for V such that the matrix representation of T relative to $B, M_{B, B}^{T}$, is an upper triangular matrix. Each diagonal entry is an eigenvalue of T, and if λ is an eigenvalue of T, then λ occurs $\alpha_{T}(\lambda)$ times on the diagonal.

Proof We will establish this result using induction of the dimension of V (Technique I 680). To start suppose that $\operatorname{dim}(V)=1$. Choose any nonzero vector $\mathbf{v} \in V$, and then realize that $V=\langle\{\mathbf{v}\}\rangle$. Subsequently, we can describe T completely by $T(\mathbf{v})=\beta \mathbf{v}$ for some $\beta \in \mathbb{C}$. Thus, we recognize β as one eigenvalue of T, and there are no others Theorem ME 419). And $\alpha_{\beta}(=) 1$. Our description of T also gives us a matrix representation relative to $\{\mathbf{v}\}$ as the 1×1 matrix with lone entry equal to β. This representation is upper triangular and the diagonal entry is an eigenvalue of T, occuring $\alpha_{T}(\beta)$ times.

For the induction step let $\operatorname{dim}(V)=m$, and assume the theorem is true for every linear transformation defined on a vector space of dimension less than m. By Theorem EMHE 393 (suitably converted to the setting of a linear transformation), T has at least one eigenvalue, denote this eigenvalue as λ. (We will remark later about how critical this step is.) We now consider properties of the linear transformation $T-\lambda I_{V}: V \mapsto V$.

Let \mathbf{x} be an eigenvector of T for λ. By definition $\mathbf{x} \neq \mathbf{0}$. Then

$$
T-\lambda I_{V}(\mathbf{x})=T(\mathbf{x})-\lambda I_{V}(\mathbf{x}) \quad \text { Theorem VSLT } 456
$$

$$
\begin{aligned}
& =T(\mathbf{x})-\lambda \mathbf{x} \\
& =\lambda \mathbf{x}-\lambda \mathbf{x} \\
& =\mathbf{0}
\end{aligned}
$$

Definition IDLT 495
Definition EELT 559
Property AI 276

So $T-\lambda I_{V}$ is not injective Theorem KILT 471). With an argument on dimensions using Theorem RPNDD 503 we can conlude that T does not have full rank, $r(T)<m$. Define W to be the subspace of V that is the range of $T-\lambda I_{V}, W=\mathcal{R}\left(T-\lambda I_{V}\right)$. The range of a linear transformation is always invariant with respect to the linear transformation, but we want to establish that W is also invariant with respect to just T. To this end, suppose that $\mathbf{w} \in W$,

$$
\begin{aligned}
T(\mathbf{w}) & =T(\mathbf{w})+\mathbf{0} \\
& =T(\mathbf{w})+\left(\lambda I_{V}(\mathbf{w})-\lambda I_{V}(\mathbf{w})\right) \\
& =\left(T(\mathbf{w})-\lambda I_{V}(\mathbf{w})\right)+\lambda I_{V}(\mathbf{w}) \\
& =\left(T(\mathbf{w})-\lambda I_{V}(\mathbf{w})\right)+\lambda \mathbf{w} \\
& =T-\lambda I_{V}(\mathbf{w})+\lambda \mathbf{w}
\end{aligned}
$$

Property Z 276
Property AI 276
Property AA 275
Definition IDLT 495
Theorem VSLT 456

Since W is the range of $T-\lambda I_{V}, T-\lambda I_{V}(\mathbf{w}) \in W$. And by Property SC $275, \lambda \mathbf{w} \in W$. Finally, applying Property AC 275 we see that $T(\mathbf{w}) \in W$ and conclude that W is invariant relative to T Definition IS 615).

Since W is invariant relative to T we can consider the restriction $\left.T\right|_{W}: W \mapsto W$ (Definition LTR 623). $\left.T\right|_{W}$ is a linear transformation defined on a vector space with dimension less than m, so we can apply the induction hypothesis and conclude that W has a basis, $C=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \ldots, \mathbf{w}_{k}\right\}$, such that the matrix representation of $\left.T\right|_{W}$ relative to C is an upper triangular matrix.

By Theorem DSFOS 356 there exists a second subspace of V, which we will call U, so that V is a direct sum of W and $U, V=W \oplus U$. Choose a basis $D=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{\ell}\right\}$ for U. So $m=k+\ell$ by Theorem DSD 358, and $B=C \cup D$ is basis for V by Theorem DSLI 358 and Theorem G 349. B is the basis we desire. What does a matrix representation of T look like, relative to B ?

Since W is invariant relative to T, the first k columns of $M_{B, B}^{T}$ will have the upper triangular matrix representation of $\left.T\right|_{W}$ using the basis C, matrixrep $\left.T\right|_{W} C C$, in the first k rows. The remaining $\ell=m-k$ rows will be all zeros. The situation for T on D is not quite as pretty, but it is close.

For $1 \leq i \leq \ell$, consider

$$
\begin{array}{rlrl}
\rho_{B}\left(T\left(\mathbf{u}_{i}\right)\right) & =\rho_{B}\left(T\left(\mathbf{u}_{i}\right)+\mathbf{0}\right) & & \text { Property Z } 276 \\
& =\rho_{B}\left(T\left(\mathbf{u}_{i}\right)+\left(\lambda I_{V}\left(\mathbf{u}_{i}\right)-\lambda I_{V}\left(\mathbf{u}_{i}\right)\right)\right) & & \text { Property AI } 276 \\
& =\rho_{B}\left(\left(T\left(\mathbf{u}_{i}\right)-\lambda I_{V}\left(\mathbf{u}_{i}\right)\right)+\lambda I_{V}\left(\mathbf{u}_{i}\right)\right) & & \text { Property AA } 275 \\
& =\rho_{B}\left(\left(T\left(\mathbf{u}_{i}\right)-\lambda I_{V}\left(\mathbf{u}_{i}\right)\right)+\lambda \mathbf{u}_{i}\right) & & \text { Definition IDLT } 495 \\
& =\rho_{B}\left(T-\lambda I_{V}\left(\mathbf{u}_{i}\right)+\lambda \mathbf{u}_{i}\right) & & \text { Theorem VSLT 456 } \\
& =\rho_{B}\left(a_{1} \mathbf{w}_{1}+a_{2} \mathbf{w}_{2}+a_{3} \mathbf{w}_{3}+\cdots+a_{k} \mathbf{w}_{k}+\lambda \mathbf{u}_{i}\right) & & \text { Definition RLT } 483 \\
& {\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{k} \\
0 \\
\vdots
\end{array}\right.} & & \\
& =\left[\begin{array}{ll}
\text { Definition VR } 513
\end{array}\right.
\end{array}
$$

In the penultimate step of this proof, we have rewritten an element of the range of $T-\lambda I_{V}$ as a linear combination of the basis vectors for W in C, using the scalars $a_{1}, a_{2}, a_{3}, \ldots, a_{\ell}$. If we incorporate these ℓ column vectors into the matrix representation $M_{B, B}^{T}$ we find ℓ occurences of λ on the diagonal, and any nonzero entries lying in the first k rows. Together with the $k \times k$ upper triangular representation in the upper left-hand corner, the entire matrix representation is now clearly upper triangular. This completes the induction step, so for any linear transformation there is a basis that creates a diagonal matrix representation.

We have one more statement in the conclusion of the theorem to verify. The eigenvalues, and their multiplicities, of T can be computed with the techniques of Chapter E 389 relative to any matrix representation (Theorem EER 571). We take this approach with our upper triangular matrix representation $M_{B, B}^{T}$. Let d_{i} be the diagonal entry of $M_{B, B}^{T}$ in row and column i. Then the characteristic polynomial, computed as a determinant (Definition CP 396), is

$$
p_{M_{B, B}^{T}}(x)=\left(x-d_{1}\right)\left(x-d_{2}\right)\left(x-d_{3}\right) \cdots\left(x-d_{m}\right)
$$

So each diagonal entry is an eigenvalue (Theorem EMRCP 397), and is repeated exactly $\alpha_{T}(\lambda)$ times (Definition AME 399).

A key step in this proof was the construction of the subspace W with dimension strictly less than that of V. This required an eigenvalue/eigenvector pair, which was guaranteed to us by Theorem EMHE 393. Digging deeper, the proof of Theorem EMHE 393 requires that we can factor polynomials completely, into linear factors. This will not always happen if our set of scalars is the reals, \mathbb{R}. So this is our final explanation of our choice of the complex numbers, \mathbb{C}, as our set of scalars. In \mathbb{C} polynomials factor completely, so every matrix has at least one eigenvalue, and an inductive argument will get us to upper triangular matrix representations.

The complex numbers are an example of an algebraically closed field which contains the roots of any polynomial created with coefficients from itself. If we had chosen to use the reals as our set of scalars, then we would arrive at matrix decompositions known as rational canonical form where the diagonal blocks are derived from certain relevant polynomials associated with the linear transformation. The theory is similar, but not identical to, what we have done here.

Subsection GESD
 Generalized Eigenspace Decomposition

We now massage the basis from Theorem UTMR 633 so that it yields an upper triangular representation that is also block diagonal. The subspaces associated with each block will be generalized eigenspaces, so the most general result will be a decomposition of the domain of a linear transformation into a direct sum of generalized eigenspaces.

Theorem GESD

Generalized Eigenspace Decomposition

Suppose that $T(V) V$ is a linear transformation with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{m}$. Then

$$
V=\mathcal{G}_{T}\left(\lambda_{1}\right) \oplus \mathcal{G}_{T}\left(\lambda_{2}\right) \oplus \mathcal{G}_{T}\left(\lambda_{3}\right) \oplus \cdots \oplus \mathcal{G}_{T}\left(\lambda_{m}\right)
$$

Proof Suppose that $\operatorname{dim}(V)=n$ and the n (not necessarily distinct) eigenvalues of T are scalarlistpn. We begin with a basis of V that yields an upper triangular matrix representation, as guaranteed by Theorem UTMR 633, $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{n}\right\}$. Since the matrix representation is upper triangular, and the
eigenvalues of the linear transformation are the diagonal elements we can choose this basis so that there are then scalars $a_{i j}, 1 \leq j \leq n, 1 \leq i \leq j-1$ such that

$$
T\left(\mathbf{x}_{j}\right)=\sum_{i=1}^{j-1} a_{i j} \mathbf{x}_{i}+\rho_{j} \mathbf{x}_{j}
$$

We now define a new basis for V which is just a slight variation in the basis B. Choose any k and ℓ such that $1 \leq k<\ell \leq n$ and $\rho_{k} \neq \rho_{\ell}$. Define the scalar $\alpha=a_{k l} /\left(\rho_{\ell}-\rho_{k}\right)$. The new basis is $C=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{n}\right\}$ where

$$
\mathbf{y}_{j}=\mathbf{x}_{j}, \quad j \neq \ell, 1 \leq j \leq n \quad \mathbf{y}_{\ell}=\mathbf{x}_{\ell}+\alpha \mathbf{x}_{k}
$$

We now compute the values of the linear transformation T with inputs from C, noting carefully the changed scalars in the linear combinations of C describing the outputs. These changes will translate to minor changes in the matrix representation built using the basis C. There are three cases to consider, depending on which column of the matrix representation we are examining. First, assume $j<\ell$. Then

$$
\begin{aligned}
T\left(\mathbf{y}_{j}\right) & =T\left(\mathbf{x}_{j}\right) \\
& =\sum_{i=1}^{j-1} a_{i j} \mathbf{x}_{i}+\rho_{j} \mathbf{x}_{j} \\
& =\sum_{i=1}^{j-1} a_{i j} \mathbf{y}_{i}+\rho_{j} \mathbf{y}_{j}
\end{aligned}
$$

That seems a bit pointless. The first $\ell-1$ columns of the matrix representations of T relative to B and C are identical. OK, if that was too easy, here's the main act. Assume $j=\ell$. Then

$$
\begin{aligned}
T\left(\mathbf{y}_{\ell}\right) & =T\left(\mathbf{x}_{\ell}+\alpha \mathbf{x}_{k}\right) \\
& =T\left(\mathbf{x}_{\ell}\right)+\alpha T\left(\mathbf{x}_{k}\right) \\
& =\left(\sum_{i=1}^{\ell-1} a_{i \ell} \mathbf{x}_{i}+\rho_{\ell} \mathbf{x}_{\ell}\right)+\alpha\left(\sum_{i=1}^{k-1} a_{i k} \mathbf{x}_{i}+\rho_{k} \mathbf{x}_{k}\right) \\
& =\sum_{i=1}^{\ell-1} a_{i \ell} \mathbf{x}_{i}+\rho_{\ell} \mathbf{x}_{\ell}+\sum_{i=1}^{k-1} \alpha a_{i k} \mathbf{x}_{i}+\alpha \rho_{k} \mathbf{x}_{k} \\
& =\sum_{i=1}^{\ell-1} a_{i \ell} \mathbf{x}_{i}+\sum_{i=1}^{k-1} \alpha a_{i k} \mathbf{x}_{i}+\alpha \rho_{k} \mathbf{x}_{k}+\rho_{\ell} \mathbf{x}_{\ell} \\
& =\sum_{\substack{i=1 \\
i \neq k}}^{\ell-1} a_{i \ell} \mathbf{x}_{i}+\sum_{i=1}^{k-1} \alpha a_{i k} \mathbf{x}_{i}+a_{k l} \mathbf{x}_{k}+\alpha \rho_{k} \mathbf{x}_{k}+\rho_{\ell} \mathbf{x}_{\ell} \\
& =\sum_{\substack{i=1 \\
i \neq k}} a_{i \ell} \mathbf{x}_{i}+\sum_{i=1}^{k-1} \alpha a_{i k} \mathbf{x}_{i}+a_{k l} \mathbf{x}_{k}+\alpha \rho_{k} \mathbf{x}_{k}-\rho_{\ell} \alpha \mathbf{x}_{k}+\rho_{\ell} \alpha \mathbf{x}_{k} \rho_{\ell} \mathbf{x}_{\ell} \\
= & \sum_{\substack{i=1 \\
i \neq k}}^{\ell-1} a_{i \ell} \mathbf{x}_{i}+\sum_{i=1}^{k-1} \alpha a_{i k} \mathbf{x}_{i}+\left(a_{k l}+\alpha \rho_{k}-\rho_{\ell} \alpha\right) \mathbf{x}_{k}+\rho_{\ell}\left(\alpha \mathbf{x}_{k}+\mathbf{x}_{\ell}\right) \\
= & \sum_{\substack{i=1 \\
i \neq k}} a_{i \ell} \mathbf{x}_{i}+\sum_{i=1}^{k-1} \alpha a_{i k} \mathbf{x}_{i}+\left(a_{k l}+\alpha\left(\rho_{k}-\rho_{\ell}\right)\right) \mathbf{x}_{k}+\rho_{\ell}\left(\mathbf{x}_{\ell}+\alpha \mathbf{x}_{k}\right)
\end{aligned}
$$

$$
=\sum_{\substack{i=1 \\ i \neq k}}^{\ell-1} a_{i \ell} \mathbf{y}_{i}+\sum_{i=1}^{k-1} \alpha a_{i k} \mathbf{y}_{i}+\left(a_{k l}+\alpha\left(\rho_{k}-\rho_{\ell}\right)\right) \mathbf{y}_{k}+\rho_{\ell} \mathbf{y}_{\ell}
$$

So how different are the matrix representations relative to B and C in column ℓ ? For $i>k$, the coefficient of \mathbf{y}_{i} is $a_{i j}$, as in the representation relative to B. It is a different story for $i \leq k$, where the coefficients of \mathbf{y}_{i} may be very different. We are especially interested in the coefficient of \mathbf{y}_{k}. In fact, this whole first part of this proof is about this particular entry of the matrix representation. The coefficient of \mathbf{y}_{k} is

$$
\begin{aligned}
a_{k l}+\alpha\left(\rho_{k}-\rho_{\ell}\right) & =a_{k l}+\frac{a_{k l}}{\rho_{\ell}-\rho_{k}}\left(\rho_{k}-\rho_{\ell}\right) \\
& =a_{k l}+(-1) a_{k l} \\
& =0
\end{aligned}
$$

If the definition of α was a mystery, then no more. In the matrix representation of T relative to C, the entry in column ℓ, row k is a zero. Nice. The only price we pay is that other entries in column ℓ, specifically rows 1 through $k-1$, may also change in a way we can't control.

One more case to consider. Assume $j>\ell$. Then

$$
\begin{aligned}
T\left(\mathbf{y}_{j}\right) & =T\left(\mathbf{x}_{j}\right) \\
& =\sum_{i=1}^{j-1} a_{i j} \mathbf{x}_{i}+\rho_{j} \mathbf{x}_{j} \\
& =\sum_{\substack{i=1 \\
i \neq \ell, k}}^{j-1} a_{i j} \mathbf{x}_{i}+a_{\ell j} \mathbf{x}_{\ell}+a_{k j} \mathbf{x}_{k}+\rho_{j} \mathbf{x}_{j} \\
& =\sum_{\substack{i=1 \\
i \neq \ell, k}}^{j-1} a_{i j} \mathbf{x}_{i}+a_{\ell j} \mathbf{x}_{\ell}+\alpha a_{\ell j} \mathbf{x}_{k}-\alpha a_{\ell j} \mathbf{x}_{k}+a_{k j} \mathbf{x}_{k}+\rho_{j} \mathbf{x}_{j} \\
& =\sum_{\substack{i=1 \\
i \neq \ell, k}}^{j-1} a_{i j} \mathbf{x}_{i}+a_{\ell j}\left(\mathbf{x}_{\ell}+\alpha \mathbf{x}_{k}\right)+\left(a_{k j}-\alpha a_{\ell j}\right) \mathbf{x}_{k}+\rho_{j} \mathbf{x}_{j} \\
& =\sum_{\substack{i=1 \\
i \neq \ell, k}}^{j-1} a_{i j} \mathbf{y}_{i}+a_{\ell j} \mathbf{y}_{\ell}+\left(a_{k j}-\alpha a_{\ell j}\right) \mathbf{y}_{k}+\rho_{j} \mathbf{y}_{j}
\end{aligned}
$$

As before, we ask: how different are the matrix representations relative to B and C in column j ? Only \mathbf{y}_{k} has a coefficent different from the corresponding coefficient when the basis is B. So in the matrix representations, the only entries to change are in row k, for columns $\ell+1$ through n.

What have we accomplished? With a change of basis, we can place a zero in a desired entry (row k, column ℓ) of the matrix representation, leaving most of the entries untouched. The only entries to possibly change are above the new zero entry, or to the right of the new zero entry. S Suppose we repeat this procedure, starting by "zeroing out" the entry above the diagonal in the second column and first wow. Then we move right to the third column, and zero out the element just above the diagonal in the second row. Next we zero out the element in the third column and first row. Then tackle the fourth column, work upwards from the diagonal, zeroing out elements as we go. Entries above, and to the right will repeatedly change, but newly created zeros will never get wrecked, since they are below, or just to the left of the entry we are working on. Similarly the values on the diagonal do not change either. This entire argument can be retooled in the language of change-of-basis matrices and similarity transformations, and this is the approach taken by Noble in his Applied Linear Algebra. It is interesting to concoct the change-of-basis matrix between the matrices B and C and compute the inverse.

Perhaps you have noticed that we have to be just a bit more careful than the previous paragraph suggests. The definition of α has a denominator that cannot be zero, which restricts our maneuvers to zeroing out entries in row k and column ℓ only when $\rho_{k} \neq \rho_{\ell}$. So we do not necessarily arrive at a diagonal matrix. More carefully we can write

$$
T\left(\mathbf{y}_{j}\right)=\sum_{\substack{i=1 \\ i: \rho_{i}=\rho_{j}}}^{j-1} b_{i j} \mathbf{y}_{i}+\rho_{j} \mathbf{y}_{j}
$$

where the $b_{i j}$ are our new coefficients after repeated changes, the \mathbf{y}_{j} are the new basis vectors, and the condition " $i: \rho_{i}=\rho_{j}$ " means that we only have terms in the sum involving vectors whose final coefficients are identical diagonal values (the eigenvalues). Now reorder the basis vectors carefully. Group together vectors that have equal diagonal entries in the matrix representation, but within each group preserve the order of the precursor basis. This grouping will create a block diagonal structure for the matrix representation, while otherwise preserving the order of the basis will retain the upper triangular form of the representation. So we can arrive at a basis that yields a matrix representation that is upper triangular and block diagonal, with the diagonal entries of each block all equal to a common eigenvalue of the linear transformation.

More carefully, employing the distinct eigenvalues of $T, \lambda_{i}, 1 \leq i \leq m$, we can assert there is a set of basis vectors for $V, \mathbf{u}_{i j}, 1 \leq i \leq m, 1 \leq j \leq \alpha_{T}\left(\lambda_{i}\right)$, such that

$$
T\left(\mathbf{u}_{i j}\right)=\sum_{k=1}^{j-1} b_{i j k} \mathbf{u}_{i k}+\lambda_{i} \mathbf{u}_{i j}
$$

So the subspace $U_{i}=\left\langle\left\{\mathbf{u}_{i j} \mid 1 \leq j \leq \alpha_{T}\left(\lambda_{i}\right)\right\}\right\rangle, 1 \leq i \leq m$ is an invariant subspace of V relative to T and the restriction $\left.T\right|_{U_{i}}$ has an upper triangular matrix representation relative to the basis $\left\{\mathbf{u}_{i j} \mid 1 \leq j \leq \alpha_{T}\left(\lambda_{i}\right)\right\}$ where the diagonal entries are all equal to λ_{i}. Notice too that with this definition,

$$
V=U_{1} \oplus U_{2} \oplus U_{3} \oplus \cdots \oplus U_{m}
$$

Whew. This is a good place to take a break, grab a cup of coffee, use the toilet, or go for a short stroll, before we show that U_{i} is a subspace of the generalized eigenspace $\mathcal{G}_{T}\left(\lambda_{i}\right)$. This will follow if we can prove that each of the basis vectors for U_{i} is a generalized eigenvector of T for λ_{i} (Definition GEV [618]). We need some power of $T-\lambda_{i} I_{V}$ that takes $\mathbf{u}_{i j}$ to the zero vector. We prove by induction on j Technique I 680) the claim that $\left(T-\lambda_{i} I_{V}\right)^{j}\left(\mathbf{u}_{i j}\right)=\mathbf{0}$. For $j=1$ we have,

$$
\begin{aligned}
\left(T-\lambda_{i} I_{V}\right)\left(\mathbf{u}_{i 1}\right) & =T\left(\mathbf{u}_{i 1}\right)-\lambda_{i} I_{V}\left(\mathbf{u}_{i 1}\right) \\
& =T\left(\mathbf{u}_{i 1}\right)-\lambda_{i} \mathbf{u}_{i 1} \\
& =\lambda_{i} \mathbf{u}_{i 1}-\lambda_{i} \mathbf{u}_{i 1} \\
& =\mathbf{0}
\end{aligned}
$$

For the induction step, assume that if $k<j$, then $\left(T-\lambda_{i} I_{V}\right)^{k}$ takes $\mathbf{u}_{i k}$ to the zero vector. Then

$$
\begin{aligned}
\left(T-\lambda_{i} I_{V}\right)^{j}\left(\mathbf{u}_{i j}\right) & =\left(T-\lambda_{i} I_{V}\right)^{j-1}\left(\left(T-\lambda_{i} I_{V}\right)\left(\mathbf{u}_{i j}\right)\right) \\
& =\left(T-\lambda_{i} I_{V}\right)^{j-1}\left(T\left(\mathbf{u}_{i j}\right)-\lambda_{i} I_{V}\left(\mathbf{u}_{i j}\right)\right) \\
& =\left(T-\lambda_{i} I_{V}\right)^{j-1}\left(T\left(\mathbf{u}_{i j}\right)-\lambda_{i} \mathbf{u}_{i j}\right) \\
& =\left(T-\lambda_{i} I_{V}\right)^{j-1}\left(\sum_{k=1}^{j-1} b_{i j k} \mathbf{u}_{i k}+\lambda_{i} \mathbf{u}_{i j}-\lambda_{i} \mathbf{u}_{i j}\right) \\
& =\left(T-\lambda_{i} I_{V}\right)^{j-1}\left(\sum_{k=1}^{j-1} b_{i j k} \mathbf{u}_{i k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{j-1} b_{i j k}\left(T-\lambda_{i} I_{V}\right)^{j-1}\left(\mathbf{u}_{i k}\right) \\
& =\sum_{k=1}^{j-1} b_{i j k}\left(T-\lambda_{i} I_{V}\right)^{j-1-k}\left(\left(T-\lambda_{i} I_{V}\right)^{k}\left(\mathbf{u}_{i k}\right)\right) \\
& =\sum_{k=1}^{j-1} b_{i j k}\left(T-\lambda_{i} I_{V}\right)^{j-1-k}(\mathbf{0}) \\
& =\sum_{k=1}^{j-1} b_{i j k} \mathbf{0} \\
& =\mathbf{0}
\end{aligned}
$$

This completes the induction step. Since every vector of the spaning set for U_{i} is an element of the subspace $\mathcal{G}_{T}\left(\lambda_{i}\right)$, Property AC 275 and Property SC 275 allow us to conclude that $U_{i} \subseteq \mathcal{G}_{T}\left(\lambda_{i}\right)$. Then by Definition S 289, U_{i} is a subspace of $\mathcal{G}_{T}\left(\lambda_{i}\right)$. Notice that this inductive proof could be interpreted to say that every element of U_{i} is a generalized eigenvector of T for λ_{i}, and the algebraic multiplicity of λ_{i} is a sufficiently high power to demonstrate this via the definition for each vector.

We are now prepared for our final argument in this long proof. We wish to establish that the dimension of the subspace $\mathcal{G}_{T}\left(\lambda_{i}\right)$ is the algebraic multiplicity of λ_{i}. This will be enough to show that U_{i} and $\mathcal{G}_{T}\left(\lambda_{i}\right)$ are equal, and will finally provide the desired direct sum decomposition.

We will prove by induction (Technique I 680) the following claim. Suppose that $T: V \mapsto V$ is a linear transformation and B is a basis for V that provides an upper triangular matrix representation of T. The number of times any eigenvalue λ occurs on the diagonal of the representation is greater than or equal to the dimension of the generalized eigenspace $\mathcal{G}_{T}(\lambda)$.

We will use the symbol m for the dimension of V so as to avoid confusion with our notation for the nullity. So $\operatorname{dim} V=m$ and our proof will proced by induction on m. Use the notation $\#_{T}(\lambda)$ to count the number of times λ occurs on the diagonal of a matrix representation of T. We want to show that

$$
\#_{T}(\lambda) \geq \operatorname{dim}\left(\mathcal{G}_{T}(\lambda)\right)
$$

$$
=\operatorname{dim}\left(\mathcal{K}\left((T-\lambda)^{m}\right)\right) \quad \text { Theorem GEK } 620
$$

$$
=n\left((T-\lambda)^{m}\right) \quad \text { Definition NOLT } 502
$$

For the base case, $\operatorname{dim} V=1$. Every matrix representation of T is an upper triangular matrix with the lone eigenvalue of T, λ, as the diagonal entry. $\operatorname{So} \#_{T}(\lambda)=1$. The generalized eigenspace of λ is not trivial (since by Theorem GEK 620 it equals the regular eigenspace), and is a subspace of V. With Theorem PSSD 352 we see that $\operatorname{dim}\left(\mathcal{G}_{T}(\lambda)\right)=1$.

Now for the induction step, assume the claim is true for any linear transformation defined on a vector space with dimension $m-1$ or less. Suppose that $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}\right\}$ is a basis for V that yields a diagonal matrix representation for T with diagonal entries $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{m}$. Then $U=$ $\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m-1}\right\}\right\rangle$ is a subspace of V that is invariant relative to T. The restriction $\left.T\right|_{U}: U \mapsto U$ is then a linear transformation defined on U, a vector space of dimension $m-1$. A matrix representation of $\left.T\right|_{U}$ relative to the basis $C=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m-1}\right\}$ will be an upper triangular matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{m-1}$. We can therefore apply the induction hypothesis to $\left.T\right|_{U}$ and its representation relative to C.

Suppose that λ is any eigenvalue of T. Then suppose that $\mathbf{v} \in \mathcal{K}\left(\left(T-\lambda_{V}\right)^{m}\right)$. As an element of V, we can write \mathbf{v} as a linear combination of the basis elements of B, or more compactly, there is a vector $\mathbf{u} \in U$ and a scalar α such that $\mathbf{v}=\mathbf{u}+\alpha \mathbf{v}_{m}$. Then,

$$
\alpha\left(\lambda_{m}-\lambda\right)^{m} \mathbf{v}_{m}
$$

$$
\begin{aligned}
& =\alpha\left(T-\lambda I_{V}\right)^{m}\left(\mathbf{v}_{m}\right) \\
& =\mathbf{0}+\alpha\left(T-\lambda I_{V}\right)^{m}\left(\mathbf{v}_{m}\right) \\
& =-\left(T-\lambda I_{V}\right)^{m}(\mathbf{u})+\left(T-\lambda I_{V}\right)^{m}(\mathbf{u})+\alpha\left(T-\lambda I_{V}\right)^{m}\left(\mathbf{v}_{m}\right) \\
& =-\left(T-\lambda I_{V}\right)^{m}(\mathbf{u})+\left(T-\lambda I_{V}\right)^{m}\left(\mathbf{u}+\alpha \mathbf{v}_{m}\right) \\
& =-\left(T-\lambda I_{V}\right)^{m}(\mathbf{u})+\left(T-\lambda I_{V}\right)^{m}(\mathbf{v}) \\
& =-\left(T-\lambda I_{V}\right)^{m}(\mathbf{u})+\mathbf{0} \\
& =-\left(T-\lambda I_{V}\right)^{m}(\mathbf{u})
\end{aligned}
$$

$$
\begin{aligned}
& \hline \text { Theorem EOMP } \\
& \hline \text { Property Z } 276 \\
& \hline \text { Property AI } \\
& \hline \text { Theorem LTLC } \\
& \hline \text { The } \\
& \hline \text { Theorem LTLC } \\
& \hline \text { Definition KLT } \\
& \hline \text { D49 } \\
& \hline \text { Property Z } \\
& \hline
\end{aligned}
$$

The final expression in this string of equalities is an element of U since U is invariant relative to both T and I_{V}. The expression at the beginning is a scalar multiple of \mathbf{v}_{m}, and as such cannot be a nonzero element of U without violating the linear independence of B. So

$$
\alpha\left(\lambda_{m}-\lambda\right)^{m} \mathbf{v}_{m}=\mathbf{0}
$$

The vector \mathbf{v}_{m} is nonzero since B is linearly independent, so Theorem SMEZV 284 tells us that $\alpha\left(\lambda_{m}-\lambda\right)^{m}=$ 0 . From the properties of scalar multiplication, we are confronted with two possibilities.

Our first case is that $\lambda \neq \lambda_{m}$. Notice then that λ occurs the same number of times along the diagonal in the representations of $\left.T\right|_{U}$ and T. Now $\alpha=0$ and $\mathbf{v}=\mathbf{u}+0 \mathbf{v}_{m}=\mathbf{u}$. Since \mathbf{v} was chosen as an arbitrary element of $\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{m}\right)$, Definition SSET 669 says that $\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{m}\right) \subseteq U$. It is always the case that $\mathcal{K}\left(\left(\left.T\right|_{U}-\lambda I_{U}\right)^{m}\right) \subseteq \mathcal{K}\left(\left(T-\lambda I_{V}\right)^{m}\right)$. However, we can also see that in this case, the opposite set inclusion is true as well. By Definition SE 670 we have $\mathcal{K}\left(\left(\left.T\right|_{U}-\lambda I_{U}\right)^{m}\right)=\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{m}\right)$. Then

$$
\begin{aligned}
\#_{T}(\lambda) & =\#_{\left.T\right|_{U}}(\lambda) \\
& \geq \operatorname{dim}\left(\mathcal{G}_{\left.T\right|_{U}}(\lambda)\right) \\
& =\operatorname{dim}\left(\mathcal{K}\left(\left(\left.T\right|_{U}-\lambda I_{U}\right)^{m-1}\right)\right) \\
& =\operatorname{dim}\left(\mathcal{K}\left(\left(\left.T\right|_{U}-\lambda I_{U}\right)^{m}\right)\right) \\
& =\operatorname{dim}\left(\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{m}\right)\right) \\
& =\operatorname{dim}\left(\mathcal{G}_{T}(\lambda)\right)
\end{aligned}
$$

$$
\geq \operatorname{dim}\left(\mathcal{G}_{\left.T\right|_{U}}(\lambda)\right) \quad \text { Induction Hypothesis }
$$

Theorem GEK 620
Theorem KPLT 603

Theorem GEK 620

The second case is that $\lambda=\lambda_{m}$. Notice then that λ occurs one more time along the diagonal in the representation of T compared to the representation of $\left.T\right|_{U}$. Then

$$
\begin{aligned}
\left(\left.T\right|_{U}-\lambda I_{U}\right)^{m}(\mathbf{u}) & =\left(T-\lambda I_{V}\right)^{m}(\mathbf{u}) & & \\
& =\left(T-\lambda I_{V}\right)^{m}(\mathbf{u})+\mathbf{0} & & \text { Property Z 276 } \\
& =\left(T-\lambda I_{V}\right)^{m}(\mathbf{u})+\alpha\left(\lambda_{m}-\lambda\right)^{m} \mathbf{v}_{m} & & \text { Theorem ZSSM 282 } \\
& =\left(T-\lambda I_{V}\right)^{m}(\mathbf{u})+\alpha\left(T-\lambda I_{V}\right)^{m}\left(\mathbf{v}_{m}\right) & & \text { Theorem EOMP 415 } \\
& =\left(T-\lambda I_{V}\right)^{m}\left(\mathbf{u}+\alpha \mathbf{v}_{m}\right) & & \text { Theorem LTLC 449 } \\
& =\left(T-\lambda I_{V}\right)^{m}(\mathbf{v}) & & \\
& =\mathbf{0} & & \text { Definition KLT 468 }
\end{aligned}
$$

So $\mathbf{u} \in \mathcal{K}\left(\left.T\right|_{U}-\lambda I_{U}\right)$. The vector \mathbf{v} is an arbitrary member of $\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{m}\right)$ and is also equal to an element of $\mathcal{K}\left(\left.T\right|_{U}-\lambda I_{U}\right)(\mathbf{u})$ plus a scalar multiple of the vector \mathbf{v}_{m}. This observation yields

$$
\operatorname{dim}\left(\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{m}\right)\right) \leq \operatorname{dim}\left(\mathcal{K}\left(\left.T\right|_{U}-\lambda I_{U}\right)\right)+1
$$

Now count eigenvalues on the diagonal,

$$
\#_{T}(\lambda)=\#_{\left.T\right|_{U}}(\lambda)+1
$$

$$
\begin{array}{ll}
\geq \operatorname{dim}\left(\mathcal{G}_{\left.T\right|_{U}}(\lambda)\right)+1 & \\
=\operatorname{Induction~Hypothesis~} \\
=\operatorname{dim}\left(\mathcal{K}\left(\left(\left.T\right|_{U}-\lambda I_{U}\right)^{m-1}\right)\right)+1 & \\
=\operatorname{dim}\left(\mathcal{K}\left(\left(\left.T\right|_{U}-\lambda I_{U}\right)^{m}\right)\right)+1 & \\
\geq \operatorname{dim}\left(\mathcal{K}\left(\left(T-\lambda I_{V}\right)^{m}\right)\right) & \\
=\operatorname{Tim}\left(\mathcal{G}_{T}(\lambda)\right) &
\end{array}
$$

In Theorem UTMR 633 we constructed an upper triangular matrix represntation of T where each eigenvalue occurred $\alpha_{T}(\lambda)$ times on the diagonal. So

$$
\begin{array}{rlrl}
\alpha_{T}\left(\lambda_{i}\right) & =\#_{T}\left(\lambda_{i}\right) & & \text { Theorem UTMR 633 } \\
& \geq \operatorname{dim}\left(\mathcal{G}_{T}\left(\lambda_{i}\right)\right) & & \\
& \geq \operatorname{dim}\left(U_{i}\right) & & \text { Theorem PSSD } \\
& =\alpha_{T}\left(\lambda_{i}\right) & & \text { Theorem PSSD } \\
\hline
\end{array}
$$

Thus, $\operatorname{dim}\left(\mathcal{G}_{T}\left(\lambda_{i}\right)\right)=\alpha_{T}\left(\lambda_{i}\right)$ and by Theorem EDYES 352, $U_{i}=\mathcal{G}_{T}\left(\lambda_{i}\right)$ and we can write

$$
\begin{aligned}
V & =U_{1} \oplus U_{2} \oplus U_{3} \oplus \cdots \oplus U_{m} \\
& =\mathcal{G}_{T}\left(\lambda_{1}\right) \oplus \mathcal{G}_{T}\left(\lambda_{2}\right) \oplus \mathcal{G}_{T}\left(\lambda_{3}\right) \oplus \cdots \oplus \mathcal{G}_{T}\left(\lambda_{m}\right)
\end{aligned}
$$

Besides a nice decomposition into invariant subspaces, this proof has a bonus for us.

Theorem DGES

Dimension of Generalized Eigenspaces

Suppose $T: V \mapsto V$ is a linear transformation with eigenvalue λ. Then the dimension of the generalized eigenspace for λ is the algebraic multiplicity of λ, $\operatorname{dim}\left(\mathcal{G}_{T}\left(\lambda_{i}\right)\right)=\alpha_{T}\left(\lambda_{i}\right)$.

Proof At the very end of the proof of Theorem GESD 635 we obtain the inequalities

$$
\alpha_{T}\left(\lambda_{i}\right) \leq \operatorname{dim}\left(\mathcal{G}_{T}\left(\lambda_{i}\right)\right) \leq \alpha_{T}\left(\lambda_{i}\right)
$$

which establishes the desired equality.

Subsection JCF
 Jordan Canonical Form

Now we are in a position to define what we (and others) regard as an especially nice matrix representation. The word "canonical" has at its root, the word "canon," which has various meanings. One is the set of laws established by a church council. Another is a set of writings that are authentic, important or representative. Here we take to to mean the accepted, or best, representative among a variety of choices. Every linear transformation admits a variety of representations, and will declare one as the best. Hopefully you will agree.

Definition JCF

Jordan Canonical Form

A square matrix is in Jordan canonical form if it meets the following requirements:

1. The matrix is block diagonal.
2. Each block is a Jordan block.
3. If $\rho<\lambda$ then the block $J_{k}(\rho)$ occupies rows with indices greater than the indices of the rows occupied by $J_{\ell}(\rho)$.
4. If $\rho=\lambda$ and $\ell<k$, then the block $J_{k}(\lambda)$ occupies rows with indices greater than the indices of the rows occupied by $J_{\ell}(\lambda)$.

Theorem JCFLT

Jordan Canonical Form for a Linear Transformation

Suppose $T: V \mapsto V$ is a linear transformation. Then there is a basis B for V such that the matrix representation of T with the following properties:

1. The matrix representation is in Jordan canonical form.
2. If $J_{k}(\lambda)$ is one of the Jordan blocks, then λ is an eigenvalue of T.
3. For a fixed value of λ, the largest block of the form $J_{k}(\lambda)$ has size equal to the index of $\lambda, \iota_{T}(\lambda)$.
4. For a fixed value of λ, the number of blocks of the form $J_{k}(\lambda)$ is the geometric multiplicity of λ, $\gamma_{T}(\lambda)$.
5. For a fixed value of λ, the number of rows occupied by blocks of the form $J_{k}(\lambda)$ is the algebraic multiplicity of $\lambda, \alpha_{T}(\lambda)$.

Proof This theorem is really just the consequence of applying to T, consecutively Theorem GESD 635, Theorem MRRGE 631 and Theorem CFNLT 606.

Theorem GESD 635 gives us a decomposition of V into generalized eigenspaces, one for each distinct eigenvalue. Since these generalized eigenspaces ar invariant relative to T, this provides a block diagonal matrix representation where each block is the matrix representation of the restriction of T to the generalized eigenspace.

Restricting T to a generalized eigenspace results in a "nearly nilpotent" linear transformation, as stated more precisely in Theorem RGEN 628. We unravel Theorem RGEN 628 in the proof of Theorem MRRGE 631 so that we can apply Theorem CFNLT 606 about representations of nilpotent linear transformations.

We know the dimension of a generalized eigenspace is the algebraic multiplicity of the eigenvalue (Theorem DGES 641), so the blocks associated with the generalized eigenspaces are square with a size equal to the algebraic multiplicity. In refining the basis for this block, and producing Jordan blocks the results of Theorem CFNLT 606 apply. The total number of blocks will be the nullity of $\left.T\right|_{\mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}(\lambda)}$, which is the geometric multiplicity of λ as an eigenvalue of T (Definition GME 399). The largest of the Jordan blocks will have size equal to the index of the nilpotent linear transformation $\left.T\right|_{\mathcal{G}_{T}(\lambda)}-\lambda I_{\mathcal{G}_{T}(\lambda)}$, which is exactly the definition of the index of the eigenvalue λ (Definition IE 629).

Before we do some examples of this result, notice how close Jordan canonical form is to a diagonal matrix. Or, equivalently, notice how close we have come to diagonalizing a matrix (Definition DZM 428). We have a matrix representation which has diagonal entries that are the eigenvalues of a matrix. Each occurs on the diagonal as many times as the algebraic multiplicity. However, when the geometric multiplicty is strictly less than the algebraic multiplicity, we have some entries in the representation just above the diagonal (the "superdiagonal"). Furthermore, we have some idea how often this happens if we know the geometric multiplicity and the index of the eigenvalue.

We now recognize just how simple a diagonalizable linear transformation really is. For each eigenvalue, the generalized eigenspace is just the regular eigenspace, and it decomposes into a direct sum of onedimensional subspaces, each spanned by a different eigenvector chosen from a basis of eigenvectors for the eigenspace.

Some authors create matrix representations of nilpotent linear transformations where the Jordan block has the ones just below the diagonal (the "subdiagonal"). No matter, it is really the same, just different. We have also defined Jordan canonical form to place blocks for the larger eigenvalues earlier, and for blocks with the same eigenvalue, we place the bigger ones earlier. This is fairly standard, but there is no reason we couldn't order the blocks differently. It'd be the same, just different. The reason for choosing some ordering is to be assured that there is just one canonical matrix representation for each linear transformation.

Example JCF10

Jordan canonical form, size 10

Suppose that $T: \mathbb{C}^{10} \mapsto \mathbb{C}^{10}$ is the linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$ where

$$
A=\left[\begin{array}{cccccccccc}
-6 & 9 & -7 & -5 & 5 & 12 & -22 & 14 & 8 & 21 \\
-3 & 5 & -3 & -1 & 2 & 7 & -12 & 9 & 1 & 12 \\
8 & -9 & 8 & 6 & 0 & -14 & 25 & -13 & -4 & -26 \\
-7 & 9 & -7 & -5 & 0 & 13 & -23 & 13 & 2 & 24 \\
0 & -1 & 0 & -1 & -3 & -2 & 3 & -4 & -2 & -3 \\
3 & 2 & 1 & 2 & 9 & -1 & 1 & 5 & 5 & -5 \\
-1 & 3 & -3 & -2 & 4 & 3 & -6 & 4 & 4 & 3 \\
3 & -4 & 3 & 2 & 1 & -5 & 9 & -5 & 1 & -9 \\
0 & 2 & 0 & 0 & 2 & 2 & -4 & 4 & 2 & 4 \\
-4 & 4 & -5 & -4 & -1 & 6 & -11 & 4 & 1 & 10
\end{array}\right]
$$

We'll find a basis for \mathbb{C}^{10} that will yield a matrix representation of T in Jordan canonical form. First we find the eigenvalues, and their multiplicities, with the techniques of Chapter E 389.

$$
\begin{array}{lrr}
\lambda=2 & \alpha_{T}(2)=2 & \gamma_{T}(2)=2 \\
\lambda=0 & \alpha_{T}(0)=3 & \gamma_{T}(-1)=2 \\
\lambda=-1 & \alpha_{T}(-1)=5 & \gamma_{T}(-1)=2
\end{array}
$$

For each eigenvalue, we can compute a generalized eigenspace. By Theorem GESD 635 we know that \mathbb{C}^{10} will decompose into a direct sum of these eigenspaces, and we can restrict T to each part of this decomposition. At this stage we know that the Jordan canonical form will be block diagonal with blocks of size 2,3 and 5 , since the dimensions of the generalized eigenspaces are equal to the algebraic multiplicities of the eigenvalues (Theorem DGES 641). The geometric multiplicities tell us how many Jordan blocks occupy each of the three larger blocks, but we will discuss this as we analyze each eigenvalue. We do not yet know the index of each eigenalue (though we can easily infer it for $\lambda=2$) and even if we did have this information, it only determines the size of the largest Jordan block (per eigenvalue). We will press ahead, considering each eigenvalue one at a time.

The eigenvalue $\lambda=2$ has "full" geometric multiplicity, and is not an impediment to diagonalizing T. We will treat it in full generality anyway. First we compute the generalized eigenspace. Since Theorem GEK 620 says that $\mathcal{G}_{T}(2)=\mathcal{K}\left(\left(T-2 I_{\mathbb{C}^{10}}\right)^{10}\right)$ we can compute this generalized eigenspace as a null space
derived from the matrix A,

$$
\begin{gathered}
\left(A-2 I_{10}\right)^{10} \xrightarrow{\text { RREF }}\left[\begin{array}{cccccccccc}
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -1 \\
0 & \boxed{1} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & \boxed{1} & 0 & 0 & 0 & 0 & -1 & -2 \\
0 & 0 & 0 & 0 & \boxed{1} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \boxed{1} & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \boxed{1} & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \boxed{1} & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{G}_{T}(2)=\mathcal{K}\left(\left(A-2 I_{10}\right)^{10}\right)=\left\langle\left\{\begin{array}{c}
2 \\
1 \\
1 \\
-1 \\
1 \\
-1 \\
2 \\
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-2 \\
2 \\
0 \\
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right]\right)
\end{gathered}
$$

The restriction of T to $\mathcal{G}_{T}(2)$ relative to the two basis vectors above has a matrix representation that is a 2×2 diagonal matrix with the eigenvalue $\lambda=2$ as the diagonal entries. So these two vectors will be the first two vectors in our basis for \mathbb{C}^{10},

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
2 \\
1 \\
-1 \\
1 \\
-1 \\
2 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
1 \\
-2 \\
2 \\
0 \\
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right]
$$

Notice that it was not strictly necessary to compute the 10 -th power of $A-2 I_{10}$. With $\alpha_{T}(2)=\gamma_{T}(2)$ the null space of the matrix $A-2 I_{10}$ contains all of the generalized eigenvectors of T for the eigenvalue $\lambda=2$. But there was no harm in computing the 10 -th power either. This discussion is equivalent to the observation that the linear transformation $\left.T\right|_{\mathcal{G}_{T}(2)}: \mathcal{G}_{T}(2) \mapsto \mathcal{G}_{T}(2)$ is nilpotent of index 1. In other words, $\iota_{T}(2)=1$.

The eigenvalue $\lambda=0$ will not be quite as simple, since the geometric multiplicity is strictly less than the geometric multiplicity. As before, we first compute the generalized eigenspace. Since Theorem GEK 620 says that $\mathcal{G}_{T}(0)=\mathcal{K}\left(\left(T-0 I_{\mathbb{C}^{10}}\right)^{10}\right)$ we can compute this generalized eigenspace as a null space
derived from the matrix A,

$$
\begin{gathered}
\left(A-0 I_{10}\right)^{10} \xrightarrow{\mathrm{RREF}}\left[\begin{array}{cccccccccc}
{\left[\begin{array}{c}
1 \\
0
\end{array}\right.} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & \boxed{1} & 0 & 0 & 0 & 0 & -2 & -1 \\
0 & 0 & 0 & 0 & \boxed{1} & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{G}_{T}(0)=\mathcal{K}\left(\left(A-0 I_{10}\right)^{10}\right)=\left\langle\left\{\begin{array}{c}
\left.\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2 \\
-1 \\
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)
\end{array}\right)=\langle F\rangle\right.
\end{gathered}
$$

So $\operatorname{dim}\left(\mathcal{G}_{T}(0)\right)=3=\alpha_{T}(0)$, as expected. We will use these three basis vectors for the generalized eigenspace to construct a matrix representation of $\left.T\right|_{\mathcal{G}_{T}(0)}$, where F is being defined implicitly as the basis of $\mathcal{G}_{T}(0)$. We construct this representation as usual, applying Definition MR 527,

$$
\begin{aligned}
& \rho_{F}\left(\left(\left.T\right|_{\mathcal{G}_{T}(0)}-0 I_{\mathcal{G}_{T}(0)}\right)\left(\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2 \\
-1 \\
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right]\right)=\rho_{F}\left(\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\rho_{F}\left(\begin{array}{c}
(1) \\
\hline \\
1 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\rho_{F}\left(\left(\left.T\right|_{\mathcal{G}_{T}(0)}-0 I_{\mathcal{G}_{T}(0)}\right)\left(\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\rho_{F}\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right.
$$

So we have the matrix representation

$$
M=M_{F, F}^{T \mid \mathcal{G}_{T^{(0)}}}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 1 & 0
\end{array}\right]
$$

By Theorem RGEN 628 we can obtain a nilpotent matrix from this matrix representation by subtracting the eigenvalue from the diagonal elements, and then we can apply Theorem CFNLT 606 to $M-(0) I_{3}$. First check that $\left(M-(0) I_{3}\right)^{2}=\mathcal{O}$, so we know that the index of $M-(0) I_{3}$ as a nilpotent matrix, and that therefore $\lambda=0$ is an eigenvalue of T with index $2, \iota_{T}(0)=2$. To determine a basis of \mathbb{C}^{3} that converts $M-(0) I_{3}$ to canonical form, we need the null spaces of the powers of $M-(0) I_{3}$. For convenience, set $N=M-(0) I_{3}$.

$$
\begin{aligned}
& \mathcal{N}\left(N^{1}\right)=\left\langle\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \mathcal{N}\left(N^{2}\right)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle=\mathbb{C}^{3}
\end{aligned}
$$

Then we choose a vector from $\mathcal{N}\left(N^{2}\right)$ that is not an element of $\mathcal{N}\left(N^{1}\right)$. Any vector with unequal first two entries will fit the bill, say

$$
\mathbf{z}_{2,1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

where we are employing the notation in Theorem CFNLT 606. The next step is to multiply this vector by N to get part of the basis for $\mathcal{N}\left(N^{1}\right)$,

$$
\mathbf{z}_{1,1}=N \mathbf{z}_{2,1}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]
$$

We need a vector to pair with $\mathbf{z}_{1,1}$ that will make a basis for the two-dimensional subspace $\mathcal{N}\left(N^{1}\right)$. Examining the basis for $\mathcal{N}\left(N^{1}\right)$ we see that a vector with its first two entries equal will do the job.

$$
\mathbf{z}_{1,2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Reordering, we find the basis,

$$
C=\left\{\mathbf{z}_{1,1}, \mathbf{z}_{2,1}, \mathbf{z}_{1,2}\right\}=\left\{\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}
$$

From this basis, we can get a matrix representation of N (when viewed as a linear transformation) relative to the basis C for \mathbb{C}^{3},

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
J_{2}(0) & \mathcal{O} \\
\mathcal{O} & J_{1}(0)
\end{array}\right]
$$

Now we add back the eigenvalue $\lambda=0$ to the representation of N to obtain a representation for M. Of course, with an eigenvalue of zero, the change is not apparent, so we won't display the same matrix again. This is the second block of the Jordan canonical form for T. However, the three vectors in C will not suffice as basis vectors for the domain of T - they have the wrong size! The vectors in C are vectors in the domain of a linear transformation defined by the matrix M. But M was a matrix representation of $\left.T\right|_{\mathcal{G}_{T}(0)}-0 I_{\mathcal{G}_{T}(0)}$ relative to the basis F for $\mathcal{G}_{T}(0)$. We need to "uncoordinatize" each of the basis vectors in C to produce a linear combination of vectors in F that will be an element of the generalized eigenspace $\mathcal{G}_{T}(0)$. These will be the next three vectors of our final answer, a basis for \mathbb{C}^{10} that has a pleasing matrix representation.

$$
\begin{aligned}
& \mathbf{v}_{3}=\rho_{F}^{-1}\left(\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]\right)=0\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2 \\
-1 \\
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
2 \\
-1 \\
0 \\
2 \\
0 \\
0 \\
0 \\
-1
\end{array}\right] \\
& \mathbf{v}_{4}=\rho_{F}^{-1}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=1\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2 \\
-1 \\
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right]+0\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& \mathbf{v}_{5}=\rho_{F}^{-1}\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=1\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{c}
1 \\
1 \\
-1 \\
2 \\
-1 \\
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right]+0\left[\begin{array}{c}
1 \\
0 \\
-2 \\
1 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
2 \\
-1 \\
2 \\
1 \\
-1 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Five down, five to go. Basis vectors, that is. $\lambda=-1$ is the smallest eigenvalue, but it will require the most computation. First we compute the generalized eigenspace. Since Theorem GEK [620 says that $\mathcal{G}_{T}(-1)=\mathcal{K}\left(\left(T-(-1) I_{\mathbb{C}^{10}}\right)^{10}\right)$ we can compute this generalized eigenspace as a null space derived from the matrix A,

$$
\begin{aligned}
&\left(A-(-1) I_{10}\right)^{10} \xrightarrow{\text { RREF }}\left[\begin{array}{cccccccccc}
\hline 1 & 0 & 1 & 0 & 1 & 0 & -1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \mathcal{G}_{T}(-1)=\mathcal{K}\left(\left(A-(-1) I_{10}\right)^{10}\right)\left.=\left\langle\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
2 \\
0 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle=\langle F\rangle
\end{aligned}
$$

So $\operatorname{dim}\left(\mathcal{G}_{T}(-1)\right)=5=\alpha_{T}(-1)$, as expected. We will use these five basis vectors for the generalized eigenspace to construct a matrix representation of $\left.T\right|_{\mathcal{G}_{T}(-1)}$, where F is being recycled and defined now implicitly as the basis of $\mathcal{G}_{T}(-1)$. We construct this representation as usual, applying Definition MR 527,

$$
\begin{aligned}
& \rho_{F}\left(\left(\left.T\right|_{\mathcal{G}_{T}(-1)}-(-1) I_{\mathcal{G}_{T}(-1)}\right)\left(\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)=\rho_{F}\left(\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
-2 \\
-2 \\
0 \\
0 \\
-1
\end{array}\right]\right)\right. \\
& =\rho_{F}\left(\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-2)\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
-2 \\
2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
0 \\
-2 \\
0 \\
-1
\end{array}\right]
\end{aligned}
$$

$$
\rho_{F}\left(\left(\left.T\right|_{\mathcal{G}_{T}(-1)}-(-1) I_{\mathcal{G}_{T}(-1)}\right)\left(\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)=\rho_{F}\left(\left[\begin{array}{c}
7 \\
1 \\
-5 \\
3 \\
-1 \\
2 \\
4 \\
0 \\
0 \\
3
\end{array}\right]\right)\right.
$$

$$
\left.=\rho_{F}(-5)\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+4\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
0 \\
0 \\
2 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-5 \\
-1 \\
4 \\
0 \\
3
\end{array}\right]
$$

$$
\rho_{F}\left(\left(\left.T\right|_{\mathcal{G}_{T}(-1)}-(-1) I_{\mathcal{G}_{T}(-1)}\right)\left(\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right)=\rho_{F}\left(\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right]\right)\right.
$$

$$
\left.=\rho_{F}(-1)\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{c}
-1 \\
0 \\
0 \\
2 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

$$
=\rho_{F}\left(\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+(-2)\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
2 \\
-1 \\
-1 \\
1 \\
-2
\end{array}\right]
$$

$$
\rho_{F}\left(\left(\left.T\right|_{\mathcal{G}_{T}(-1)}-(-1) I_{\mathcal{G}_{T}(-1)}\right)\left(\left[\begin{array}{c}
-1 \\
0 \\
0 \\
2 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\rho_{F}\left(\left[\begin{array}{c}
-7 \\
-1 \\
6 \\
-5 \\
-1 \\
-2 \\
-6 \\
2 \\
0 \\
-6
\end{array}\right]\right)\right.
$$

$$
=\rho_{F}\left(\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-6)\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+(-6)\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
6 \\
-1 \\
-6 \\
2 \\
-6
\end{array}\right]
$$

So we have the matrix representation of the restriction of T (again recycling and redefining the matrix M)

$$
M=M_{F, F}^{\left.T\right|_{\mathcal{G}_{T}}{ }^{(-1)}}=\left[\begin{array}{ccccc}
0 & -5 & -1 & 2 & 6 \\
0 & -1 & 0 & -1 & -1 \\
-2 & 4 & 1 & -1 & -6 \\
0 & 0 & 0 & 1 & 2 \\
-1 & 3 & 1 & -2 & -6
\end{array}\right]
$$

By Theorem RGEN 628 we can obtain a nilpotent matrix from this matrix representation by subtracting
the eigenvalue from the diagonal elements, and then we can apply Theorem CFNLT 606 to $M-(-1) I_{5}$. First check that $\left(M-(-1) I_{5}\right)^{3}=\mathcal{O}$, so we know that the index of $M-(-1) I_{5}$ as a nilpotent matrix, and that therefore $\lambda=-1$ is an eigenvalue of T with index $3, \iota_{T}(-1)=3$. To determine a basis of \mathbb{C}^{5} that converts $M-(-1) I_{5}$ to canonical form, we need the null spaces of the powers of $M-(-1) I_{5}$. Again, for convenience, set $N=M-(-1) I_{5}$.

$$
\begin{aligned}
& \mathcal{N}\left(N^{1}\right)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
0 \\
-2 \\
2
\end{array}\right]\right\}\right\rangle \\
& \mathcal{N}\left(N^{2}\right)=\left\langle\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
& \mathcal{N}\left(N^{3}\right)=\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle=\mathbb{C}^{5}
\end{aligned}
$$

Then we choose a vector from $\mathcal{N}\left(N^{3}\right)$ that is not an element of $\mathcal{N}\left(N^{2}\right)$. The sum of the four basis vectors for $\mathcal{N}\left(N^{2}\right)$ sum to a vector with all five entries equal to 1 . We will mess with the first entry to create a vector not in $\mathcal{N}\left(N^{2}\right)$,

$$
\mathbf{z}_{3,1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

where we are employing the notation in Theorem CFNLT 606. The next step is to multiply this vector by N to get a portion of the basis for $\mathcal{N}\left(N^{2}\right)$,

$$
\mathbf{z}_{2,1}=N \mathbf{z}_{3,1}=\left[\begin{array}{ccccc}
1 & -5 & -1 & 2 & 6 \\
0 & 0 & 0 & -1 & -1 \\
-2 & 4 & 2 & -1 & -6 \\
0 & 0 & 0 & 2 & 2 \\
-1 & 3 & 1 & -2 & -5
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
-1 \\
4 \\
-3
\end{array}\right]
$$

We have a basis for the two-dimensional subspace $\mathcal{N}\left(N^{1}\right)$ and we can add to that the vector $\mathbf{z}_{2,1}$ and we have three of four basis vectors for $\mathcal{N}\left(N^{2}\right)$. These three vectors span the subspace we call Q_{2}. We need a fourth vector outside of Q_{2} to complete a basis of the four-dimensional subspace $\mathcal{N}\left(N^{2}\right)$. Check that the vector

$$
\mathbf{z}_{2,2}=\left[\begin{array}{l}
3 \\
1 \\
3 \\
1 \\
1
\end{array}\right]
$$

is an element of $\mathcal{N}\left(N^{2}\right)$ that lies outside of the subspace Q_{2}. This vector was constructed by getting a nice basis for Q_{2} and forming a linear combination of this basis that specifies three of the five entries of the result. Of the remaining two entries, one was changed to move the vector outside of Q_{2} and this was followed by a change to the remaining entry to place the vector into $\mathcal{N}\left(N^{2}\right)$. The vector $\mathbf{z}_{2,2}$ is the lone basis vector for the subspace we call R_{2}.

The remaining two basis vectors are easy to come by. They are the result of applying N to each of the two most recently determined basis vectors,

$$
\mathbf{z}_{1,1}=N \mathbf{z}_{2,1}=\left[\begin{array}{c}
3 \\
-1 \\
0 \\
2 \\
-2
\end{array}\right] \quad \mathbf{z}_{1,2}=N \mathbf{z}_{2,2}=\left[\begin{array}{c}
3 \\
-2 \\
-3 \\
4 \\
-4
\end{array}\right]
$$

Now we reorder these basis vectors, to arrive at the basis

$$
C=\left\{\mathbf{z}_{1,1}, \mathbf{z}_{2,1}, \mathbf{z}_{3,1}, \mathbf{z}_{1,2}, \mathbf{z}_{2,2}\right\}=\left\{\left[\begin{array}{c}
3 \\
-1 \\
0 \\
2 \\
-2
\end{array}\right],\left[\begin{array}{c}
2 \\
-2 \\
-1 \\
4 \\
-3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
-2 \\
-3 \\
4 \\
-4
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
3 \\
1 \\
1
\end{array}\right]\right\}
$$

A matrix representation of N relative to C is

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
J_{3}(0) & \mathcal{O} \\
\mathcal{O} & J_{2}(0)
\end{array}\right]
$$

To obtain a matrix representation of M, we add back in the matrix $(-1) I_{5}$, placing the eigenvalue back along the diagonal, and slightly mofifying the Jordan blocks,

$$
\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]=\left[\begin{array}{cc}
J_{3}(-1) & \mathcal{O} \\
\mathcal{O} & J_{2}(-1)
\end{array}\right]
$$

The basis C yields a pleasant matrix representation for the restriction of the linear transformation $T-$ $(-1) I$ to the generalized eigenspace $\mathcal{G}_{T}(-1)$. However, we must remember that these vectors in \mathbb{C}^{5} are representations of vectors in \mathbb{C}^{10} relative to the basis F. Each needs to be "un-coordinatized" before joining our final basis. Here we go,

$$
\mathbf{v}_{6}=\rho_{F}^{-1}\left(\left[\begin{array}{c}
3 \\
-1 \\
0 \\
2 \\
-2
\end{array}\right]\right)=3\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+0\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+(-2)\left[\begin{array}{c}
-1 \\
0 \\
0 \\
2 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1 \\
3 \\
-3 \\
-1 \\
2 \\
0 \\
2 \\
0 \\
-2
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{v}_{7}=\rho_{F}^{-1}\left(\left[\begin{array}{c}
2 \\
-2 \\
-1 \\
4 \\
-3
\end{array}\right]\right)=2\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-2)\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-1)\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+4\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+(-3)\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{c}
-2 \\
-2 \\
2 \\
-3 \\
-2 \\
0 \\
-1 \\
4 \\
0 \\
-3
\end{array}\right] \\
& \mathbf{v}_{8}=\rho_{F}^{-1}\left(\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]\right)=0\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+1\left[\begin{array}{c}
-1 \\
0 \\
0 \\
2 \\
0 \\
-2 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
0 \\
0 \\
1 \\
-1 \\
1 \\
1 \\
0 \\
1
\end{array}\right] \\
& \mathbf{v}_{9}=\rho_{F}^{-1}\left(\left[\begin{array}{c}
3 \\
-2 \\
-3 \\
4 \\
-4
\end{array}\right]\right)=3\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-2)\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+(-3)\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+4\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+(-4)\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
2 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{c}
-4 \\
-2 \\
3 \\
-3 \\
-2 \\
-2 \\
-3 \\
4 \\
0 \\
-4
\end{array}\right]
\end{aligned}
$$

To summarize, we list the entire basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{10}\right\}$,

$$
\begin{aligned}
& \mathbf{v}_{1}=\left[\begin{array}{c}
2 \\
1 \\
-1 \\
1 \\
-1 \\
2 \\
1 \\
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
1 \\
-2 \\
2 \\
0 \\
-1 \\
0 \\
-1 \\
0 \\
1
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
2 \\
-1 \\
0 \\
2 \\
0 \\
0 \\
0 \\
-1
\end{array}\right] \quad \mathbf{v}_{4}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{v}_{5}=\left[\begin{array}{c}
-2 \\
-1 \\
3 \\
-3 \\
-1 \\
2 \\
0 \\
2 \\
0 \\
-2
\end{array}\right]
\end{aligned} \quad \mathbf{v}_{7}=\left[\begin{array}{c}
-2 \\
-2 \\
2 \\
-3 \\
-1 \\
2 \\
-2 \\
0 \\
-1 \\
4 \\
-1 \\
0 \\
-1 \\
-2 \\
-3
\end{array}\right] \quad \mathbf{v}_{8}=\left[\begin{array}{c}
1 \\
2 \\
0 \\
0 \\
0 \\
1 \\
-1 \\
1 \\
1 \\
0 \\
1
\end{array}\right] \quad \mathbf{v}_{9}=\left[\begin{array}{c}
-4 \\
-2 \\
3 \\
-3 \\
-2 \\
-2 \\
-3 \\
4 \\
0 \\
-4
\end{array}\right] \quad \mathbf{v}_{10}=\left[\begin{array}{c}
-3 \\
-2 \\
3 \\
-2 \\
1 \\
3 \\
3 \\
1 \\
0 \\
1
\end{array}\right]
$$

The resulting matrix representation is

$$
M_{B, B}^{T}=\left[\begin{array}{cccccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]
$$

If you are not inclined to check all of these computations, here are a few that should convince you of the amazing properties of the basis B. Compute the matrix-vector products $A \mathbf{v}_{i}, 1 \leq i \leq 10$. In each case the result will be a vector of the form $\lambda \mathbf{v}_{i}+\delta \mathbf{v}_{i-1}$, where λ is one of the eigenvalues (you should be able to predict ahead of time which one) and $\delta \in\{0,1\}$.

Alternatively, if we can write inputs to the linear transformation T as linear combinations of the vectors in B (which we can do uniquely since B is a basis, Theorem VRRB 314), then the "action" of T is reduced to a matrix-vector product with the exceedingly simple matrix that is the Jordan canonical form. Wow!区

Subsection CHT
 Cayley-Hamilton Theorem

Jordan was a French mathematician who was active in the late 1800's. Cayley and Hamilton were 19thcentury contemporaries of Jordan from Britian. The theorem that bears their names is perhaps one of
the most celebrated in basic linear algebra. While our result applies only to vector spaces and linear transformations with scalars from the set of complex numbers, \mathbb{C}, the result is equally true if we restrict our scalars to the real numbers, \mathbb{R}. It says that every matrix satisfies its own characteristic polynomial.

Theorem CHT

Cayley-Hamilton Theorem

Suppose A is a square matrix with characteristic polynomial $p_{A}(x)$. Then $p_{A}(A)=\mathcal{O}$.
Proof Suppose B and C are similar matrices via the matrix $S, B=S^{-1} C S$, and $q(x)$ is any polynomial. Then $q(B)$ is similar to $q(C)$ via $S, q(B)=S^{-1} q(C) S$. (See Example HPDM 434 for hints on how to convince yourself of this.)

By Theorem JCFLT 642 and Theorem SCB 568 we know A is similar to a matrix, J, in Jordan canonical form. Suppose $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{m}$ are the distinct eigenvalues of A (and are therefore the eigenvalues and diagonal entries of J). Then by Theorem EMRCP 397] and Definition AME 399, we can factor the characteristic polynomial as

$$
p_{A}(x)=\left(x-\lambda_{1}\right)^{\alpha_{A}\left(\lambda_{1}\right)}\left(x-\lambda_{2}\right)^{\alpha_{A}\left(\lambda_{2}\right)}\left(x-\lambda_{3}\right)^{\alpha_{A}\left(\lambda_{3}\right)} \cdots\left(x-\lambda_{m}\right)^{\alpha_{A}\left(\lambda_{m}\right)}
$$

On substituting the matrix J we have

$$
p_{A}(J)=\left(J-\lambda_{1} I\right)^{\alpha_{A}\left(\lambda_{1}\right)}\left(J-\lambda_{2} I\right)^{\alpha_{A}\left(\lambda_{2}\right)}\left(J-\lambda_{3} I\right)^{\alpha_{A}\left(\lambda_{3}\right)} \cdots\left(J-\lambda_{m} I\right)^{\alpha_{A}\left(\lambda_{m}\right)}
$$

The matrix $J-\lambda_{k} I$ will be block diagonal, and the block arising from the generalized eigenspace for λ_{k} will have zeros along the diagonal. Suitably adjusted for matrices (rather than linear transformations), Theorem RGEN 628 tells us this matrix is nilpotent. Since the size of this nilpotent matrix is equal to the algebraic multiplicity of λ_{k}, the power $\left(J-\lambda_{k} I\right)^{\alpha_{A}\left(\lambda_{k}\right)}$ will be a zero matrix (Theorem KPNLT 604) in the location of this block.

Repeating this argument for each of the m eigenvalues will place a zero block in some term of the product at every location on the diagonal. The entire product will then be zero blocks on the diagonal, and zero off the diagonal. In other words, it will be the zero matrix. Since A and J are similar, $p_{A}(A)=p_{A}(J)=\mathcal{O}$.

Appendix CN Computation Notes

Section MMA
 Mathematica

Computation Note ME.MMA
 Matrix Entry

Matrices are input as lists of lists, since a list is a basic data structure in Mathematica. A matrix is a list of rows, with each row entered as a list. Mathematica uses braces $((\{\})$,$) to delimit lists. So the input$

$$
a=\{\{1,2,3,4\},\{5,6,7,8\},\{9,10,11,12\}\}
$$

would create a 3×4 matrix named a that is equal to

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]
$$

To display a matrix named a "nicely" in Mathematica, type MatrixForm[a], and the output will be displayed with rows and columns. If you just type a, then you will get a list of lists, like how you input the matrix in the first place.

Computation Note RR.MMA

Row Reduce

If a is the name of a matrix in Mathematica, then the command RowReduce [a] will output the reduced row-echelon form of the matrix.

Computation Note LS.MMA
 Linear Solve

Mathematica will solve a linear system of equations using the LinearSolve[] command. The inputs are a matrix with the coefficients of the variables (but not the column of constants), and a list containing the constant terms of each equation. This will look a bit odd, since the lists in the matrix are rows, but the column of constants is also input as a list and so looks like a row rather than a column. The result will be a single solution (even if there are infinitely many), reported as a list, or the statement that there is no solution. When there are infinitely many, the single solution reported is exactly that solution used in the proof of Theorem RCLS 50, where the free variables are all set to zero, and the dependent variables come along with values from the final column of the row-reduced matrix.

As an example, Archetype A 689 is

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{3}=1 \\
2 x_{1}+x_{2}+x_{3}=8 \\
x_{1}+x_{2}=5
\end{array}
$$

To ask Mathematica for a solution, enter

$$
\text { LinearSolve }[\{\{1,-1,2\},\{2,1,1\},\{1,1,0\}\},\{1,8,5\}]
$$

and you will get back the single solution

$$
\{3,2,0\}
$$

We will see later how to coax Mathematica into giving us infinitely many solutions for this system Computation VFSS.MMA 659).

Computation Note VLC.MMA

 Vector Linear CombinationsContributed by Robert Beezer
Vectors in Mathematica are represented as lists, written and displayed horizontally. For example, the vector

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

would be entered and named via the command

$$
\mathrm{v}=\{1,2,3,4\}
$$

Vector addition and scalar multiplication are then very natural. If u and v are two lists of equal length, then

$$
2 u+(-3) v
$$

will compute the correct vector and return it as a list. If u and v have different sizes, then Mathematica will complain about "objects of unequal length."

Computation Note NS.MMA
 Null Space

Given a matrix A, Mathematica will compute a set of column vectors whose span is the null space of the matrix with the NullSpace [] command. Perhaps not coincidentally, this set is exactly $\left\{\mathbf{z}_{j} \mid 1 \leq j \leq n-r\right\}$. However, Mathematica prefers to output the vectors in the opposite order than one we have chosen. Here's a small example.

Begin with the 3×4 matrix A, and its row-reduced version B,

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
3 & 4 & 1 & -2 \\
-1 & 1 & -5 & 3
\end{array}\right] \quad \xrightarrow{\text { RREF }} \quad B=\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
0 & \begin{array}{|ccc}
1 & -2 & 1 \\
0 & 0 & 0
\end{array} & 0
\end{array}\right]
$$

We could extract entries from B to build the vectors \mathbf{z}_{1} and \mathbf{z}_{2} according to Theorem SSNS 117 and describe $\mathcal{N}(A)$ as a span of the set $\left\{\mathbf{z}_{1}, \mathbf{z}_{2}\right\}$. Instead, if a has been set to A, then executing the command NullSpace[a] yields the list of lists (column vectors),

$$
\{\{2,-1,0,1\},\{-3,2,1,0\}\}
$$

Notice how our \mathbf{z}_{1} is second in the list. To "correct" this we can use a list-processing command from Mathematica, Reverse[], as follows,

Reverse[NullSpace[a]]

and recieve the output in our preferred order. Give it a try yourself.

Computation Note VFSS.MMA
 Vector Form of Solution Set

Suppose that A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{C}^{m}$ is a column vector. We might wish to find all of the solutions to the linear system $\mathcal{L S}(A, \mathbf{b})$. Mathematica's LinearSolve[A, b] will return at most one solution Computation LS.MMA 658). However, when the system is consistent, then this one solution reported is exactly the vector \mathbf{c}, described in the statement of Theorem VFSLS 96.

The vectors $\mathbf{u}_{j}, 1 \leq j \leq n-r$ of Theorem VFSLS 96 are exactly the output of Mathematica's NullSpace[] command, though Mathematica lists them in the opposite order from the order we have chosen. These are the same vectors listed as $\mathbf{z}_{j}, 1 \leq j \leq n-r$ in Theorem SSNS 117. With \mathbf{c} produced from the LinearSolve[] command, and the \mathbf{u}_{j} coming from the NullSpace[] command we can use Mathematica's symbolic manipulation commands to create an expression that describes all of the solutions.

Begin with the system $\mathcal{L S}(A, \mathbf{b})$. Row-reduce A Computation RR.MMA 657) and identify the free variables by determining the non-pivot columns. Suppose, for the sake of argument, that we have the three free variables x_{3}, x_{7} and x_{8}. Then the following command will build an expression for an arbitrary solution:

$$
\text { LinearSolve }[\mathrm{A}, \mathrm{~b}]+\{\mathrm{x} 8, \mathrm{x} 7, \mathrm{x} 3\} . \operatorname{NullSpace}[\mathrm{A}]
$$

Be sure to include the "dot" right before the NullSpace[] command - it has the effect of creating a linear combination of the vectors in the null space, using scalars that are symbols reminiscent of the variables.

A concrete example should help here. Suppose we want a solution set for the linear system with coefficient matrix A and vector of constants \mathbf{b},

$$
A=\left[\begin{array}{ccccccc}
1 & 2 & 3 & -5 & 1 & -1 & 2 \\
2 & 4 & 0 & 8 & -4 & 1 & -8 \\
3 & 6 & 4 & 0 & -2 & 5 & 7
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
8 \\
1 \\
-5
\end{array}\right]
$$

If we were to apply Theorem VFSLS [96, we would extract the components of \mathbf{c} and \mathbf{u}_{j} from the row-reduced version of the augmented matrix of the system (obtained with Mathematica, Computation RR.MMA 657),

$$
\left[\begin{array}{cccccccc}
{[1} & 2 & 0 & 4 & -2 & 0 & -5 & 2 \\
0 & 0 & 1 & -3 & 1 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & -3
\end{array}\right]
$$

Instead, we will use this augmented matrix in reduced row-echelon form only to identify the free variables. In this example, we locate the non-pivot columns and see that x_{2}, x_{4}, x_{5} and x_{7} are free. If we have set a to the coefficient matrix and b to the vector of constants, then we execute the Mathematica command,

$$
\text { LinearSolve[a, b]+\{x7, x5, x4, x2\}.NullSpace[a] }
$$

As output we obtain the column vector (list),

$$
\left[\begin{array}{c}
2-2 \mathrm{x} 2-4 \mathrm{x} 4+2 \mathrm{x} 5+5 \mathrm{x} 7 \\
\mathrm{x} 2 \\
1+3 \mathrm{x} 4-\mathrm{x} 5-3 \mathrm{x} 7 \\
\mathrm{x} 4 \\
\mathrm{x} 5 \\
-3-2 \mathrm{x} 7 \\
\mathrm{x} 7
\end{array}\right]
$$

Computation Note GSP.MMA
 Gram-Schmidt Procedure

Mathematica has a built-in routine that will do the Gram-Schmidt procedure Theorem GSPCV 170). The input is a set of vectors, which must be linearly independent. This is written as a list, containing lists that are the vectors. Let a be such a list of lists, containing the vectors $\mathbf{v}_{i}, 1 \leq i \leq p$ from the statement of the theorem. You will need to first load the right Mathematica package - execute <<LinearAlgebra'Orthogonalization' to make this happen. Then execute GramSchmidt[a]. The output will be another list of lists containing the vectors $\mathbf{u}_{i}, 1 \leq i \leq p$ from the statement of the theorem. Mathematica will complain if you do not provide a linearly independent set as input (try it!).

An example. Suppose our linearly independent set (check this!) is

$$
S=\left\{\left[\begin{array}{c}
-1 \\
4 \\
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
3 \\
0 \\
3 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
0 \\
-1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-1 \\
-2 \\
-3 \\
1 \\
4
\end{array}\right],\left[\begin{array}{c}
1 \\
6 \\
-1 \\
4 \\
6
\end{array}\right]\right\}
$$

The output of the GramSchmidt[] command will be the set,

$$
T=\left\{\left[\begin{array}{c}
-\frac{1}{3 \sqrt{3}} \\
\frac{4}{3 \sqrt{3}} \\
\frac{1}{3 \sqrt{3}} \\
0 \\
\frac{1}{\sqrt{3}}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{12 \sqrt{15}} \\
\frac{23}{12 \sqrt{15}} \\
-\frac{1}{12 \sqrt{15}} \\
\frac{3 \sqrt{\frac{3}{5}}}{4} \\
-\frac{\sqrt{\frac{5}{3}}}{2}
\end{array}\right],\left[\begin{array}{c}
-\frac{37}{4 \sqrt{685}} \\
\frac{29}{4 \sqrt{685}} \\
-\frac{3}{4 \sqrt{685}} \\
-\frac{79}{4 \sqrt{665}} \\
-\frac{5 \sqrt{5}}{2}
\end{array}\right],\left[\begin{array}{c}
-\frac{337}{2 \sqrt{127}} \\
-\frac{37}{6 \sqrt{12043}} \\
-\frac{1763}{6 \sqrt{120423}} \\
\frac{337}{6 \sqrt{120423}} \\
\frac{50}{\sqrt{120423}}
\end{array}\right],\left[\begin{array}{c}
\frac{23}{\sqrt{879}} \\
\frac{26}{3 \sqrt{879}} \\
-\frac{44}{3 \sqrt{879}} \\
-\frac{23}{3 \sqrt{879}} \\
\frac{1}{\sqrt{879}}
\end{array}\right]\right\}
$$

Ugly, but true. At this stage, you might just as well be encouraged to think of the Gram-Schmidt procedure as a computational black box, linearly independent set in, orthogonal span-preserving set out.

To check that the output set is orthogonal, we can easily check the orthogonality of individual pairs of vectors. Suppose the output was set equal to b (say via $\mathrm{b}=\mathrm{GramSchmidt}[\mathrm{a}]$). We can extract the individual vectors of c as "parts" with syntax like c[[3]], which would return the third vector in the set. When our vectors have only real number entries, we can accomplish an innerproduct with a "dot." So, for example, you should discover that $c[[3]] . c[[5]]$ will return zero. Try it yourself with another pair of vectors.

Computation Note TM.MMA
 Transpose of a Matrix

Contributed by Robert Beezer
Suppose a is the name of a matrix stored in Mathematica. Then Transpose [a] will create the transpose of a .

Computation Note MM.MMA
 Matrix Multiplication

If A and B are matrices defined in Mathematica, then A.B will return the product of the two matrices (notice the dot between the matrices). If A is a matrix and \mathbf{v} is a vector, then A.v will return the vector that is the matrix-vector product of A and v. In every case the sizes of the matrices and vectors need to be correct.

Some examples:

$$
\begin{gathered}
\{\{1,2\},\{3,4\}\} \cdot\{\{5,6,7\},\{8,9,10\}\}=\{\{21,24,27\},\{47,54,61\}\} \\
\{\{1,2\},\{3,4\}\} \cdot\{\{5\},\{6\}\}=\{\{17\},\{39\}\} \\
\{\{1,2\},\{3,4\}\} \cdot\{5,6\}=\{17,39\}
\end{gathered}
$$

Understanding the difference between the last two examples will go a long way to explaining how some Mathematica constructs work.

Computation Note MI.MMA
 Matrix Inverse
 π

If A is a matrix defined in Mathematica, then Inverse [A] will return the inverse of A, should it exist. In the case where A does not have an inverse Mathematica will tell you the matrix is singular (see Theorem NI 223).

Section TI86

Texas Instruments 86

Computation Note ME.TI86

Matrix Entry

On the TI-86, press the MATRX key (Yellow-7). Press the second menu key over, F2, to bring up the EDIT screen. Give your matrix a name, one letter or many, then press ENTER. You can then change the size of the matrix (rows, then columns) and begin editing individual entries (which are initially zero). ENTER will move you from entry to entry, or the down arrow key will move you to the next row. A menu gives you extra options for editing.

Matrices may also be entered on the home screen as follows. Use brackets ([,]) to enclose rows with elements separated by commas. Group rows, in order, into a final set of brackets (with no commas between rows). This can then be stored in a name with the STO key. So, for example,

$$
[[1,2,3,4][5,6,7,8][9,10,11,12]] \rightarrow \mathrm{A}
$$

will create a matrix named A that is equal to

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]
$$

Computation Note RR.TI86

Row Reduce

If A is the name of a matrix stored in the TI-86, then the command rref A will return the reduced row-echelon form of the matrix. This command can also be found by pressing the MATRX key, then F4 for OPS, and finally, F5 for rref.

Note that this command will not work for a matrix with more rows than columns. (Ed. Not sure just why this is!) A work-around is to pad the matrix with extra columns of zeros until the matrix is square.

Computation Note VLC.TI86

Vector Linear Combinations

Contributed by Robert Beezer
Vector operations on the TI-86 can be accessed via the VECTR key, which is Yellow-8. The EDIT tool appears when the F2 key is pressed. After providing a name and giving a "dimension" (the size) then you can enter the individual entries, one at a time. Vectors can also be entered on the home screen using brackets ([,]). To create the vector

$$
\mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

use brackets and the store key (STO),

$$
[1,2,3,4] \rightarrow \mathrm{v}
$$

Vector addition and scalar multiplication are then very natural. If u and v are two vectors of equal size, then

$$
2 * u+(-3) * v
$$

will compute the correct vector and display the result as a vector.

Computation Note TM.TI86
 Transpose of a Matrix

rir

Contributed by Eric Fickenscher
Suppose A is the name of a matrix stored in the TI-86. Use the command A^{T} to transpose A. This command can be found by pressing the MATRX key, then F3 for MATH, then F2 for ${ }^{T}$.

Section TI83

Texas Instruments 83

Computation Note ME.TI83
 Matrix Entry

Contributed by Douglas Phelps
On the TI-83, press the MATRX key. Press the right arrow key twice so that EDIT is highlighted. Move the cursor down so that it is over the desired letter of the matrix and press ENTER. For example, let's call our matrix B, so press the down arrow once and press ENTER. To enter a 2×3 matrix, press 2 ENTER 3 ENTER . To create the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

press 1 ENTER 2 ENTER 3 ENTER 4 ENTER 5 ENTER 6 ENTER.

Computation Note RR.TI83

Row Reduce

Contributed by Douglas Phelps
Suppose B is the name of a matrix stored in the TI-83. Press the MATRX key. Press the right arrow key once so that MATH is highlighted. Press the down arrow eleven times so that rref (is highlighted, then press ENTER . to choose the matrix B, press MATRX, then the down arrow once followed by ENTER . Supply a right parenthesis ()) and press ENTER .

Note that this command will not work for a matrix with more rows than columns. (Ed. Not sure just why this is!) A work-around is to pad the matrix with extra columns of zeros until the matrix is square.

Computation Note VLC.TI83
 Vector Linear Combinations

Contributed by Douglas Phelps
Entering a vector on the TI-83 is the same process as entering a matrix. You press 4 ENTER 3 ENTER for a 4×3 matrix. Likewise, you press 4 ENTER 1 ENTER for a vector of size 4 . To multiply a vector by 8 , press the number 8 , then press the MATRX key, then scroll down to the letter you named your vector (A, B, C, etc) and press ENTER.

To add vectors A and B for example, press the MATRX key, then ENTER. Then press the + key. Then press the MATRX key, then the down arrow once, then ENTER . [A] + [B] will appear on the screen. Press ENTER.

Appendix P Preliminaries

This appendix contains important ideas about complex numbers, sets, and the logic and techniques of forming proofs. It is not meant to be read straight through, but you should head here when you need to review these ideas.

We choose to expand the set of scalars from the real numbers, \mathbb{R}, to the set of complex numbers, \mathbb{C}. So basic operations with complex numbers (like addition and division) will be necessary. This can be safely postponed until your arrival in Section O 163, and a refresher before Chapter E 389 would be a good idea as well.

Sets are extremely important in all of mathematics, but maybe you have not had much exposure to the basic operations. Check out Section SET 669. The text will send you here frequently as well. Visit often.

This book is as much about doing mathematics as it is about linear algebra. The "Proof Techniques" are vignettes about logic, types of theorems, structure of proofs, or just plain old-fashioned advice about how to do advanced mathematics. The text will frequently point to one of these techniques in advance of their first use, and for specific instructions there will be additional references. If you find constructing proofs difficult (we all did once), then head back here and browse through the advice for second or third readings.

Section CNO
 Complex Number Operations

In this section we review of the basics of working with complex numbers.

Subsection CNA
 Arithmetic with complex numbers

A complex number is a linear combination of 1 and $i=\sqrt{-1}$, typically written in the form $a+b i$. Complex numbers can be added, subtracted, multiplied and divided, just like we are used to doing with real numbers, including the restriction on division by zero. We will not define these operations carefully, but instead illustrate with examples.

Example ACN
 Arithmetic of complex numbers

$$
(2+5 i)+(6-4 i)=(2+6)+(5+(-4)) i=8+i
$$

$$
\begin{aligned}
(2+5 i)-(6-4 i) & =(2-6)+(5-(-4)) i=-4+9 i \\
(2+5 i)(6-4 i) & =(2)(6)+(5 i)(6)+(2)(-4 i)+(5 i)(-4 i)=12+30 i-8 i-20 i^{2} \\
& =12+22 i-20(-1)=32+22 i
\end{aligned}
$$

Division takes just a bit more care. We multiply the denominator by a complex number chosen to produce a real number and then we can produce a complex number as a result.

$$
\frac{2+5 i}{6-4 i}=\frac{2+5 i}{6-4 i} \frac{6+4 i}{6+4 i}=\frac{-8+38 i}{52}=-\frac{8}{52}+\frac{38}{52} i=-\frac{2}{13}+\frac{19}{26} i
$$

In this example, we used $6+4 i$ to convert the denominator in the fraction to a real number. This number is known as the conjugate, which we define in the next section. We will often exploit the basic properties of complex number addition, subtraction, multiplication and division, so we will carefully define the two basic operations, together with a definition of equality, and then collect nine basic properties in a theorem.

Definition CNE

Complex Number Equality
The complex numbers $\alpha=a+b i$ and $\beta=c+d i$ are equal, denoted $\alpha=\beta$, if $a=c$ and $b=d$. (This definition contains Notation CNE.)

Definition CNA

Complex Number Addition
The sum of the complex numbers $\alpha=a+b i$ and $\beta=c+d i$, denoted $\alpha+\beta$, is $(a+c)+(b+d) i$. (This definition contains Notation CNA.)

Definition CNM

Complex Number Multiplication
The product of the complex numbers $\alpha=a+b i$ and $\beta=c+d i$, denoted $\alpha \beta$, is $(a c-b d)+(a d+b c) i$.
(This definition contains Notation CNM.)

Theorem PCNA

Properties of Complex Number Arithmetic

The operations of addition and multiplication of complex numbers have the following properties.

- ACCN Additive Commutativity, Complex Numbers

For any $\alpha, \beta \in \mathbb{C}, \alpha+\beta=\beta+\alpha$.

- MCCN Multiplicative Commutativity, Complex Numbers

For any $\alpha, \beta \in \mathbb{C}, \alpha \beta=\beta \alpha$.

- AACN Additive Associativity, Complex Numbers

For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$.

- MACN Multiplicative Associativity, Complex Numbers

For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha(\beta \gamma)=(\alpha \beta) \gamma$.

- DCN Distributivity, Complex Numbers

For any $\alpha, \beta, \gamma \in \mathbb{C}, \alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$.

- ZCN Zero, Complex Numbers

There is a complex number $0=0+0 i$ so that for any $\alpha \in \mathbb{C}, 0+\alpha=\alpha$.

- OCN One, Complex Numbers

There is a complex number $1=1+0 i$ so that for any $\alpha \in \mathbb{C}, 1 \alpha=\alpha$.

- AICN Additive Inverse, Complex Numbers

For every $\alpha \in \mathbb{C}$ there exists $-\alpha \in \mathbb{C}$ so that $\alpha+(-\alpha)=0$.

- MICN Multiplicative Inverse, Complex Numbers

For every $\alpha \in \mathbb{C}, \alpha \neq 0$ there exists $\frac{1}{\alpha} \in \mathbb{C}$ so that $\alpha\left(\frac{1}{\alpha}\right)=1$.

Proof We could derive each of these properties of complex numbers with a proof that builds on the identical properties of the real numbers. The only proof that might be at all interesting would be to show Property MICN 667 since we would need to trot out a conjugate. For this property, and especially for the others, we might be tempted to construct proofs of the identical properties for the reals. This would take us way too far afield, so we will draw a line in the sand right here and just agree that these nine fundamental behaviors are true. OK?

Mostly we have stated these nine properties carefully so that we can make reference to them later in other proofs. So we will be linking back here often.

Subsection CCN
 Conjugates of Complex Numbers

Definition CCN

Conjugate of a Complex Number

The conjugate of the complex number $c=a+b i \in \mathbb{C}$ is the complex number $\bar{c}=a-b i$.
(This definition contains Notation CCN.)

Example CSCN

Conjugate of some complex numbers

$$
\overline{2+3 i}=2-3 i \quad \overline{5-4 i}=5+4 i \quad \overline{-3+0 i}=-3+0 i \quad \overline{0+0 i}=0+0 i
$$

Notice how the conjugate of a real number leaves the number unchanged. The conjugate enjoys some basic properties that are useful when we work with linear expressions involving addition and multiplication.

Theorem CCRA

Complex Conjugation Respects Addition

Suppose that c and d are complex numbers. Then $\overline{c+d}=\bar{c}+\bar{d}$.
Proof Let $c=a+b i$ and $d=r+s i$. Then

$$
\overline{c+d}=\overline{(a+r)+(b+s) i}=(a+r)-(b+s) i=(a-b i)+(r-s i)=\bar{c}+\bar{d}
$$

Theorem CCRM

Complex Conjugation Respects Multiplication

Suppose that c and d are complex numbers. Then $\overline{c d}=\bar{c} \bar{d}$.
Proof Let $c=a+b i$ and $d=r+s i$. Then

$$
\overline{c d}=\overline{(a r-b s)+(a s+b r) i}=(a r-b s)-(a s+b r) i
$$

$$
=(a r-(-b)(-s))+(a(-s)+(-b) r) i=(a-b i)(r-s i)=\bar{c} \bar{d}
$$

Theorem CCT

Complex Conjugation Twice

Suppose that c is a complex number. Then $\overline{\bar{c}}=c$.
Proof Let $c=a+b i$. Then

$$
\overline{\bar{c}}=\overline{a-b i}=a-(-b i)=a+b i=c
$$

Subsection MCN

Modulus of a Complex Number

We define one more operation with complex numbers that may be new to you.

Definition MCN

Modulus of a Complex Number
The modulus of the complex number $c=a+b i \in \mathbb{C}$, is the nonnegative real number

$$
|c|=\sqrt{c \bar{c}}=\sqrt{a^{2}+b^{2}} .
$$

Example MSCN

Modulus of some complex numbers

$$
|2+3 i|=\sqrt{13} \quad|5-4 i|=\sqrt{41} \quad|-3+0 i|=3 \quad|0+0 i|=0
$$

The modulus can be interpreted as a version of the absolute value for complex numbers, as is suggested by the notation employed. You can see this in how $|-3|=|-3+0 i|=3$. Notice too how the modulus of the complex zero, $0+0 i$, has value 0 .

Section SET
 Sets

Definition SET

Set
A set is an unordered collection of objects. If S is a set and x is an object that is in the set S, we write $x \in S$. If x is not in S, then we write $x \notin S$. We refer to the objects in a set as its elements.
(This definition contains Notation SETM.)
Hard to get much more basic than that. Notice that the objects in a set can be anything, and there is no notion of order among the elements of the set. A set can be finite as well as infinite. A set can contain other sets as its objects. At a primitive level, a set is just a way to break up some class of objects into two groupings: those objects in the set, and those objects not in the set.

Example SETM

Set membership

From the set of all possible symbols, construct the following set of three symbols,

$$
S=\{\boldsymbol{\square}, \star, \star\}
$$

Then the statement $\boldsymbol{\square} \in S$ is true, while the statement $\boldsymbol{\Delta} \in S$ is false. However, then the statement $\boldsymbol{\Delta} \notin S$ is true.

A portion of a set is known as a subset. Notice how the following definition uses an implication (if whenever...then...). Note too how the definition of a subset relies on the definition of a set through the idea of set membership.

Definition SSET

Subset

If S and T are two sets, then S is a subset of T, written $S \subseteq T$ if whenever $x \in S$ then $x \in T$.
(This definition contains Notation SSET.)
If we want to disallow the possibility that S is the same as T, we use the notation $S \subset T$ and we say that S is a proper subset of T. We'll do an example, but first we'll define a special set.

Definition ES

Empty Set

The empty set is the set with no elements. Its is denoted by \emptyset.
(This definition contains Notation ES.)

Example SSET

Subset

If $S=\{\boldsymbol{\bullet}, \boldsymbol{\star}\}, T=\{\boldsymbol{\star}, \boldsymbol{\bullet}\}, R=\{\mathbf{\Delta}, \boldsymbol{\star}\}$, then

$$
\begin{array}{lll}
T \subseteq S & R \nsubseteq T & \emptyset \subseteq S \\
T \subset S & S \subseteq S & S \not \subset S
\end{array}
$$

What does it mean for two sets to be equal? They must be the same. Well, that explanation is not really too helpful, is it? How about: If $A \subseteq B$ and $B \subseteq A$, then A equals B. This gives us something to work with, if A is a subset of B, and vice versa, then they must really be the same set. We will now make
the symbol "=" do double-duty and extend its use to statements like $A=B$, where A and B are sets. Here's the definition, which we will reference often.

Definition SE

Set Equality

Two sets, S and T, are equal, if $S \subseteq T$ and $T \subseteq S$. In this case, we write $S=T$.
(This definition contains Notation SE.)
Sets are typically written inside of braces, as \{ \}, as we have seen above. However, when sets have more than a few elements, a description will typically have two components. The first is a description of the general type of objects contained in a set, while the second is some sort of restriction on the properties the objects have. Every object in the set must be of the type described in the first part and it must satisfy the restrictions in the second part. Conversely, any object of the proper type for the first part, that also meets the conditions of the second part, will be in the set. These two parts are set off from each other somehow, often with a vertical bar (|) or a colon (:).

I like to think of sets as clubs. The first part is some description of the type of people who might belong to the club, the basic objects. For example, a bicycle club would describe its members as being people who like to ride bicycles. The second part is like a membership committee, it restricts the people who are allowed in the club. Continuing with our bicycle club analogy, we might decide to limit ourselves to "serious" riders and only have members who can document having ridden 100 kilometers or more in a single day at least one time.

The restrictions on membership can migrate around some between the first and second part, and there may be several ways to describe the same set of objects. Here's a more mathematical example, employing the set of all integers, \mathbb{Z}, to describe the set of even integers.

$$
\begin{aligned}
E & =\{x \in \mathbb{Z} \mid x \text { is an even number }\} \\
& =\{x \in \mathbb{Z} \mid 2 \text { divides } x \text { evenly }\} \\
& =\{2 k \mid k \in \mathbb{Z}\}
\end{aligned}
$$

Notice how this set tells us that its objects are integer numbers (not, say, matrices or functions, for example) and just those that are even. So we can write that $10 \in E$, while $17 \notin E$ once we check the membership criteria. We also recognize the question

$$
\left[\begin{array}{ccc}
1 & -3 & 5 \\
2 & 0 & 3
\end{array}\right] \in E ?
$$

as being simply ridiculous.

Subsection SC

Set Cardinality

On occasion, we will be interested in the number of elements in a finite set. Here's the definition and the associated notation.

Definition C

Cardinality

Suppose S is a finite set. Then the number of elements in S is called the cardinality or size of S, and is denoted $|S|$.
(This definition contains Notation C.)

Example CS

Cardinality and Size
If $S=\{\downarrow, \star, \rrbracket\}$, then $|S|=3$.

Subsection SO
 Set Operations

In this subsection we define and illustrate the three most common basic ways to manipulate sets to create other sets. Since much of linear algebra is about sets, we will use these often.

Definition SU

Set Union

Suppose S and T are sets. Then the union of S and T, denoted $S \cup T$, is the set whose elements are those that are elements of S or of T, or both. More formally,

$$
x \in S \cup T \text { if and only if } x \in S \text { or } x \in T
$$

(This definition contains Notation SU.)
Notice that the use of the word "or" in this definition is meant to be non-exclusive. That is, it allows for x to be an element of both S and T and still qualify for membership in $S \cup T$.

Example SU

Set union
If $S=\{\downarrow, \star, \square\}$ and $T=\{\downarrow, \star, \mathbf{\Delta}\}$ then $S \cup T=\{\downarrow, \star, \square, \Delta\}$.

Definition SI

Set Intersection

Suppose S and T are sets. Then the intersection of S and T, denoted $S \cap T$, is the set whose elements are only those that are elements of S and of T. More formally,

$$
x \in S \cap T \text { if and only if } x \in S \text { and } x \in T
$$

(This definition contains Notation SI.)

Example SI

Set intersection
If $S=\{\downarrow, \star, \square\}$ and $T=\{\downarrow, \star, \mathbf{\Delta}\}$ then $S \cap T=\{\downarrow, \star\}$.
The union and intersection of sets are operations that begin with two sets and produce a third, new, set. Our final operation is the set complement, which we usually think of as an operation that takes a single set and creates a second, new, set. However, if you study the definition carefully, you will see that it needs to be computed relative to some "universal" set.

Definition SC

Set Complement

Suppose S is a set that is a subset of a universal set U. Then the complement of S, denoted \bar{S}, is the set whose elements are those that are elements of U and not elements of S. More formally,

$$
x \in \bar{S} \text { if and only if } x \in U \text { and } x \notin S
$$

(This definition contains Notation SC.)
Notice that there is nothing at all special about the universal set. This is simply a term that suggests that U contains all of the possible objects we are considering. Often this set will be clear from the context, and we won't think much about it, nor reference it in our notation. In other cases (rarely in our work in
this course) the exact nature of the universal set must be made explicit, and reference to it will possibly be carried through in our choice of notation.

Example SC

Set complement

If $U=\{\downarrow, \star, \boldsymbol{\square}, \mathbf{\Delta}\}$ and $S=\{\downarrow, \star, \square\}$ then $\bar{S}=\{\mathbf{\Delta}\}$.
There are many more natural operations that can be performed on sets, such as an exclusive-or and the symmetric difference. Many of these can be defined in terms of the union, intersection and complement. We will not have much need of them in this course, and so we will not give precise descriptions here in this preliminary section.

There is also an interesting variety of basic results that describe the interplay of these operations with each other. We mention just two as an example, these are known as DeMorgan's Laws.

$$
\begin{aligned}
& \overline{(S \cup T)}=\bar{S} \cap \bar{T} \\
& \overline{(S \cap T)}=\bar{S} \cup \bar{T}
\end{aligned}
$$

Besides having an appealing symmetry, we mention these two facts, since constructing the proofs of each is a useful exercise that will require a solid understanding of all but one of the definitions presented in this section. Give it a try.

Section PT
 Proof Techniques

In this section we collect many short essays designed to help you understand how to read, understand and construct proofs. Some are very factual, while others consist of advice. They appear in the order that they are first needed (or advisable) in the text, and are meant to be self-contained. So you should not think of reading through this section in one sitting as you begin this course. But be sure to head back here for a first reading whenever the text suggests it. Also think about returning to browse at various points during the course, and especially as you struggle with becoming an accomplished mathematician who is comfortable with the difficult process of designing new proofs.

Proof Technique D
 Definitions
 $1+$

A definition is a made-up term, used as a kind of shortcut for some typically more complicated idea. For example, we say a whole number is even as a shortcut for saying that when we divide the number by two we get a remainder of zero. With a precise definition, we can answer certain questions unambiguously. For example, did you ever wonder if zero was an even number? Now the answer should be clear since we have a precise definition of what we mean by the term even.

A single term might have several possible definitions. For example, we could say that the whole number n is even if there is another whole number k such that $n=2 k$. We say this is an equivalent definition since it categorizes even numbers the same way our first definition does.

Definitions are like two-way streets - we can use a definition to replace something rather complicated by its definition (if it fits) and we can replace a definition by its more complicated description. A definition is usually written as some form of an implication, such as "If something-nice-happens, then blatzo." However, this also means that "If blatzo, then something-nice-happens," even though this may not be formally stated. This is what we mean when we say a definition is a two-way street - it is really two implications, going in opposite "directions."

Anybody (including you) can make up a definition, so long as it is unambiguous, but the real test of a definition's utility is whether or not it is useful for describing interesting or frequent situations.

We will talk about theorems later (and especially equivalences). For now, be sure not to confuse the notion of a definition with that of a theorem.

In this book, we will display every new definition carefully set-off from the text, and the term being defined will be written thus: definition. Additionally, there is a full list of all the definitions, in order of their appearance located at the front of the book (Definitions xi). Finally, the acronym for each definition can be found in the index (Index[??]). Definitions are critical to doing mathematics and proving theorems, so we've given you lots of ways to locate a definition should you forget its. . . uh, well, ... definition.

Can you formulate a precise definition for what it means for a number to be odd? (Don't just say it is the opposite of even. Act as if you don't have a definition for even yet.) Can you formulate your definition a second, equivalent, way? Can you employ your definition to test an odd and an even number for "odd-ness"?

Proof Technique T
 Theorems

Higher mathematics is about understanding theorems. Reading them, understanding them, applying them, proving them. We are ready to prove our first momentarily. Every theorem is a shortcut - we prove something in general, and then whenever we find a specific instance covered by the theorem we can immediately say that we know something else about the situation by applying the theorem. In many cases, this new information can be gained with much less effort than if we did not know the theorem.

The first step in understanding a theorem is to realize that the statement of every theorem can be rewritten using statements of the form "If something-happens, then something-else-happens." The "somethinghappens" part is the hypothesis and the "something-else-happens" is the conclusion. To understand a theorem, it helps to rewrite its statement using this construction. To apply a theorem, we verify that "something-happens" in a particular instance and immediately conclude that "something-else-happens." To prove a theorem, we must argue based on the assumption that the hypothesis is true, and arrive through the process of logic that the conclusion must then also be true.

Proof Technique L Language
 ■ா

Like any science, the language of math must be understood before further study can continue.

> Erin Wilson, Student
> September, 2004

Mathematics is a language. It is a way to express complicated ideas clearly, precisely, and unambiguously. Because of this, it can be difficult to read. Read slowly, and have pencil and paper at hand. It will usually be necessary to read something several times. While reading can be difficult, it is even harder to speak mathematics, and so that is the topic of this technique.
"Natural" language, in the present case English, is fraught with ambiguity. Consider the possible meanings of the sentence: The fish is ready to eat. One fish, or two fish? Are the fish hungry, or will the fish be eaten? (See Exercise SSLE.M10 20, Exercise SSLE.M11 20, Exercise SSLE.M12 21, Exercise SSLE.M13 21.) In your daily interactions with others, give some thought to how many mis-understandings arise from the ambiguity of pronouns, modifiers and objects.

I am going to suggest a simple modification to the way you use language that will make it much, much easier to become proficient at speaking mathematics and eventually it will become second nature. Think of it as a training aid or practice drill you might use when learning to become skilled at a sport.

First, eliminate pronouns from your vocabulary when discussing linear algebra, in class or with your colleagues. Do not use: it, that, those, their or similar sources of confusion. This is the single easiest step you can take to make your oral expression of mathematics clearer to others, and in turn, it will greatly help your own understanding.

Now rid yourself of the word "thing" (or variants like "something"). When you are tempted to use this word realize that there is some object you want to discuss, and we likely have a definition for that object (see the discussion at Technique D (673). Always "think about your objects" and many aspects of the study of mathematics will get easier. Ask yourself: "Am I working with a set, a number, a function, an operation, a differential equation, or what?" Knowing what an object is will allow you to narrow down the procedures you may apply to it. If you have studied an object-oriented computer programming language, then perhaps this advice will be even clearer, since you know that a compiler will often complain with an error message if you confuse your objects.

Third, eliminate the verb "works" (as in "the equation works") from your vocabulary. This term is used as a substitute when we are not sure just what we are trying to accomplish. Usually we are trying to say that some object fulfills some condition. The condition might even have a definition associated with it, making it even easier to describe.

Last, speak slooooowly and thoughtfully as you try to get by without all these lazy words. It is hard at first, but you will get better with practice. Especially in class, when the pressure is on and all eyes are on you, don't succumb to the temptation to use these weak words. Slow down, we'd all rather wait for a slow, well-formed question or answer than a fast, sloppy, incomprehensible one.

You will find the improvement in your ability to speak clearly about complicated ideas will greatly improve your ability to think clearly about complicated ideas. And I believe that you cannot think clearly about complicated ideas if you cannot formulate questions or answers clearly in the correct language. This is as applicable to the study of law, economics or philosophy as it is to the study of science or mathematics.

So when you come to class, check your pronouns at the door, along with other weak words. And when studying with friends, you might make a game of catching one another using pronouns, "thing," or "works." I know I'll be calling you on it!

Proof Technique GS
 Getting Started

"I don't know how to get started!" is often the lament of the novice proof-builder. Here are a few pieces of advice.

1. As mentioned in Technique T 674, rewrite the statement of the theorem in an "if-then" form. This will simplify identifying the hypothesis and conclusion, which are referenced in the next few items.
2. Ask yourself what kind of statement you are trying to prove. This is always part of your conclusion. Are you being asked to conclude that two numbers are equal, that a function is differentiable or a set is a subset of another? You cannot bring other techniques to bear if you do not know what type of conclusion you have.
3. Write down reformulations of your hypotheses. Interpret and translate each definition properly.
4. Write your hypothesis at the top of a sheet of paper and your conclusion at the bottom. See if you can formulate a statement that precedes the conclusion and also implies it. Work down from your hypothesis, and up from your conclusion, and see if you can meet in the middle. When you are finished, rewrite the proof nicely, from hypothesis to conclusion, with verifiable implications giving each subsequent statement.
5. As you work through your proof, think about what kinds of objects your symbols represent. For example, suppose A is a set and $f(x)$ is a real-valued function. Then the expression $A+f$ might make no sense if we have not defined what it means to "add" a set to a function, so we can stop at that point and adjust accordingly. On the other hand we might understand $2 f$ to be the function whose rule is described by $(2 f)(x)=2 f(x)$. "Think about your objects" means to always verify that your objects and operations are compatible.

Proof Technique C

Constructive Proofs

Conclusions of proofs come in a variety of types. Often a theorem will simply assert that something exists. The best way, but not the only way, to show something exists is to actually build it. Such a proof is
called constructive. The thing to realize about constructive proofs is that the proof itself will contain a procedure that might be used computationally to construct the desired object. If the procedure is not too cumbersome, then the proof itself is as useful as the statement of the theorem. Such is the case with our next theorem.

Proof Technique E
 Equivalences

When a theorem uses the phrase "if and only if" (or the abbreviation "iff") it is a shorthand way of saying that two if-then statements are true. So if a theorem says "P if and only if Q ," then it is true that "if P , then Q" while it is also true that "if Q, then P." For example, it may be a theorem that "I wear bright yellow knee-high plastic boots if and only if it is raining." This means that I never forget to wear my super-duper yellow boots when it is raining and I wouldn't be seen in such silly boots unless it was raining. You never have one without the other. I've got my boots on and it is raining or I don't have my boots on and it is dry.

The upshot for proving such theorems is that it is like a 2 -for- 1 sale, we get to do two proofs. Assume P and conclude Q, then start over and assume Q and conclude P. For this reason, "if and only if" is sometimes abbreviated by \Longleftrightarrow, while proofs indicate which of the two implications is being proved by prefacing each with \Rightarrow or \Leftarrow. A carefully written proof will remind the reader which statement is being used as the hypothesis, a quicker version will let the reader deduce it from the direction of the arrow. Tradition dictates we do the "easy" half first, but that's hard for a student to know until you've finished doing both halves! Oh well, if you rewrite your proofs (a good habit), you can then choose to put the easy half first.

Theorems of this type are called "equivalences" or "characterizations," and they are some of the most pleasing results in mathematics. They say that two objects, or two situations, are really the same. You don't have one without the other, like rain and my yellow boots. The more different P and Q seem to be, the more pleasing it is to discover they are really equivalent. And if P describes a very mysterious solution or involves a tough computation, while Q is transparent or involves easy computations, then we've found a great shortcut for better understanding or faster computation. Remember that every theorem really is a shortcut in some form. You will also discover that if proving $P \Rightarrow Q$ is very easy, then proving $Q \Rightarrow P$ is likely to be proportionately harder. Sometimes the two halves are about equally hard. And in rare cases, you can string together a whole sequence of other equivalences to form the one you're after and you don't even need to do two halves. In this case, the argument of one half is just the argument of the other half, but in reverse.

One last thing about equivalences. If you see a statement of a theorem that says two things are "equivalent," translate it first into an "if and only if" statement.

Proof Technique \mathbf{N} Negation

When we construct the contrapositive of a theorem Technique CP 677), we need to negate the two statements in the implication. And when we construct a proof by contradiction (Technique CD 678), we need to negate the conclusion of the theorem. One way to construct a converse (Technique CV [677) is to simultaneously negate the hypothesis and conclusion of an implication (but remember that this is not guaranteed to be a true statement). So we often have the need to negate statements, and in some situations it can be tricky.

If a statement says that a set is empty, then its negation is the statement that the set is nonempty. That's straightforward. Suppose a statement says "something-happens" for all i, or every i, or any i. Then
the negation is that "something-doesn't-happen" for at least one value of i. If a statement says that there exists at least one "thing," then the negation is the statement that there is no "thing." If a statement says that a "thing" is unique, then the negation is that there is zero, or more than one, of the "thing."

We are not covering all of the possibilities, but we wish to make the point that logical qualifiers like "there exists" or "for every" must be handled with care when negating statements. Studying the proofs which employ contradiction (as listed in Technique CD 678) is a good first step towards understanding the range of possibilities.

Proof Technique CP
 Contrapositives

The contrapositive of an implication $P \Rightarrow Q$ is the implication $\operatorname{not}(Q) \Rightarrow \operatorname{not}(P)$, where "not" means the logical negation, or opposite. An implication is true if and only if its contrapositive is true. In symbols, $(P \Rightarrow Q) \Longleftrightarrow(\operatorname{not}(Q) \Rightarrow \operatorname{not}(P))$ is a theorem. Such statements about logic, that are always true, are known as tautologies.

For example, it is a theorem that "if a vehicle is a fire truck, then it has big tires and has a siren." (Yes, I'm sure you can conjure up a counterexample, but play along with me anyway.) The contrapositive is "if a vehicle does not have big tires or does not have a siren, then it is not a fire truck." Notice how the "and" became an "or" when we negated the conclusion of the original theorem.

It will frequently happen that it is easier to construct a proof of the contrapositive than of the original implication. If you are having difficulty formulating a proof of some implication, see if the contrapositive is easier for you. The trick is to construct the negation of complicated statements accurately. More on that later.

Proof Technique CV
 Converses

The converse of the implication $P \Rightarrow Q$ is the implication $Q \Rightarrow P$. There is no guarantee that the truth of these two statements are related. In particular, if an implication has been proven to be a theorem, then do not try to use its converse too, as if it were a theorem. Sometimes the converse is true (and we have an equivalence, see Technique E 676]). But more likely the converse is false, especially if it wasn't included in the statement of the original theorem.

For example, we have the theorem, "if a vehicle is a fire truck, then it is has big tires and has a siren." The converse is false. The statement that "if a vehicle has big tires and a siren, then it is a fire truck" is false. A police vehicle for use on a sandy public beach would have big tires and a siren, yet is not equipped to fight fires.

We bring this up now, because Theorem CSRN 51 has a tempting converse. Does this theorem say that if $r<n$, then the system is consistent? Definitely not, as Archetype E 707 has $r=3<4=n$, yet is inconsistent. This example is then said to be a counterexample to the converse. Whenever you think a theorem that is an implication might actually be an equivalence, it is good to hunt around for a counterexample that shows the converse to be false (the archetypes, Appendix A 685, can be a good hunting ground).

Proof Technique CD Contradiction

Another proof technique is known as "proof by contradiction" and it can be a powerful (and satisfying) approach. Simply put, suppose you wish to prove the implication, "If A, then B." As usual, we assume that A is true, but we also make the additional assumption that B is false. If our original implication is true, then these twin assumptions should lead us to a logical inconsistency. In practice we assume the negation of B to be true (see Technique N (676]). So we argue from the assumptions A and $\operatorname{not}(B)$ looking for some obviously false conclusion such as $1=6$, or a set is simultaneously empty and nonempty, or a matrix is both nonsingular and singular.

You should be careful about formulating proofs that look like proofs by contradiction, but really aren't. This happens when you assume A and $\operatorname{not}(B)$ and proceed to give a "normal" and direct proof that B is true by only using the assumption that A is true. Your last step is to then claim that B is true and you then appeal to the assumption that $\operatorname{not}(B)$ is true, thus getting the desired contradiction. Instead, you could have avoided the overhead of a proof by contradiction and just run with the direct proof. This stylistic flaw is known, quite graphically, as "setting up the strawman to knock him down."

Here is a simple example of a proof by contradiction. There are direct proofs that are just about as easy, but this will demonstrate the point, while narrowly avoiding knocking down the straw man.

Theorem: If a and b are odd integers, then their product, $a b$, is odd.
Proof: To begin a proof by contradiction, assume the hypothesis, that a and b are odd. Also assume the negation of the conclusion, in this case, that $a b$ is even. Then there are integers, j, k, ℓ so that $a=2 j+1, b=2 k+1, a b=2 \ell$. Then

$$
\begin{aligned}
0 & =a b-a b \\
& =(2 j+1)(2 k+1)-(2 \ell) \\
& =4 j k+2 j+2 k-2 \ell+1 \\
& =2(2 j k+j+k-\ell)+1
\end{aligned}
$$

Notice how we used both our hypothesis and the negation of the conclusion in the second line. Now divide the integer on each end of this string of equalities by 2 . On the left we get a remainder of 0 , while on the right we see that the remainder will be 1. Both remainders cannot be correct, so this is our desired contradiction. Thus, the conclusion (that $a b$ is odd) is true.

Again, we do not offer this example as the best proof of this fact about even and odd numbers, but rather it is a simple illustration of a proof by contradiction. You can find examples of proofs by contradiction in Theorem NMUS [70, Theorem NPNT [221, Theorem RREFU [104, Theorem TTMT [210], Theorem GSPCV| 170], Theorem ELIS [349, Theorem EDYES [352], Theorem EMHE [393], Theorem EDELI [413], and Theorem DMFE [431], in addition to several examples and solutions to exercises.

Proof Technique U Uniqueness

A theorem will sometimes claim that some object, having some desirable property, is unique. In other words, there should be only one such object. To prove this, a standard technique is to assume there are two such objects and proceed to analyze the consequences. The end result may be a contradiction Technique CD 678), or the conclusion that the two allegedly different objects really are equal.

Proof Technique ME Multiple Equivalences

A very specialized form of a theorem begins with the statement "The following are equivalent...," which is then followed by a list of statements. Informally, this lead-in sometimes gets abbreviated by "TFAE." This formulation means that any two of the statements on the list can be connected with an "if and only if" to form a theorem. So if the list has n statements then, there are $\frac{n(n-1)}{2}$ possible equivalences that can be constructed (and are claimed to be true).

Suppose a theorem of this form has statements denoted as $A, B, C, \ldots Z$. To prove the entire theorem, we can prove $A \Rightarrow B, B \Rightarrow C, C \Rightarrow D, \ldots, Y \Rightarrow Z$ and finally, $Z \Rightarrow A$. This circular chain of n equivalences would allow us, logically, if not practically, to form any one of the $\frac{n(n-1)}{2}$ possible equivalences by chasing the equivalences around the circle as far as required.

Proof Technique PI
 Proving Identities

Many theorems have conclusions that say two objects are equal. Perhaps one object is hard to compute or understand, while the other is easy to compute or understand. This would make for a pleasing theorem. Whether the result is pleasing or not, we take the same approach to formulate a proof. Sometimes we need to employ specialized notions of equality, such as Definition SE 670 or Definition CVE 80, but in other cases we can string together a list of equalities.

The wrong way to prove an identity is to begin by writing it down and then beating on it until it reduces to an obvious identity. The first flaw is that you would be writing down the statement you wish to prove, as if you already believed it to be true. But more dangerous is the possibility that some of your maneuvers are not reversible. Here's an example. Let's prove that $3=-3$.

$$
\begin{aligned}
3 & =-3 & & \text { (This is a bad start) } \\
3^{2} & =(-3)^{2} & & \text { Square both sides } \\
9 & =9 & & \\
0 & =0 & & \text { Subtract } 9 \text { from both sides }
\end{aligned}
$$

So because $0=0$ is a true statement, does it follow that $3=-3$ is a true statement? Nope. Of course, we didn't really expect a legitimate proof of $3=-3$, but this attempt should illustrate the dangers of this (incorrect) approach.

What you have just seen in the proof of Theorem VSPCV [82, and what you will see consistently throughout this text, is proofs of the following form. To prove that $A=D$ we write

$$
\begin{aligned}
A & =B & & \text { Theorem, Definition or Hypothesis justifying } A=B \\
& =C & & \text { Theorem, Definition or Hypothesis justifying } B=C \\
& =D & & \text { Theorem, Definition or Hypothesis justifying } C=D
\end{aligned}
$$

In your scratch work exploring possible approaches to proving a theorem you may massage a variety of expressions, sometimes making connections to various bits and pieces, while some parts get abandonded. Once you see a line of attack, rewrite your proof carefully mimicking this style.

Proof Technique DC Decompositions

Much of your mathematical upbringing, especially once you began a study of algebra, revolved around simplifying expressions - combining like terms, obtaining common denominators so as to add fractions, factoring in order to solve polynomial equations. However, as often as not, we will do the opposite. Many theorems and techniques will revolve around taking some object and "decomposing" it into some combination of other objects, ostensibly in a more complicated fashion. When we say something can "be written as" something else, we mean that the one object can be decomposed into some combination of other objects. This may seem unnatural at first, but results of this type will give us insight into the structure of the original object by exposing its inner workings. An appropriate analogy might be stripping the wallboards away from the interior of a building to expose the structural members supporting the whole building.

This is a major shift in thinking, so come back here often, especially when we say "can be written as", or "can be expressed as," or "can be decomposed as."

Proof Technique I Induction

"Induction" or "mathematical induction" is a framework for proving statements that are indexed by integers. In other words, suppose you have a statement to prove that is really multiple statements, one for $n=1$, another for $n=2$, a third for $n=3$, and so on. If there is enough similarity between the statements, then you can use a script (the framework) to prove them all at once.

For example, consider the theorem
Theorem $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ for $n \geq 1$.
This is shorthand for the many statements $1=\frac{1(1+1)}{2}, 1+2=\frac{2(2+1)}{2}, 1+2+3=\frac{3(3+1)}{2}, 1+2+3+4=$ $\frac{4(4+1)}{2}$, and so on. Forever. You can do the calculations in each of these statements and verify that all four are true. We might not be surprised to learn that the fifth statement is true as well (go ahead and check). However, do we think the theorem is true for $n=872$? Or $n=1,234,529$?

To see that these questions are not so ridiculous, consider the following example from Rotman's Journey into Mathematics. The statement " $n^{2}-n+41$ is prime" is true for integers $1 \leq n \leq 40$ (check a few). However, when we check $n=41$ we find $41^{2}-41+41=41^{2}$, which is not prime.

So how do we prove infinitely many statements all at once? More formally, lets denote our statements as $P(n)$. Then, if we can prove the two assertions

1. $P(1)$ is true.
2. If $P(k)$ is true, then $P(k+1)$ is true.
then it follows that $P(n)$ is true for all $n \geq 1$. To understand this, I liken the process to climbing an infinitely long ladder with equally spaced rungs. Confronted with such a ladder, suppose I tell you that you are able to step up onto the first rung, and if you are on any particular rung, then you are capable of stepping up to the next rung. It follows that you can climb the ladder as far up as you wish. The first formal assertion above is akin to stepping onto the first rung, and the second formal assertion is akin to assuming that if you are on any one rung then you can always reach the next rung.

In practice, establishing that $P(1)$ is true is called the "base case" and in most cases is straightforward. Establishing that $P(k) \Rightarrow P(k+1)$ is referred to as the "induction step," or in this book (and elsewhere)
we will typically refer to the assumption of $P(k)$ as the "induction hypothesis." This is perhaps the most mysterious part of a proof by induction, since it looks like you are assuming $(P(k))$ what you are trying to prove $(P(n))$. Sometimes it is even worse, since as you get more comfortable with induction, we often don't bother to use a different letter (k) for the index (n) in the induction step. Notice that the second formal assertion never says that $P(k)$ is true, it simply says that if $P(k)$ were true, what might logically follow. We can establish statements like "If I lived on the moon, then I could pole-vault over a bar 12 meters high." This may be a true statement, but it does not say we live on the moon, and indeed we may never live there.

Enough generalities. Lets work an example and prove the theorem above about sums of integers. Formally, our statement is $P(n): 1+2+3+\cdots+n=\frac{n(n+1)}{2}$.

Proof: Base Case. $P(1)$ is the statement $1=\frac{1(1+1)}{2}$, which we see simplifies to the true statement $1=1$.

Induction Step: We will assume $P(k)$ is true, and will try to prove $P(k+1)$. Given what we want to accomplish, it is natural to begin by examining the sum of the first $k+1$ integers.

$$
\begin{aligned}
1+2+3 & +\cdots+(k+1) \\
& =(1+2+3+\cdots+k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k^{2}+k}{2}=\frac{k^{2}+3 k+2}{2} \\
& =\frac{(k+1)(k+2)}{2}=\frac{(k+1)((k+1)+1)}{2}
\end{aligned} \text { Induction Hypothesis }
$$

We then recognize the two ends of this chain of equalities as $P(k+1)$. So, by mathematical induction, the theorem is true for all n.

How do you recognize when to use induction? The first clue is a statement that is really many statements, one for each integer. The second clue would be that you begin a more standard proof and you find yourself using words like "and so on" (as above!) or lots of ellipses (dots) to establish patterns that you are convinced continue on and on forever. However, there are many minor instances where induction might be warranted but we don't bother.

Induction is important enough, and used often enough, that it appers in various variations. The base case sometimes begins with $n=0$, or perhaps an integer greater than n. Some formulate the induction step as $P(k-1) \Rightarrow P(k)$. There is also a "strong form" of induction where we assume all of $P(1), P(2)$, $P(3), \ldots P(k)$ as a hypothesis for showing the conclusion $P(k+1)$.
You can find examples of induction in the proofs of Theorem GSPCV [170], Theorem DER [369], Theorem DT 370, Theorem DIM 381, Theorem EOMP 415, Theorem DCP 418, and Theorem KPLT 603].

Proof Technique P
 Practice

Here is a technique used by many practicing mathematicians when they are teaching themselves new mathematics. As they read a textbook, monograph or research article, they attempt to prove each new theorem themselves, before reading the proof. Often the proofs can be very difficult, so it is wise not to spend too much time on each. Maybe limit your losses and try each proof for 10 or 15 minutes. Even if the proof is not found, it is time well-spent. You become more familiar with the definitions involved, and the hypothesis and conclusion of the theorem. When you do work through the proof, it might make more sense, and you will gain added insight about just how to construct a proof.

Proof Technique LC Lemmas and Corollaries

Theorems often go by different titles. Two of the most popular being "lemma" and "corollary." Before we describe the fine distinctions, be aware that lemmas, corollaries, propositions, claims and facts are all just theorems. And every theorem can be rephrased as an "if-then" statement, or perhaps a pair of "if-then" statements expressed as an equivalence Technique E 676).

A lemma is a theorem that is not too interesting in its own right, but is important for proving other theorems. It might be a generalization or abstraction of a key step of several different proofs. For this reason you often hear the phrase "technical lemma" though some might argue that the adjective "technical" is redundant.

A corollary is a theorem that follows very easily from another theorem. For this reason, corollaries frequently do not have proofs. You are expected to easily and quickly see how a previous theorem implies the corollary.

A proposition or fact is really just a codeword for a theorem. A claim might be similar, but some authors like to use claims within a proof to organize key steps. In a similar manner, some long proofs are organized as a series of lemmas.

In order to not confuse the novice, we have just called all our theorems theorems. It is also an organizational convenience. With only theorems and definitions, the theoretical backbone of the course is laid bare in the two lists of Definitions xi and Theorems xiii.

Appendix A Archetypes

The American Heritage Dictionary of the English Language (Third Edition) gives two definitions of the word "archetype": 1. An original model or type after which other similar things are patterned; a prototype; and 2 . An ideal example of a type; quintessence.

Either use might apply here. Our archetypes are typical examples of systems of equations, matrices and linear transformations. They have been designed to demonstrate the range of possibilities, allowing you to compare and contrast them. Several are of a size and complexity that is usually not presented in a textbook, but should do a better job of being "typical."

We have made frequent reference to many of these throughout the text, such as the frequent comparisons between Archetype A 689 and Archetype B 694. Some we have left for you to investigate, such as Archetype J 728, which parallels Archetype I 724.

How should you use the archetypes? First, consult the description of each one as it is mentioned in the text. See how other facts about the example might illuminate whatever property or construction is being described in the example. Second, each property has a short description that usually includes references to the relevant theorems. Perform the computations and understand the connections to the listed theorems. Third, each property has a small checkbox in front of it. Use the archetypes like a workbook and chart your progress by "checking-off" those properties that you understand.

The next page has a chart that summarizes some (but not all) of the properties described for each archetype. Notice that while there are several types of objects, there are fundamental connections between them. That some lines of the table do double-duty is meant to convey some of these connections. Consult this table when you wish to quickly find an example of a certain phenomenon.

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X
Type	S	S	S	S	S	S	S	S	S	S	M	M	L	L	L	L	L	L	L	L	L	L	L	L
Vars, Cols, Domain	3	3	4	4	4	4	2	2	7	9	5	5	5	5	3	3	5	5	3	5	6	4	3	4
Eqns, Rows, CoDom	3	3	3	3	3	4	5	5	4	6	5	5	3	3	5	5	5	5	4	6	4	4	3	4
Solution Set	I	U	I	I	N	U	U	N	I	I														
Rank	2	3	3	2	2	4	2	2	3	4	5	3	2	3	2	3	4	5	2	5	4	4	3	3
Nullity	1	0	1	2	2	0	0	0	4	5	0	2	3	2	1	0	1	0	1	0	2	0	0	1
Injective													X	X	N	Y	N	Y	N	Y	X	Y	Y	N
Surjective													N	Y	X	X	N	Y	X	X	Y	Y	Y	N
Full Rank	N	Y	Y	N	N	Y	Y	Y	N	N	Y	N												
Nonsingular	N	Y				Y					Y	N												
Invertible	N	Y				Y					Y	N					N	Y				Y	Y	N
Determinant	0	-2				-18					16	0										-2	-3	0
Diagonalizable	N	Y				Y					Y	Y											Y	Y

[^0]
Archetype A

Summary Linear system of three equations, three unknowns. Singular coefficent matrix with dimension 1 null space. Integer eigenvalues and a degenerate eigenspace for coefficient matrix.
\square A system of linear equations Definition SLE 11):

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =1 \\
2 x_{1}+x_{2}+x_{3} & =8 \\
x_{1}+x_{2} & =5
\end{aligned}
$$

\square Some solutions to the system of linear equations (not necessarily exhaustive):
$x_{1}=2, \quad x_{2}=3, \quad x_{3}=1$
$x_{1}=3, \quad x_{2}=2, \quad x_{3}=0$
\square Augmented matrix of the linear system of equations Definition AM 28]):
$\left[\begin{array}{cccc}1 & -1 & 2 & 1 \\ 2 & 1 & 1 & 8 \\ 1 & 1 & 0 & 5\end{array}\right]$
\square Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
$\left[\begin{array}{cccc}\boxed{1} & 0 & 1 & 3 \\ 0 & \boxed{1} & -1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$
\square Analysis of the augmented matrix Notation RREFA 31):

$$
r=2 \quad D=\{1,2\} \quad F=\{3,4\}
$$

\square Vector form of the solution set to the system of equations Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0 's and 1 's in the entries of the vectors corresponding to elements of the set F for the larger examples.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

\square Given a system of equations we can always build a new, related, homogeneous system Definition HS (57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties of this new system will have precise relationships with various properties of the original system.

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =0 \\
2 x_{1}+x_{2}+x_{3} & =0 \\
x_{1}+x_{2} & =0
\end{aligned}
$$

\square Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive): $x_{1}=0, \quad x_{2}=0, \quad x_{3}=0$
$x_{1}=-1, \quad x_{2}=1, \quad x_{3}=1$
$x_{1}=-5, \quad x_{2}=5, \quad x_{3}=5$

Form the augmented matrix of the homogenous linear system, and use row operations to convert to reduced row-echelon form. Notice how the entries of the final column remain zeros:
$\left[\begin{array}{cccc}\boxed{1} & 0 & 1 & 0 \\ 0 & \boxed{1} & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Analysis of the augmented matrix for the homogenous system Notation RREFA 31). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=2 \quad D=\{1,2\} \quad F=\{3,4\}
$$

Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

\square Matrix brought to reduced row-echelon form:
$\left[\begin{array}{ccc}\square 1 & 0 & 1 \\ 0 & \boxed{1} & -1 \\ 0 & 0 & 0\end{array}\right]$
\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=2 \quad D=\{1,2\} \quad F=\{3\}
$$

\square Matrix (coefficient matrix) is nonsingular or singular? Theorem NMRRI 68) at the same time, examine the size of the set F above.Notice that this property does not apply to matrices that are not square.

Singular.
\square This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS (138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS 96) to see these vectors arise.

Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. (Theorem BCS 234) $\left\langle\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]\right\}\right\rangle$
\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS 259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]$
$\left\langle\left\{\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.
$\left\langle\left\{\left[\begin{array}{c}1 \\ 0 \\ -\frac{1}{3}\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ \frac{2}{3}\end{array}\right]\right\}\right\rangle$

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240])

$$
\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]\right\}\right\rangle
$$

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if the matrix is square, then the matrix must be nonsingular. (Definition MI 208, Theorem NI 223)
\square Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify Theorem RPNC 342
Matrix columns: 3
Rank: 2
Nullity: 1

Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular if and only if the determinant is nonzero (Theorem SMZD 383). (Product of all eigenvalues?)

Determinant $=0$

Eigenvalues, and bases for eigenspaces. Definition EEM 389 Definition EM 397])

$$
\begin{array}{ll}
\lambda=0 & \mathcal{E}_{A}(0)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\}\right\rangle \\
\lambda=2 & \mathcal{E}_{A}(2)=\left\langle\left\{\left[\begin{array}{l}
1 \\
5 \\
3
\end{array}\right]\right\}\right.
\end{array}
$$

Geometric and algebraic multiplicities. Definition GME 399 Definition AME 399)

$$
\begin{array}{ll}
\gamma_{A}(0)=1 & \alpha_{A}(0)=2 \\
\gamma_{A}(2)=1 & \alpha_{A}(2)=1
\end{array}
$$

Diagonalizable? Definition DZM 428)

No, $\gamma_{A}(0) \neq \alpha_{B}(0)$, Theorem DMFE 431 .

Archetype B

Summary System with three equations, three unknowns. Nonsingular coefficent matrix. Distinct integer eigenvalues for coefficient matrix.
\square A system of linear equations Definition SLE 11):

$$
\begin{aligned}
-7 x_{1}-6 x_{2}-12 x_{3} & =-33 \\
5 x_{1}+5 x_{2}+7 x_{3} & =24 \\
x_{1}+4 x_{3} & =5
\end{aligned}
$$

Some solutions to the system of linear equations (not necessarily exhaustive):
$x_{1}=-3, \quad x_{2}=5, \quad x_{3}=2$
\square Augmented matrix of the linear system of equations Definition AM 28):

$$
\left[\begin{array}{cccc}
-7 & -6 & -12 & -33 \\
5 & 5 & 7 & 24 \\
1 & 0 & 4 & 5
\end{array}\right]
$$

Matrix in reduced row-echelon form, row-equivalent to augmented matrix:

$$
\left[\begin{array}{cccc}
{[1} & 0 & 0 & -3 \\
0 & \boxed{1} & 0 & 5 \\
0 & 0 & \boxed{1} & 2
\end{array}\right]
$$

\square Analysis of the augmented matrix Notation RREFA 31):

$$
r=3 \quad D=\{1,2,3\} \quad F=\{4\}
$$

Vector form of the solution set to the system of equations Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0 's and 1's in the entries of the vectors corresponding to elements of the set F for the larger examples.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
5 \\
2
\end{array}\right]
$$

Given a system of equations we can always build a new, related, homogeneous system Definition HS [57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties
of this new system will have precise relationships with various properties of the original system.

$$
\begin{array}{r}
-11 x_{1}+2 x_{2}-14 x_{3}=0 \\
23 x_{1}-6 x_{2}+33 x_{3}=0 \\
14 x_{1}-2 x_{2}+17 x_{3}=0
\end{array}
$$

\square Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive): $x_{1}=0, \quad x_{2}=0, \quad x_{3}=0$
\square Form the augmented matrix of the homogenous linear system, and use row operations to convert to reduced row-echelon form. Notice how the entries of the final column remain zeros:
$\left[\begin{array}{cccc}\boxed{1} & 0 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & \boxed{1} & 0\end{array}\right]$

Analysis of the augmented matrix for the homogenous system Notation RREFA 31). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=3 \quad D=\{1,2,3\} \quad F=\{4\}
$$

\square Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.

$$
\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]
$$

\square Matrix brought to reduced row-echelon form:
$\left[\begin{array}{ccc}\hline 1 & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 1 \\ \hline\end{array}\right]$
\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=3 \quad D=\{1,2,3\} \quad F=\{ \}
$$

\square Matrix (coefficient matrix) is nonsingular or singular? Theorem NMRRI 68) at the same time, examine the size of the set F above.Notice that this property does not apply to matrices that are not
square.
Nonsingular.
\square This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS (138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS 96) to see these vectors arise.
$\langle\}\rangle$
\square Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. (Theorem BCS 234)

$$
\left\langle\left\{\left[\begin{array}{c}
-7 \\
5 \\
1
\end{array}\right],\left[\begin{array}{c}
-6 \\
5 \\
0
\end{array}\right],\left[\begin{array}{c}
-12 \\
7 \\
4
\end{array}\right]\right\}\right\rangle
$$

\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS 259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=[]$
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$
\square Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. Theorem BRS 240)
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if the matrix is square, then the matrix must be nonsingular. (Definition MI 208, Theorem NI 223)
$\left[\begin{array}{ccc}-10 & -12 & -9 \\ \frac{13}{2} & 8 & \frac{11}{2} \\ \frac{5}{2} & 3 & \frac{5}{2}\end{array}\right]$
\square Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify Theorem RPNC 342

Matrix columns: 3 Rank: $3 \quad$ Nullity: 0

Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular if and only if the determinant is nonzero (Theorem SMZD 383). (Product of all eigenvalues?)

Determinant $=-2$
\square Eigenvalues, and bases for eigenspaces. Definition EEM 389 Definition EM 397)

$$
\begin{array}{ll}
\lambda=-1 & \mathcal{E}_{B}(-1)=\left\langle\left\{\left[\begin{array}{c}
-5 \\
3 \\
1
\end{array}\right]\right\}\right\rangle \\
\lambda=1 & \mathcal{E}_{B}(1)=\left\langle\left\{\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]\right\}\right\rangle \\
\lambda=2 & \mathcal{E}_{B}(2)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\}\right\rangle
\end{array}
$$

\square Geometric and algebraic multiplicities. Definition GME 399 Definition AME 399)

$$
\begin{aligned}
\gamma_{B}(-1) & =1 \\
\gamma_{B}(1) & =1 \\
\gamma_{B}(2) & =1
\end{aligned}
$$

$$
\alpha_{B}(-1)=1
$$

$$
\alpha_{B}(1)=1
$$

$$
\alpha_{B}(2)=1
$$

\square Diagonalizable? Definition DZM 428)

Yes, distinct eigenvalues, Theorem DED 433.
\square The diagonalization. Theorem DC 429)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & -1 & -1 \\
2 & 3 & 1 \\
-1 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
-7 & -6 & -12 \\
5 & 5 & 7 \\
1 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
-5 & -3 & -2 \\
3 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

Archetype C

Summary System with three equations, four variables. Consistent. Null space of coefficient matrix has dimension 1.
\square A system of linear equations Definition SLE 11):

$$
\begin{aligned}
2 x_{1}-3 x_{2}+x_{3}-6 x_{4} & =-7 \\
4 x_{1}+x_{2}+2 x_{3}+9 x_{4} & =-7 \\
3 x_{1}+x_{2}+x_{3}+8 x_{4} & =-8
\end{aligned}
$$

\square Some solutions to the system of linear equations (not necessarily exhaustive):
$x_{1}=-7, \quad x_{2}=-2, \quad x_{3}=7, \quad x_{4}=1$
$x_{1}=-1, \quad x_{2}=-7, \quad x_{3}=4, \quad x_{4}=-2$
\square Augmented matrix of the linear system of equations Definition AM 28):

$$
\left[\begin{array}{ccccc}
2 & -3 & 1 & -6 & -7 \\
4 & 1 & 2 & 9 & -7 \\
3 & 1 & 1 & 8 & -8
\end{array}\right]
$$

Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
$\left[\begin{array}{ccccc}\boxed{1} & 0 & 0 & 2 & -5 \\ 0 & \boxed{1} & 0 & 3 & 1 \\ 0 & 0 & \boxed{1} & -1 & 6\end{array}\right]$
\square Analysis of the augmented matrix Notation RREFA 31):

$$
r=3 \quad D=\{1,2,3\} \quad F=\{4,5\}
$$

\square Vector form of the solution set to the system of equations Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0's and 1's in the entries of the vectors corresponding to elements of the set F for the larger examples.
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-5 \\ 1 \\ 6 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-2 \\ -3 \\ 1 \\ 1\end{array}\right]$

Given a system of equations we can always build a new, related, homogeneous system Definition HS 57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties of this new system will have precise relationships with various properties of the original system.

$$
\begin{aligned}
2 x_{1}-3 x_{2}+x_{3}-6 x_{4} & =0 \\
4 x_{1}+x_{2}+2 x_{3}+9 x_{4} & =0 \\
3 x_{1}+x_{2}+x_{3}+8 x_{4} & =0
\end{aligned}
$$

\square Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive): $x_{1}=0, \quad x_{2}=0, \quad x_{3}=0, \quad x_{4}=0$ $x_{1}=-2, \quad x_{2}=-3, \quad x_{3}=1, \quad x_{4}=1$
$x_{1}=-4, \quad x_{2}=-6, \quad x_{3}=2, \quad x_{4}=2$

Form the augmented matrix of the homogenous linear system, and use row operations to convert to reduced row-echelon form. Notice how the entries of the final column remain zeros:

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 2 & 0 \\
0 & \boxed{1} & 0 & 3 & 0 \\
0 & 0 & \boxed{1} & -1 & 0
\end{array}\right]
$$

Analysis of the augmented matrix for the homogenous system (Notation RREFA 31). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=3 \quad D=\{1,2,3\} \quad F=\{4,5\}
$$

Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.

$$
\left[\begin{array}{cccc}
2 & -3 & 1 & -6 \\
4 & 1 & 2 & 9 \\
3 & 1 & 1 & 8
\end{array}\right]
$$

Matrix brought to reduced row-echelon form:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & \boxed{1} & 0 & 3 \\
0 & 0 & \boxed{1} & -1
\end{array}\right]
$$

\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=3 \quad D=\{1,2,3\} \quad F=\{4\}
$$

\square This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS 138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS 96) to see these vectors arise.
$\left\langle\left\{\left[\begin{array}{c}-2 \\ -3 \\ 1 \\ 1\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. (Theorem BCS (234)
$\left\langle\left\{\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right],\left[\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}\right\rangle$
\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS 259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=[]$
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$
\square Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242 , this yields a linearly independent set of vectors that span the column space.
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$
\square Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240])

```
\langle{[l}\begin{array}{l}{1}\\{0}\\{0}\\{2}\end{array}],[\begin{array}{l}{0}\\{1}\\{0}\\{3}\end{array}],[\begin{array}{c}{0}\\{0}\\{1}\\{-1}\end{array}]}
```

Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify Theorem RPNC 342

Matrix columns: 4
Rank: 3
Nullity: 1

Archetype D

Summary System with three equations, four variables. Consistent. Null space of coefficient matrix has dimension 2. Coefficient matrix identical to that of Archetype E, vector of constants is different.
\square A system of linear equations Definition SLE 11):

$$
\begin{aligned}
2 x_{1}+x_{2}+7 x_{3}-7 x_{4} & =8 \\
-3 x_{1}+4 x_{2}-5 x_{3}-6 x_{4} & =-12 \\
x_{1}+x_{2}+4 x_{3}-5 x_{4} & =4
\end{aligned}
$$

\square Some solutions to the system of linear equations (not necessarily exhaustive):
$x_{1}=0, \quad x_{2}=1, \quad x_{3}=2, \quad x_{4}=1$
$x_{1}=4, \quad x_{2}=0, \quad x_{3}=0, \quad x_{4}=0$
$x_{1}=7, \quad x_{2}=8, \quad x_{3}=1, \quad x_{4}=3$
\square Augmented matrix of the linear system of equations Definition AM 28):
$\left[\begin{array}{ccccc}2 & 1 & 7 & -7 & 8 \\ -3 & 4 & -5 & -6 & -12 \\ 1 & 1 & 4 & -5 & 4\end{array}\right]$
\square Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
$\left[\begin{array}{ccccc}{[1} & 0 & 3 & -2 & 4 \\ 0 & \boxed{1} & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
\square Analysis of the augmented matrix Notation RREFA 31):

$$
r=2 \quad D=\{1,2\} \quad F=\{3,4,5\}
$$

Vector form of the solution set to the system of equations Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0 's and 1's in the entries of the vectors corresponding to elements of the set F for the larger examples.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]
$$

Given a system of equations we can always build a new, related, homogeneous system Definition HS 57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties of this new system will have precise relationships with various properties of the original system.

$$
\begin{aligned}
2 x_{1}+x_{2}+7 x_{3}-7 x_{4} & =0 \\
-3 x_{1}+4 x_{2}-5 x_{3}-6 x_{4} & =0 \\
x_{1}+x_{2}+4 x_{3}-5 x_{4} & =0
\end{aligned}
$$

Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive): $x_{1}=0, \quad x_{2}=0, \quad x_{3}=0, \quad x_{4}=0$
$x_{1}=-3, \quad x_{2}=-1, \quad x_{3}=1, \quad x_{4}=0$
$x_{1}=2, \quad x_{2}=3, \quad x_{3}=0, \quad x_{4}=1$
$x_{1}=-1, \quad x_{2}=2, \quad x_{3}=1, \quad x_{4}=1$

Form the augmented matrix of the homogenous linear system, and use row operations to convert to reduced row-echelon form. Notice how the entries of the final column remain zeros:
$\left[\begin{array}{ccccc}\boxed{1} & 0 & 3 & -2 & 0 \\ 0 & \boxed{1} & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Analysis of the augmented matrix for the homogenous system Notation RREFA 31). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=2 \quad D=\{1,2\} \quad F=\{3,4,5\}
$$

\square Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.

$$
\left[\begin{array}{cccc}
2 & 1 & 7 & -7 \\
-3 & 4 & -5 & -6 \\
1 & 1 & 4 & -5
\end{array}\right]
$$

Matrix brought to reduced row-echelon form:
$\left[\begin{array}{cccc}\boxed{1} & 0 & 3 & -2 \\ 0 & \boxed{1} & 1 & -3 \\ 0 & 0 & 0 & 0\end{array}\right]$
\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=2 \quad D=\{1,2\} \quad F=\{3,4\}
$$

\square This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS (138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS 96) to see these vectors arise.
$\left\langle\left\{\left[\begin{array}{c}-3 \\ -1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. Theorem BCS 234)
$\left\langle\left\{\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right]\right\}\right\rangle$
\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS [259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=\left[\begin{array}{lll}1 & \frac{1}{7} & -\frac{11}{7}\end{array}\right]$
$\left\langle\left\{\left[\begin{array}{c}\frac{11}{7} \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-\frac{1}{7} \\ 1 \\ 0\end{array}\right]\right\}\right\rangle$
\square Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.
$\left\langle\left\{\left[\begin{array}{c}1 \\ 0 \\ \frac{7}{11}\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ \frac{1}{11}\end{array}\right]\right\}\right\rangle$
\square Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240)

$$
\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
3 \\
-2
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
1 \\
-3
\end{array}\right]\right\}\right\rangle
$$

Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify Theorem RPNC 342

Matrix columns: 4
Rank: 2
Nullity: 2

Archetype E

Summary System with three equations, four variables. Inconsistent. Null space of coefficient matrix has dimension 2. Coefficient matrix identical to that of Archetype D, constant vector is different.
\square A system of linear equations Definition SLE (11):

$$
\begin{array}{r}
2 x_{1}+x_{2}+7 x_{3}-7 x_{4}=2 \\
-3 x_{1}+4 x_{2}-5 x_{3}-6 x_{4}=3 \\
x_{1}+x_{2}+4 x_{3}-5 x_{4}=2
\end{array}
$$

\square Some solutions to the system of linear equations (not necessarily exhaustive):
None. (Why?)
\square Augmented matrix of the linear system of equations Definition AM 28):
$\left[\begin{array}{ccccc}2 & 1 & 7 & -7 & 2 \\ -3 & 4 & -5 & -6 & 3 \\ 1 & 1 & 4 & -5 & 2\end{array}\right]$
\square Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
$\left[\begin{array}{ccccc}\boxed{1} & 0 & 3 & -2 & 0 \\ 0 & \boxed{1} & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
\square Analysis of the augmented matrix Notation RREFA 31):

$$
r=3 \quad D=\{1,2,5\} \quad F=\{3,4\}
$$

\square Vector form of the solution set to the system of equations Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0 's and 1 's in the entries of the vectors corresponding to elements of the set F for the larger examples.

Inconsistent system, no solutions exist.
\square Given a system of equations we can always build a new, related, homogeneous system Definition HS [57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties
of this new system will have precise relationships with various properties of the original system.

$$
\begin{array}{r}
2 x_{1}+x_{2}+7 x_{3}-7 x_{4}=0 \\
-3 x_{1}+4 x_{2}-5 x_{3}-6 x_{4}=0 \\
x_{1}+x_{2}+4 x_{3}-5 x_{4}=0
\end{array}
$$

\square Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive): $x_{1}=0, \quad x_{2}=0, \quad x_{3}=0, \quad x_{4}=0$
$x_{1}=4, \quad x_{2}=13, \quad x_{3}=2, \quad x_{4}=5$

Form the augmented matrix of the homogenous linear system, and use row operations to convert to reduced row-echelon form. Notice how the entries of the final column remain zeros:
$\left[\begin{array}{ccccc}\boxed{1} & 0 & 3 & -2 & 0 \\ 0 & \boxed{1} & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
\square Analysis of the augmented matrix for the homogenous system Notation RREFA 31). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=2 \quad D=\{1,2\} \quad F=\{3,4,5\}
$$

Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.

$$
\left[\begin{array}{cccc}
2 & 1 & 7 & -7 \\
-3 & 4 & -5 & -6 \\
1 & 1 & 4 & -5
\end{array}\right]
$$

Matrix brought to reduced row-echelon form:

$$
\left[\begin{array}{cccc}
\boxed{1} & 0 & 3 & -2 \\
0 & \boxed{1} & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=2 \quad D=\{1,2\} \quad F=\{3,4\}
$$

This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem

BNS [138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS (96) to see these vectors arise.

$$
\left\langle\left\{\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

\square Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. Theorem BCS 234)

$$
\left\langle\left\{\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]\right\}\right\rangle
$$

\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS 259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=\left[\begin{array}{lll}1 & \frac{1}{7} & -\frac{11}{7}\end{array}\right]$
$\left\langle\left\{\left[\begin{array}{c}\frac{11}{7} \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-\frac{1}{7} \\ 1 \\ 0\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.
$\left\langle\left\{\left[\begin{array}{c}1 \\ 0 \\ \frac{7}{11}\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ \frac{1}{11}\end{array}\right]\right\}\right\rangle$

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240)
$\left\langle\left\{\left[\begin{array}{c}1 \\ 0 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -3\end{array}\right]\right\}\right\rangle$
\square Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify

Archetype F

Summary System with four equations, four variables. Nonsingular coefficient matrix. Integer eigenvalues, one has "high" multiplicity.
\square A system of linear equations Definition SLE (11):

$$
\begin{aligned}
33 x_{1}-16 x_{2}+10 x_{3}-2 x_{4} & =-27 \\
99 x_{1}-47 x_{2}+27 x_{3}-7 x_{4} & =-77 \\
78 x_{1}-36 x_{2}+17 x_{3}-6 x_{4} & =-52 \\
-9 x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =5
\end{aligned}
$$

Some solutions to the system of linear equations (not necessarily exhaustive):
$x_{1}=1, \quad x_{2}=2, \quad x_{3}=-2, \quad x_{4}=4$
\square Augmented matrix of the linear system of equations Definition AM 28):

$$
\left[\begin{array}{ccccc}
33 & -16 & 10 & -2 & -27 \\
99 & -47 & 27 & -7 & -77 \\
78 & -36 & 17 & -6 & -52 \\
-9 & 2 & 3 & 4 & 5
\end{array}\right]
$$

\square Matrix in reduced row-echelon form, row-equivalent to augmented matrix:

$$
\left[\begin{array}{ccccc}
\boxed{1} & 0 & 0 & 0 & 1 \\
0 & \boxed{1} & 0 & 0 & 2 \\
0 & 0 & \boxed{1} & 0 & -2 \\
0 & 0 & 0 & \boxed{1} & 4
\end{array}\right]
$$

\square Analysis of the augmented matrix Notation RREFA 31):

$$
r=4 \quad D=\{1,2,3,4\} \quad F=\{5\}
$$

Vector form of the solution set to the system of equations Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0's and 1's in the entries of the vectors corresponding to elements of the set F for the larger examples.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-2 \\
4
\end{array}\right]
$$

Given a system of equations we can always build a new, related, homogeneous system Definition HS [57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties of this new system will have precise relationships with various properties of the original system.

$$
\begin{aligned}
33 x_{1}-16 x_{2}+10 x_{3}-2 x_{4} & =0 \\
99 x_{1}-47 x_{2}+27 x_{3}-7 x_{4} & =0 \\
78 x_{1}-36 x_{2}+17 x_{3}-6 x_{4} & =0 \\
-9 x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =0
\end{aligned}
$$

\square Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive): $x_{1}=0, \quad x_{2}=0, \quad x_{3}=0, \quad x_{4}=0$

Form the augmented matrix of the homogenous linear system, and use row operations to convert to reduced row-echelon form. Notice how the entries of the final column remain zeros:
$\left[\begin{array}{ccccc}\boxed{1} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$

Analysis of the augmented matrix for the homogenous system Notation RREFA 31). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=4 \quad D=\{1,2,3,4\} \quad F=\{5\}
$$

Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.
$\left[\begin{array}{cccc}33 & -16 & 10 & -2 \\ 99 & -47 & 27 & -7 \\ 78 & -36 & 17 & -6 \\ -9 & 2 & 3 & 4\end{array}\right]$

Matrix brought to reduced row-echelon form:
$\left[\begin{array}{cccc}\boxed{1} & 0 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & \boxed{1} & 0 \\ 0 & 0 & 0 & 1 \\ \hline\end{array}\right]$

Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=4 \quad D=\{1,2,3,4\} \quad F=\{ \}
$$

\square Matrix (coefficient matrix) is nonsingular or singular? Theorem NMRRI 68) at the same time, examine the size of the set F above.Notice that this property does not apply to matrices that are not square.

Nonsingular.
\square This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS (138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS 96) to see these vectors arise.
$\langle\{$ \}〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. (Theorem BCS 234)

$$
\left\langle\left\{\left[\begin{array}{c}
33 \\
99 \\
78 \\
-9
\end{array}\right],\left[\begin{array}{c}
-16 \\
-47 \\
-36 \\
2
\end{array}\right],\left[\begin{array}{c}
10 \\
27 \\
17 \\
3
\end{array}\right],\left[\begin{array}{c}
-2 \\
-7 \\
-6 \\
4
\end{array}\right]\right\}\right\rangle
$$

\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS $\left[259\right.$ and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=[]$
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.

$$
\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

\square Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240)

$$
\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if the matrix is square, then the matrix must be nonsingular. (Definition MI 208, Theorem NI 223)

$$
\left[\begin{array}{cccc}
-\left(\frac{86}{3}\right) & \frac{38}{3} & -\left(\frac{11}{3}\right) & \frac{7}{3} \\
-\left(\frac{129}{2}\right) & \frac{86}{3} & -\left(\frac{17}{2}\right) & \frac{31}{6} \\
-13 & 6 & -2 & 1 \\
-\left(\frac{45}{2}\right) & \frac{29}{3} & -\left(\frac{5}{2}\right) & \frac{13}{6}
\end{array}\right]
$$

\square Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify Theorem RPNC 342

$$
\text { Matrix columns: } 4 \quad \text { Rank: } 4 \quad \text { Nullity: } 0
$$

Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular if and only if the determinant is nonzero (Theorem SMZD 383). (Product of all eigenvalues?)

Determinant $=-18$

Eigenvalues, and bases for eigenspaces. Definition EEM 389, Definition EM 397)

$$
\begin{array}{ll}
\lambda=-1 & \mathcal{E}_{F}(-1)=\left\langle\left\{\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]\right\}\right\rangle \\
\lambda=2 & \mathcal{E}_{F}(2)=\left\langle\left\{\left[\begin{array}{l}
2 \\
5 \\
2 \\
1
\end{array}\right]\right\}\right\rangle \\
\lambda=3 & \mathcal{E}_{F}(3)=\left\langle\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
7
\end{array}\right],\left[\begin{array}{c}
17 \\
45 \\
21 \\
0
\end{array}\right]\right\}\right\rangle
\end{array}
$$

\square Geometric and algebraic multiplicities. | Definition GME |
| :--- |
| 399 |

$$
\begin{aligned}
\gamma_{F}(-1) & =1 \\
\gamma_{F}(2) & =1 \\
\gamma_{F}(3) & =2
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{F}(-1) & =1 \\
\alpha_{F}(2) & =1 \\
\alpha_{F}(3) & =2
\end{aligned}
$$

\square Diagonalizable? Definition DZM 428)
Yes, full eigenspaces, Theorem DMFE 431.
\square The diagonalization. Theorem DC 429)

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
12 & -5 & 1 & -1 \\
-39 & 18 & -7 & 3 \\
\frac{27}{7} & -\frac{13}{7} & \frac{6}{7} & -\frac{1}{7} \\
\frac{26}{7} & -\frac{12}{7} & \frac{5}{7} & -\frac{2}{7}
\end{array}\right]\left[\begin{array}{cccc}
33 & -16 & 10 & -2 \\
99 & -47 & 27 & -7 \\
78 & -36 & 17 & -6 \\
-9 & 2 & 3 & 4
\end{array}\right]\left[\begin{array}{cccc}
1 & 2 & 1 & 17 \\
2 & 5 & 1 & 45 \\
0 & 2 & 0 & 21 \\
1 & 1 & 7 & 0
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

Archetype G

Summary System with five equations, two variables. Consistent. Null space of coefficient matrix has dimension 0. Coefficient matrix identical to that of Archetype H, constant vector is different.
\square A system of linear equations Definition SLE (11):

$$
\begin{aligned}
2 x_{1}+3 x_{2} & =6 \\
-x_{1}+4 x_{2} & =-14 \\
3 x_{1}+10 x_{2} & =-2 \\
3 x_{1}-x_{2} & =20 \\
6 x_{1}+9 x_{2} & =18
\end{aligned}
$$

Some solutions to the system of linear equations (not necessarily exhaustive):
$x_{1}=6, \quad x_{2}=-2$
\square Augmented matrix of the linear system of equations Definition AM 28):
$\left[\begin{array}{ccc}2 & 3 & 6 \\ -1 & 4 & -14 \\ 3 & 10 & -2 \\ 3 & -1 & 20 \\ 6 & 9 & 18\end{array}\right]$
\square Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
$\left[\begin{array}{ccc}\boxed{1} & 0 & 6 \\ 0 & \boxed{1} & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
\square Analysis of the augmented matrix Notation RREFA 31):

$$
r=2 \quad D=\{1,2\} \quad F=\{3\}
$$

\square Vector form of the solution set to the system of equations Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0 's and 1's in the entries
of the vectors corresponding to elements of the set F for the larger examples.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2
\end{array}\right]
$$

Given a system of equations we can always build a new, related, homogeneous system Definition HS [57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties of this new system will have precise relationships with various properties of the original system.

$$
\begin{aligned}
2 x_{1}+3 x_{2} & =0 \\
-x_{1}+4 x_{2} & =0 \\
3 x_{1}+10 x_{2} & =0 \\
3 x_{1}-x_{2} & =0 \\
6 x_{1}+9 x_{2} & =0
\end{aligned}
$$

Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive): $x_{1}=0, \quad x_{2}=0$

Form the augmented matrix of the homogenous linear system, and use row operations to convert to reduced row-echelon form. Notice how the entries of the final column remain zeros:
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
\square Analysis of the augmented matrix for the homogenous system Notation RREFA 31). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=2 \quad D=\{1,2\} \quad F=\{3\}
$$

\square Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.
$\left[\begin{array}{cc}2 & 3 \\ -1 & 4 \\ 3 & 10 \\ 3 & -1 \\ 6 & 9\end{array}\right]$

Matrix brought to reduced row-echelon form:

$$
\left[\begin{array}{cc}
\boxed{1} & 0 \\
0 & \boxed{1} \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=2 \quad D=\{1,2\} \quad F=\{ \}
$$

\square This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS (138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS 96) to see these vectors arise.
$\langle\{$ \}〉

Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. (Theorem BCS 234)

$$
\left\langle\left\{\left[\begin{array}{c}
2 \\
-1 \\
3 \\
3 \\
6
\end{array}\right],\left[\begin{array}{c}
3 \\
4 \\
10 \\
-1 \\
9
\end{array}\right]\right\}\right\rangle
$$

\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS 259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 & 1-\frac{1}{3} & \\ 0 & 0 & 1 & 1 & -1\end{array}\right]$
$\left\langle\left\{\left[\begin{array}{c}\frac{1}{3} \\ \frac{1}{3} \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -1 \\ 1 \\ 0\end{array}\right]\right\}\right\rangle$
\square Column space of the matrix, expressed as the span of a set of linearly independent vectors. These
vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -1 \\ 0\end{array}\right]\right\}\right\rangle$
\square Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240)
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}\right\rangle$
\square Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM
341) Verify Theorem RPNC 342

Matrix columns: 2 Rank: 2

Nullity: 0

Archetype H

Summary System with five equations, two variables. Inconsistent, overdetermined. Null space of coefficient matrix has dimension 0 . Coefficient matrix identical to that of Archetype G, constant vector is different.

\square
A system of linear equations Definition SLE 11):

$$
\begin{aligned}
2 x_{1}+3 x_{2} & =5 \\
-x_{1}+4 x_{2} & =6 \\
3 x_{1}+10 x_{2} & =2 \\
3 x_{1}-x_{2} & =-1 \\
6 x_{1}+9 x_{2} & =3
\end{aligned}
$$

Some solutions to the system of linear equations (not necessarily exhaustive):
None. (Why?)
\square Augmented matrix of the linear system of equations Definition AM 28]):
$\left[\begin{array}{ccc}2 & 3 & 5 \\ -1 & 4 & 6 \\ 3 & 10 & 2 \\ 3 & -1 & -1 \\ 6 & 9 & 3\end{array}\right]$
\square Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
$\left[\begin{array}{ccc}\boxed{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
\square Analysis of the augmented matrix Notation RREFA 31):

$$
r=3 \quad D=\{1,2,3\} \quad F=\{ \}
$$

Vector form of the solution set to the system of equations (Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0's and 1's in the entries
of the vectors corresponding to elements of the set F for the larger examples.
Inconsistent system, no solutions exist.

Given a system of equations we can always build a new, related, homogeneous system Definition HS 57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties of this new system will have precise relationships with various properties of the original system.

$$
\begin{aligned}
2 x_{1}+3 x_{2} & =0 \\
-x_{1}+4 x_{2} & =0 \\
3 x_{1}+10 x_{2} & =0 \\
3 x_{1}-x_{2} & =0 \\
6 x_{1}+9 x_{2} & =0
\end{aligned}
$$

\square Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive): $x_{1}=0, \quad x_{2}=0$

Form the augmented matrix of the homogenous linear system, and use row operations to convert to reduced row-echelon form. Notice how the entries of the final column remain zeros:
$\left[\begin{array}{ccc}\boxed{1} & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
\square Analysis of the augmented matrix for the homogenous system Notation RREFA 31). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=2 \quad D=\{1,2\} \quad F=\{3\}
$$

\square Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.
$\left[\begin{array}{cc}2 & 3 \\ -1 & 4 \\ 3 & 10 \\ 3 & -1 \\ 6 & 9\end{array}\right]$

Matrix brought to reduced row-echelon form:
$\left[\begin{array}{cc}{[1} & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=2 \quad D=\{1,2\} \quad F=\{ \}
$$

This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS (138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS 96) to see these vectors arise.
$\langle\{$ \}〉
\square Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. Theorem BCS 234)

$$
\left\langle\left\{\left[\begin{array}{c}
2 \\
-1 \\
3 \\
3 \\
6
\end{array}\right],\left[\begin{array}{c}
3 \\
4 \\
10 \\
-1 \\
9
\end{array}\right]\right\}\right\rangle
$$

\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS 259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=[]$
$\left\langle\left\{\left[\begin{array}{l}\frac{1}{3} \\ \frac{1}{3} \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -1 \\ 1 \\ 0\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing
out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -1 \\ 0\end{array}\right]\right\}\right\rangle$
\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS 259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 & 1-\frac{1}{3} & \\ 0 & 0 & 1 & 1 & -1\end{array}\right]$
$\left\langle\left\{\left[\begin{array}{l}\frac{1}{3} \\ \frac{1}{3} \\ 1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -1 \\ 1 \\ 0\end{array}\right]\right\}\right\rangle$
\square Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240)
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}\right\rangle$
\square Subspace dimensions associated with the matrix. Theorem RPNC 342

Matrix columns: 2
Rank: 2
Nullity: 0

Archetype I

Summary System with four equations, seven variables. Consistent. Null space of coefficient matrix has dimension 4.
\square A system of linear equations Definition SLE 11):

$$
\begin{aligned}
x_{1}+4 x_{2}-x_{4}+7 x_{6}-9 x_{7} & =3 \\
2 x_{1}+8 x_{2}-x_{3}+3 x_{4}+9 x_{5}-13 x_{6}+7 x_{7} & =9 \\
2 x_{3}-3 x_{4}-4 x_{5}+12 x_{6}-8 x_{7} & =1 \\
-x_{1}-4 x_{2}+2 x_{3}+4 x_{4}+8 x_{5}-31 x_{6}+37 x_{7} & =4
\end{aligned}
$$

Some solutions to the system of linear equations (not necessarily exhaustive):
$x_{1}=-25, x_{2}=4, x_{3}=22, x_{4}=29, x_{5}=1, x_{6}=2, x_{7}=-3$
$x_{1}=-7, x_{2}=5, x_{3}=7, x_{4}=15, x_{5}=-4, x_{6}=2, x_{7}=1$
$x_{1}=4, x_{2}=0, x_{3}=2, x_{4}=1, x_{5}=0, x_{6}=0, x_{7}=0$

Augmented matrix of the linear system of equations (Definition AM 28):
$\left[\begin{array}{cccccccc}1 & 4 & 0 & -1 & 0 & 7 & -9 & 3 \\ 2 & 8 & -1 & 3 & 9 & -13 & 7 & 9 \\ 0 & 0 & 2 & -3 & -4 & 12 & -8 & 1 \\ -1 & -4 & 2 & 4 & 8 & -31 & 37 & 4\end{array}\right]$

Matrix in reduced row-echelon form, row-equivalent to augmented matrix:
$\left[\begin{array}{cccccccc}\boxed{1} & 4 & 0 & 0 & 2 & 1 & -3 & 4 \\ 0 & 0 & \boxed{1} & 0 & 1 & -3 & 5 & 2 \\ 0 & 0 & 0 & 1 & 2 & -6 & 6 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Analysis of the augmented matrix Notation RREFA 31):

$$
r=3 \quad D=\{1,3,4\} \quad F=\{2,5,6,7,8\}
$$

Vector form of the solution set to the system of equations Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0 's and 1's in the entries
of the vectors corresponding to elements of the set F for the larger examples.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
-4 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-2 \\
0 \\
-1 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
-1 \\
0 \\
3 \\
6 \\
0 \\
1 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{c}
3 \\
0 \\
-5 \\
-6 \\
0 \\
0 \\
1
\end{array}\right]
$$

\square Given a system of equations we can always build a new, related, homogeneous system Definition HS 57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties of this new system will have precise relationships with various properties of the original system.

$$
\begin{array}{r}
x_{1}+4 x_{2}-x_{4}+7 x_{6}-9 x_{7}=0 \\
2 x_{1}+8 x_{2}-x_{3}+3 x_{4}+9 x_{5}-13 x_{6}+7 x_{7}=0 \\
2 x_{3}-3 x_{4}-4 x_{5}+12 x_{6}-8 x_{7}=0 \\
-x_{1}-4 x_{2}+2 x_{3}+4 x_{4}+8 x_{5}-31 x_{6}+37 x_{7}=0
\end{array}
$$

Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive):
$x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=0, x_{5}=0, x_{6}=0, x_{7}=0$
$x_{1}=3, x_{2}=0, x_{3}=-5, x_{4}=-6, x_{5}=0, x_{6}=0, x_{7}=1$
$x_{1}=-1, x_{2}=0, x_{3}=3, x_{4}=6, x_{5}=0, x_{6}=1, x_{7}=0$
$x_{1}=-2, x_{2}=0, x_{3}=-1, x_{4}=-2, x_{5}=1, x_{6}=0, x_{7}=0$
$x_{1}=-4, x_{2}=1, x_{3}=0, x_{4}=0, x_{5}=0, x_{6}=0, x_{7}=0$
$x_{1}=-4, x_{2}=1, x_{3}=-3, x_{4}=-2, x_{5}=1, x_{6}=1, x_{7}=1$
\square Form the augmented matrix of the homogenous linear system, and use row operations to convert to reduced row-echelon form. Notice how the entries of the final column remain zeros:

$$
\left[\begin{array}{cccccccc}
\left.\begin{array}{|ccccccc}
1 & 4 & 0 & 0 & 2 & 1 & -3 \\
0 \\
0 & 0 & \boxed{1} & 0 & 1 & -3 & 5 \\
0 \\
0 & 0 & 0 & \boxed{1} & 2 & -6 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right]
\end{array}\right]
$$

Analysis of the augmented matrix for the homogenous system Notation RREFA 31]). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=3 \quad D=\{1,3,4\} \quad F=\{2,5,6,7,8\}
$$

Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.
$\left[\begin{array}{ccccccc}1 & 4 & 0 & -1 & 0 & 7 & -9 \\ 2 & 8 & -1 & 3 & 9 & -13 & 7 \\ 0 & 0 & 2 & -3 & -4 & 12 & -8 \\ -1 & -4 & 2 & 4 & 8 & -31 & 37\end{array}\right]$

Matrix brought to reduced row-echelon form:
$\left[\begin{array}{ccccccc}\boxed{1} & 4 & 0 & 0 & 2 & 1 & -3 \\ 0 & 0 & 1 & 0 & 1 & -3 & 5 \\ 0 & 0 & 0 & 1 & 2 & -6 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=3 \quad D=\{1,3,4\} \quad F=\{2,5,6,7\}
$$

This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS (138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS (96]) to see these vectors arise.
$\left\langle\left\{\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ -1 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 3 \\ 6 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ 0 \\ -5 \\ -6 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. Theorem BCS 234)
$\left\langle\left\{\left[\begin{array}{c}1 \\ 2 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ -3 \\ 4\end{array}\right]\right\}\right\rangle$

The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a
set of linearly independent vectors that span the null space of L, computed as according to Theorem FS [259] and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=\left[\begin{array}{llll}1 & -\frac{12}{31} & -\frac{13}{31} & \frac{7}{31}\end{array}\right]$
$\left\langle\left\{\left[\begin{array}{c}-\frac{7}{31} \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}\frac{13}{31} \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}\frac{12}{31} \\ 1 \\ 0 \\ 0\end{array}\right]\right\}\right\rangle$
\square Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.
$\left\langle\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -\frac{31}{7}\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \frac{12}{7}\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ \frac{13}{7}\end{array}\right]\right\}\right\rangle$

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. Theorem BRS 240)
$\left\langle\left\{\left[\begin{array}{c}1 \\ 4 \\ 0 \\ 0 \\ 2 \\ 1 \\ -3\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ 1 \\ -3 \\ 5\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ 2 \\ -6 \\ 6\end{array}\right]\right\}\right\rangle$
\square Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify Theorem RPNC 342

Matrix columns: 7 Rank: $3 \quad$ Nullity: 4

Archetype J

Summary System with six equations, nine variables. Consistent. Null space of coefficient matrix has dimension 5 .

A system of linear equations Definition SLE 11):

$$
\begin{aligned}
x_{1}+2 x_{2}-2 x_{3}+9 x_{4}+3 x_{5}-5 x_{6}-2 x_{7}+x_{8}+27 x_{9} & =-5 \\
2 x_{1}+4 x_{2}+3 x_{3}+4 x_{4}-x_{5}+4 x_{6}+10 x_{7}+2 x_{8}-23 x_{9} & =18 \\
x_{1}+2 x_{2}+x_{3}+3 x_{4}+x_{5}+x_{6}+5 x_{7}+2 x_{8}-7 x_{9} & =6 \\
2 x_{1}+4 x_{2}+3 x_{3}+4 x_{4}-7 x_{5}+2 x_{6}+4 x_{7}-11 x_{9} & =20 \\
x_{1}+2 x_{2}+5 x_{4}+2 x_{5}-4 x_{6}+3 x_{7}+8 x_{8}+13 x_{9} & =-4 \\
-3 x_{1}-6 x_{2}-x_{3}-13 x_{4}+2 x_{5}-5 x_{6}-4 x_{7}+13 x_{8}+10 x_{9} & =-29
\end{aligned}
$$

Some solutions to the system of linear equations (not necessarily exhaustive):

$$
\begin{aligned}
& x_{1}=6, x_{2}=0, x_{3}=-1, x_{4}=0, x_{5}=-1, x_{6}=2, x_{7}=0, x_{8}=0, x_{9}=0 \\
& x_{1}=4, x_{2}=1, x_{3}=-1, x_{4}=0, x_{5}=-1, x_{6}=2, x_{7}=0, x_{8}=0, x_{9}=0 \\
& x_{1}=-17, x_{2}=7, x_{3}=3, x_{4}=2, x_{5}=-1, x_{6}=14, x_{7}=-1, x_{8}=3, x_{9}=2 \\
& x_{1}=-11, x_{2}=-6, x_{3}=1, x_{4}=5, x_{5}=-4, x_{6}=7, x_{7}=3, x_{8}=1, x_{9}=1
\end{aligned}
$$

Augmented matrix of the linear system of equations (Definition AM 28):

$$
\left[\begin{array}{cccccccccc}
1 & 2 & -2 & 9 & 3 & -5 & -2 & 1 & 27 & -5 \\
2 & 4 & 3 & 4 & -1 & 4 & 10 & 2 & -23 & 18 \\
1 & 2 & 1 & 3 & 1 & 1 & 5 & 2 & -7 & 6 \\
2 & 4 & 3 & 4 & -7 & 2 & 4 & 0 & -11 & 20 \\
1 & 2 & 0 & 5 & 2 & -4 & 3 & 8 & 13 & -4 \\
-3 & -6 & -1 & -13 & 2 & -5 & -4 & 13 & 10 & -29
\end{array}\right]
$$

Matrix in reduced row-echelon form, row-equivalent to augmented matrix:

$$
\left[\begin{array}{cccccccccc}
\boxed{1} & 2 & 0 & 5 & 0 & 0 & 1 & -2 & 3 & 6 \\
0 & 0 & 1 & -2 & 0 & 0 & 3 & 5 & -6 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 & -3 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

\square Analysis of the augmented matrix Notation RREFA 31):

$$
r=4 \quad D=\{1,3,5,6\} \quad F=\{2,4,7,8,9,10\}
$$

Vector form of the solution set to the system of equations Theorem VFSLS 96). Notice the relationship between the free variables and the set F above. Also, notice the pattern of 0 's and 1 's in the entries of the vectors corresponding to elements of the set F for the larger examples.

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8} \\
x_{9}
\end{array}\right]=\left[\begin{array}{c}
6 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
-1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-5 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{7}\left[\begin{array}{c}
-1 \\
0 \\
-3 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{8}\left[\begin{array}{c}
2 \\
0 \\
-5 \\
0 \\
-1 \\
2 \\
0 \\
1 \\
0
\end{array}\right]+x_{9}\left[\begin{array}{c}
-3 \\
0 \\
6 \\
0 \\
1 \\
3 \\
0 \\
0 \\
1
\end{array}\right]
$$

Given a system of equations we can always build a new, related, homogeneous system (Definition HS [57) by converting the constant terms to zeros and retaining the coefficients of the variables. Properties of this new system will have precise relationships with various properties of the original system.

$$
\begin{array}{r}
x_{1}+2 x_{2}-2 x_{3}+9 x_{4}+3 x_{5}-5 x_{6}-2 x_{7}+x_{8}+27 x_{9}=0 \\
2 x_{1}+4 x_{2}+3 x_{3}+4 x_{4}-x_{5}+4 x_{6}+10 x_{7}+2 x_{8}-23 x_{9}=0 \\
x_{1}+2 x_{2}+x_{3}+3 x_{4}+x_{5}+x_{6}+5 x_{7}+2 x_{8}-7 x_{9}=0 \\
2 x_{1}+4 x_{2}+3 x_{3}+4 x_{4}-7 x_{5}+2 x_{6}+4 x_{7}-11 x_{9}=0 \\
x_{1}+2 x_{2}++5 x_{4}+2 x_{5}-4 x_{6}+3 x_{7}+8 x_{8}+13 x_{9}=0 \\
-3 x_{1}-6 x_{2}-x_{3}-13 x_{4}+2 x_{5}-5 x_{6}-4 x_{7}+13 x_{8}+10 x_{9}=0
\end{array}
$$

Some solutions to the associated homogenous system of linear equations (not necessarily exhaustive): $x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=0, x_{5}=0, x_{6}=0, x_{7}=0, x_{8}=0, x_{9}=0$
$x_{1}=-2, x_{2}=1, x_{3}=0, x_{4}=0, x_{5}=0, x_{6}=0, x_{7}=0, x_{8}=0, x_{9}=0$
$x_{1}=-23, x_{2}=7, x_{3}=4, x_{4}=2, x_{5}=0, x_{6}=12, x_{7}=-1, x_{8}=3, x_{9}=2$
$x_{1}=-17, x_{2}=-6, x_{3}=2, x_{4}=5, x_{5}=-3, x_{6}=5, x_{7}=3, x_{8}=1, x_{9}=1$

Form the augmented matrix of the homogenous linear system, and use row operations to convert to
reduced row-echelon form. Notice how the entries of the final column remain zeros:

$$
\left[\begin{array}{cccccccccc}
\hline 1 & 2 & 0 & 5 & 0 & 0 & 1 & -2 & 3 & 0 \\
0 & 0 & 1 & -2 & 0 & 0 & 3 & 5 & -6 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

\square Analysis of the augmented matrix for the homogenous system Notation RREFA 31). Notice the slight variation for the same analysis of the original system only when the original system was consistent:

$$
r=4 \quad D=\{1,3,5,6\} \quad F=\{2,4,7,8,9,10\}
$$

Coefficient matrix of original system of equations, and of associated homogenous system. This matrix will be the subject of further analysis, rather than the systems of equations.

$$
\left[\begin{array}{ccccccccc}
1 & 2 & -2 & 9 & 3 & -5 & -2 & 1 & 27 \\
2 & 4 & 3 & 4 & -1 & 4 & 10 & 2 & -23 \\
1 & 2 & 1 & 3 & 1 & 1 & 5 & 2 & -7 \\
2 & 4 & 3 & 4 & -7 & 2 & 4 & 0 & -11 \\
1 & 2 & 0 & 5 & 2 & -4 & 3 & 8 & 13 \\
-3 & -6 & -1 & -13 & 2 & -5 & -4 & 13 & 10
\end{array}\right]
$$

\square Matrix brought to reduced row-echelon form:

$$
\left[\begin{array}{ccccccccc}
\hline 1 & 2 & 0 & 5 & 0 & 0 & 1 & -2 & 3 \\
0 & 0 & 1 & -2 & 0 & 0 & 3 & 5 & -6 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & \boxed{1} & 0 & -2 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=4 \quad D=\{1,3,5,6\} \quad F=\{2,4,7,8,9\}
$$

This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS [138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS 96) to see these vectors arise.

$$
\left\langle\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
0 \\
2 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
-3 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
-5 \\
0 \\
-1 \\
2 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
6 \\
0 \\
1 \\
3 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

\square Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. Theorem BCS (234)

$$
\left\langle\left\{\left[\begin{array}{c}
1 \\
2 \\
1 \\
2 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
-2 \\
3 \\
1 \\
3 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
1 \\
-7 \\
2 \\
2
\end{array}\right],\left[\begin{array}{c}
-5 \\
4 \\
1 \\
2 \\
-4 \\
-5
\end{array}\right]\right\}\right\rangle
$$

\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS [259] and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.

$$
L=\left[\begin{array}{cccccc}
1 & 0 & \frac{186}{131} & \frac{51}{131} & -\frac{188}{131} & \frac{77}{131} \\
0 & 1 & -\frac{727}{131} & -\frac{45}{131} & \frac{58}{131} & -\frac{14}{131}
\end{array}\right]
$$

$$
\left\langle\left\{\left[\begin{array}{c}
-\frac{77}{131} \\
\frac{14}{131} \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
\frac{188}{131} \\
-\frac{58}{131} \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{51}{431} \\
\frac{451}{131} \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{186}{31} \\
\frac{2731}{131} \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right\}\right\rangle
$$

Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.
$\left\langle\left\{\left[\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ -1 \\ -\frac{29}{7}\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ 0 \\ -\frac{11}{2} \\ -\frac{94}{7}\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ 10 \\ 22\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ \frac{3}{2} \\ 3\end{array}\right]\right\}\right\rangle$
\square Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240)
$\left\langle\left\{\left[\begin{array}{c}1 \\ 2 \\ 0 \\ 5 \\ 0 \\ 0 \\ 1 \\ -2 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -2 \\ 0 \\ 0 \\ 3 \\ 5 \\ -6\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ -2 \\ -3\end{array}\right]\right\}\right\rangle$
\square Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify Theorem RPNC 342

Matrix columns: 9
Rank: 4
Nullity: 5

Archetype K

Summary Square matrix of size 5 . Nonsingular. 3 distinct eigenvalues, 2 of multiplicity 2 .
\square A matrix:
$\left[\begin{array}{ccccc}10 & 18 & 24 & 24 & -12 \\ 12 & -2 & -6 & 0 & -18 \\ -30 & -21 & -23 & -30 & 39 \\ 27 & 30 & 36 & 37 & -30 \\ 18 & 24 & 30 & 30 & -20\end{array}\right]$
\square Matrix brought to reduced row-echelon form:
$\left[\begin{array}{ccccc}\boxed{1} & 0 & 0 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \boxed{1} \\ \hline\end{array}\right]$
\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=5 \quad D=\{1,2,3,4,5\} \quad F=\{ \}
$$

\square Matrix (coefficient matrix) is nonsingular or singular? Theorem NMRRI 68) at the same time, examine the size of the set F above.Notice that this property does not apply to matrices that are not square.

Nonsingular.
\square This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS (138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS (96) to see these vectors arise.
$\langle\}\rangle$
\square Column space of the matrix, expressed as the span of a set of linearly independent vectors that are also columns of the matrix. These columns have indices that form the set D above. Theorem BCS 234)

$$
\left\langle\left\{\left[\begin{array}{c}
10 \\
12 \\
-30 \\
27 \\
18
\end{array}\right],\left[\begin{array}{c}
18 \\
-2 \\
-21 \\
30 \\
24
\end{array}\right],\left[\begin{array}{c}
24 \\
-6 \\
-23 \\
36 \\
30
\end{array}\right],\left[\begin{array}{c}
24 \\
0 \\
-30 \\
37 \\
30
\end{array}\right],\left[\begin{array}{c}
-12 \\
-18 \\
39 \\
-30 \\
-20
\end{array}\right]\right\}\right\rangle
$$

\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS 259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=[]$
$\left\langle\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.

$$
\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240])

$$
\left\langle\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}\right\rangle
$$

\square Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if the matrix is square, then the matrix must be nonsingular. (Definition MI 208, Theorem NI 223)
$\left[\begin{array}{ccccc}1 & -\left(\frac{9}{4}\right) & -\left(\frac{3}{2}\right) & 3 & -6 \\ \frac{21}{2} & \frac{43}{4} & \frac{21}{2} & 9 & -9 \\ -15 & -\left(\frac{21}{2}\right) & -11 & -15 & \frac{39}{2} \\ 9 & \frac{15}{4} & \frac{9}{2} & 10 & -15 \\ \frac{9}{2} & \frac{3}{4} & \frac{3}{2} & 6 & -\left(\frac{19}{2}\right)\end{array}\right]$

Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify Theorem RPNC 342

Matrix columns: 5
Rank: 5
Nullity: 0
\square Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular if and only if the determinant is nonzero (Theorem SMZD 383). (Product of all eigenvalues?)

Determinant $=16$
\square Eigenvalues, and bases for eigenspaces. Definition EEM 389 Definition EM 397)

$$
\begin{array}{ll}
\lambda=-2 & \mathcal{E}_{K}(-2)=\left\langle\left\{\left[\begin{array}{c}
2 \\
-2 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
-2 \\
1 \\
0
\end{array}\right]\right\}\right\rangle \\
\lambda=1 & \mathcal{E}_{K}(1)=\left\langle\left\{\left[\begin{array}{c}
4 \\
-10 \\
7 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
-4 \\
18 \\
-17 \\
5 \\
0
\end{array}\right]\right\}\right. \\
\lambda=4 & \mathcal{E}_{K}(4)=\left\langle\left\{\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1 \\
1
\end{array}\right]\right\}\right.
\end{array}
$$

\square Geometric and algebraic multiplicities. Definition GME 399 Definition AME 399)

$$
\begin{aligned}
\gamma_{K}(-2) & =2 & \alpha_{K}(-2) & =2 \\
\gamma_{K}(1) & =2 & \alpha_{K}(1) & =2 \\
\gamma_{K}(4) & =1 & \alpha_{K}(4) & =1
\end{aligned}
$$

\square Diagonalizable? Definition DZM 428)

Yes, full eigenspaces, Theorem DMFE 431.
\square The diagonalization. Theorem DC 429)

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
-4 & -3 & -4 & -6 & 7 \\
-7 & -5 & -6 & -8 & 10 \\
1 & -1 & -1 & 1 & -3 \\
1 & 0 & 0 & 1 & -2 \\
2 & 5 & 6 & 4 & 0
\end{array}\right]\left[\begin{array}{ccccc}
10 & 18 & 24 & 24 & -12 \\
12 & -2 & -6 & 0 & -18 \\
-30 & -21 & -23 & -30 & 39 \\
27 & 30 & 36 & 37 & -30 \\
18 & 24 & 30 & 30 & -20
\end{array}\right]\left[\begin{array}{cccc}
2 & -1 & 4 & -4 \\
-2 & 2 & -10 & 18 \\
\hline & -1 \\
1 & -2 & 7 & -17 \\
0 & 1 & 0 & 5 \\
1 \\
1 & 0 & 2 & 0
\end{array}\right]} \\
& =\left[\begin{array}{ccccc}
-2 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

Archetype L

Summary Square matrix of size 5. Singular, nullity 2. 2 distinct eigenvalues, each of "high" multiplicity.
\square A matrix:

$$
\left[\begin{array}{ccccc}
-2 & -1 & -2 & -4 & 4 \\
-6 & -5 & -4 & -4 & 6 \\
10 & 7 & 7 & 10 & -13 \\
-7 & -5 & -6 & -9 & 10 \\
-4 & -3 & -4 & -6 & 6
\end{array}\right]
$$

\square Matrix brought to reduced row-echelon form:
$\left[\begin{array}{ccccc}\boxed{1} & 0 & 0 & 1 & -2 \\ 0 & \boxed{1} & 0 & -2 & 2 \\ 0 & 0 & \boxed{1} & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
\square Analysis of the row-reduced matrix Notation RREFA 31):

$$
r=5 \quad D=\{1,2,3\} \quad F=\{4,5\}
$$

\square Matrix (coefficient matrix) is nonsingular or singular? Theorem NMRRI 68) at the same time, examine the size of the set F above.Notice that this property does not apply to matrices that are not square.

Singular.
\square This is the null space of the matrix. The set of vectors used in the span construction is a linearly independent set of column vectors that spans the null space of the matrix Theorem SSNS 117, Theorem BNS (138). Solve the homogenous system with this matrix as the coefficient matrix and write the solutions in vector form (Theorem VFSLS 96) to see these vectors arise.
$\left\langle\left\{\left[\begin{array}{c}-1 \\ 2 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}\right\rangle$
\square Column space of the matrix, expressed as the span of a set of linearly independent vectors that are
also columns of the matrix. These columns have indices that form the set D above. Theorem BCS [234)

$$
\left\langle\left\{\left[\begin{array}{c}
-2 \\
-6 \\
10 \\
-7 \\
-4
\end{array}\right],\left[\begin{array}{c}
-1 \\
-5 \\
7 \\
-5 \\
-3
\end{array}\right],\left[\begin{array}{c}
-2 \\
-4 \\
7 \\
-6 \\
-4
\end{array}\right]\right\}\right\rangle
$$

\square The column space of the matrix, as it arises from the extended echelon form of the matrix. The matrix L is computed as described in Definition EEF 257. This is followed by the column space described by a set of linearly independent vectors that span the null space of L, computed as according to Theorem FS 259 and Theorem BNS 138. When $r=m$, the matrix L has no rows and the column space is all of \mathbb{C}^{m}.
$L=\left[\begin{array}{ccccc}1 & 0 & -2 & -6 & 5 \\ 0 & 1 & 4 & 10 & -9\end{array}\right]$
$\left\langle\left\{\left[\begin{array}{c}-5 \\ 9 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}6 \\ -10 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -4 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}\right\rangle$

Column space of the matrix, expressed as the span of a set of linearly independent vectors. These vectors are computed by row-reducing the transpose of the matrix into reduced row-echelon form, tossing out the zero rows, and writing the remaining nonzero rows as column vectors. By Theorem CSRST 241 and Theorem BRS 240, and in the style of Example CSROI 242, this yields a linearly independent set of vectors that span the column space.

$$
\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
\frac{9}{4} \\
\frac{5}{2}
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
\frac{5}{4} \\
\frac{3}{2}
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
\frac{1}{2} \\
1
\end{array}\right]\right\}\right\rangle
$$

Row space of the matrix, expressed as a span of a set of linearly independent vectors, obtained from the nonzero rows of the equivalent matrix in reduced row-echelon form. (Theorem BRS 240)

$$
\left\langle\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
-2 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
2 \\
-1
\end{array}\right]\right\}\right\rangle
$$

Inverse matrix, if it exists. The inverse is not defined for matrices that are not square, and if the matrix is square, then the matrix must be nonsingular. (Definition MI 208, Theorem NI 223)

Subspace dimensions associated with the matrix. Definition NOM 341, Definition ROM 341) Verify Theorem RPNC 342

Matrix columns: 5
Rank: 3
Nullity: 2

Determinant of the matrix, which is only defined for square matrices. The matrix is nonsingular if and only if the determinant is nonzero (Theorem SMZD 383). (Product of all eigenvalues?)

Determinant $=0$

Eigenvalues, and bases for eigenspaces. Definition EEM 389 Definition EM 397)

$$
\begin{array}{ll}
\lambda=-1 & \mathcal{E}_{L}(-1)=\left\langle\left\{\begin{array}{c}
-5 \\
9 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
6 \\
-10 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
2 \\
-4 \\
1 \\
0 \\
0
\end{array}\right]\right\} \\
\lambda=0 & \left.\mathcal{E}_{L}(0)=\left\langle\left\{\begin{array}{c}
2 \\
-2 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
-2 \\
1 \\
0
\end{array}\right]\right\}\right\rangle
\end{array}
$$

\square Geometric and algebraic multiplicities. | Definition GME 399 | Definition AME | 399) |
| :--- | :--- | :--- |

$$
\begin{aligned}
\gamma_{L}(-1) & =3 & \alpha_{L}(-1) & =3 \\
\gamma_{L}(0) & =2 & \alpha_{L}(0) & =2
\end{aligned}
$$

Diagonalizable? Definition DZM 428)
Yes, full eigenspaces, Theorem DMFE 431.
\square The diagonalization. Theorem DC 429)

$$
\left[\begin{array}{ccccc}
4 & 3 & 4 & 6 & -6 \\
7 & 5 & 6 & 9 & -10 \\
-10 & -7 & -7 & -10 & 13 \\
-4 & -3 & -4 & -6 & 7 \\
-7 & -5 & -6 & -8 & 10
\end{array}\right]\left[\begin{array}{ccccc}
-2 & -1 & -2 & -4 & 4 \\
-6 & -5 & -4 & -4 & 6 \\
10 & 7 & 7 & 10 & -13 \\
-7 & -5 & -6 & -9 & 10 \\
-4 & -3 & -4 & -6 & 6
\end{array}\right]\left[\begin{array}{ccccc}
-5 & 6 & 2 & 2 & -1 \\
9 & -10 & -4 & -2 & 2 \\
0 & 0 & 1 & 1 & -2 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Archetype M

Summary Linear transformation with bigger domain than codomain, so it is guaranteed to not be injective. Happens to not be surjective.
\square A linear transformation: Definition LT 441)

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{3}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+4 x_{5} \\
3 x_{1}+x_{2}+4 x_{3}-3 x_{4}+7 x_{5} \\
x_{1}-x_{2}-5 x_{4}+x_{5}
\end{array}\right]
$$

\square A basis for the null space of the linear transformation: Definition KLT 468)

$$
\left\{\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-3 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$Injective: No. Definition ILT 465)

Since the kernel is nontrivial Theorem KILT 471 tells us that the linear transformation is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 2 , just from checking dimensions of the domain and the codomain. In particular, verify that

$$
T\left(\left[\begin{array}{c}
1 \\
2 \\
-1 \\
4 \\
5
\end{array}\right]\right)=\left[\begin{array}{c}
38 \\
24 \\
-16
\end{array}\right]
$$

$$
T\left(\left[\begin{array}{c}
0 \\
-3 \\
0 \\
5 \\
6
\end{array}\right]\right)=\left[\begin{array}{c}
38 \\
24 \\
-16
\end{array}\right]
$$

This demonstration that T is not injective is constructed with the observation that

$$
\left[\begin{array}{c}
0 \\
-3 \\
0 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
4 \\
5
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-5 \\
1 \\
1 \\
1
\end{array}\right]
$$

and

$$
\mathbf{z}=\left[\begin{array}{c}
-1 \\
-5 \\
1 \\
1 \\
1
\end{array}\right] \in \mathcal{K}(T)
$$

so the vector \mathbf{z} effectively "does nothing" in the evaluation of T.

A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT 487):

$$
\left\{\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
-3 \\
-5
\end{array}\right],\left[\begin{array}{l}
4 \\
7 \\
1
\end{array}\right]\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI (472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-\frac{4}{5}
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
\frac{3}{5}
\end{array}\right]\right\}
$$Surjective: No. Definition SLT 479)

Notice that the range is not all of \mathbb{C}^{3} since its dimension 2, not 3. In particular, verify that $\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right] \notin \mathcal{R}(T)$, by setting the output equal to this vector and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage, $T^{-1}\left(\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]\right)$, is empty. This alone is sufficient to see that the linear transformation is not onto.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503 .

Not injective or surjective.
\square Matrix representation Theorem MLTCV 448):

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{3}, \quad T(\mathbf{x})=A \mathbf{x}, \quad A=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 4 \\
3 & 1 & 4 & -3 & 7 \\
1 & -1 & 0 & -5 & 1
\end{array}\right]
$$

Archetype \mathbf{N}

Summary Linear transformation with domain larger than its codomain, so it is guaranteed to not be injective. Happens to be onto.
\square A linear transformation: Definition LT 441)

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{3}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
2 x_{1}+x_{2}+3 x_{3}-4 x_{4}+5 x_{5} \\
x_{1}-2 x_{2}+3 x_{3}-9 x_{4}+3 x_{5} \\
3 x_{1}+4 x_{3}-6 x_{4}+5 x_{5}
\end{array}\right]
$$

\square A basis for the null space of the linear transformation: Definition KLT 468)

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
-1 \\
3 \\
1 \\
0
\end{array}\right]\right\}
$$

Injective: No. Definition ILT 465)
Since the kernel is nontrivial Theorem KILT 471 tells us that the linear transformation is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 2, just from checking dimensions of the domain and the codomain. In particular, verify that

$$
T\left(\left[\begin{array}{c}
-3 \\
1 \\
-2 \\
-3 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
6 \\
19 \\
6
\end{array}\right] \quad T\left(\left[\begin{array}{c}
-4 \\
-4 \\
-2 \\
-1 \\
4
\end{array}\right]\right)=\left[\begin{array}{c}
6 \\
19 \\
6
\end{array}\right]
$$

This demonstration that T is not injective is constructed with the observation that

$$
\left[\begin{array}{c}
-4 \\
-4 \\
-2 \\
-1 \\
4
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
-2 \\
-3 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-5 \\
0 \\
2 \\
3
\end{array}\right]
$$

and

$$
\mathbf{z}=\left[\begin{array}{c}
-1 \\
-5 \\
0 \\
2 \\
3
\end{array}\right] \in \mathcal{K}(T)
$$

so the vector \mathbf{z} effectively "does nothing" in the evaluation of T.
\square A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT 487):

$$
\left\{\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
-4 \\
-9 \\
-6
\end{array}\right],\left[\begin{array}{l}
5 \\
3 \\
5
\end{array}\right]\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI 472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

\square Surjective: Yes. Definition SLT 479)
Notice that the basis for the range above is the standard basis for \mathbb{C}^{3}. So the range is all of \mathbb{C}^{3} and thus the linear transformation is surjective.
\square Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503 .

Domain dimension: 5 Rank: $3 \quad$ Nullity: 2
\square Invertible: No.
Not surjective, and the relative sizes of the domain and codomain mean the linear transformation cannot be injective. Theorem ILTIS 498)
\square Matrix representation Theorem MLTCV 448):

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{3}, \quad T(\mathbf{x})=A \mathbf{x}, \quad A=\left[\begin{array}{ccccc}
2 & 1 & 3 & -4 & 5 \\
1 & -2 & 3 & -9 & 3 \\
3 & 0 & 4 & -6 & 5
\end{array}\right]
$$

Archetype O

Summary Linear transformation with a domain smaller than the codomain, so it is guaranteed to not be onto. Happens to not be one-to-one.
\square A linear transformation: Definition LT 441)

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
-x_{1}+x_{2}-3 x_{3} \\
-x_{1}+2 x_{2}-4 x_{3} \\
x_{1}+x_{2}+x_{3} \\
2 x_{1}+3 x_{2}+x_{3} \\
x_{1}+2 x_{3}
\end{array}\right]
$$

\square A basis for the null space of the linear transformation: Definition KLT 468)

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right\}
$$

\square Injective: No. Definition ILT 465)
Since the kernel is nontrivial Theorem KILT 471 tells us that the linear transformation is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 2, just from checking dimensions of the domain and the codomain. In particular, verify that

$$
T\left(\left[\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
-15 \\
-19 \\
7 \\
10 \\
11
\end{array}\right] \quad T\left(\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]\right)=\left[\begin{array}{c}
-15 \\
-19 \\
7 \\
10 \\
11
\end{array}\right]
$$

This demonstration that T is not injective is constructed with the observation that

$$
\left[\begin{array}{l}
1 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right]+\left[\begin{array}{c}
-4 \\
2 \\
2
\end{array}\right]
$$

and

$$
\mathbf{z}=\left[\begin{array}{c}
-4 \\
2 \\
2
\end{array}\right] \in \mathcal{K}(T)
$$

so the vector \mathbf{z} effectively "does nothing" in the evaluation of T.
\square A basis for the range of the linear transformation: Definition RLT 483)

Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT (487):

$$
\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
-4 \\
1 \\
1 \\
2
\end{array}\right]\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI 472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
-3 \\
-7 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
5 \\
1
\end{array}\right]\right\}
$$

\square Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503.

Domain dimension: 3 Rank: 2 Nullity: 1

Surjective: No. Definition SLT 479)
The dimension of the range is 2 , and the codomain $\left(\mathbb{C}^{5}\right)$ has dimension 5 . So the transformation is not onto. Notice too that since the domain \mathbb{C}^{3} has dimension 3 , it is impossible for the range to have a dimension greater than 3, and no matter what the actual definition of the function, it cannot possibly be onto.

To be more precise, verify that $\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 1 \\ 1\end{array}\right] \notin \mathcal{R}(T)$, by setting the output equal to this vector and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage, T^{-1} is empty. This alone is sufficient to see that the linear transformation is not onto.

Invertible: No.
Not injective, and the relative dimensions of the domain and codomain prohibit any possibility of being surjective.

Matrix representation Theorem MLTCV 448):

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{5}, \quad T(\mathbf{x})=A \mathbf{x}, \quad A=\left[\begin{array}{ccc}
-1 & 1 & -3 \\
-1 & 2 & -4 \\
1 & 1 & 1 \\
2 & 3 & 1 \\
1 & 0 & 2
\end{array}\right]
$$

Archetype P

Summary Linear transformation with a domain smaller that its codomain, so it is guaranteed to not be surjective. Happens to be injective.
\square A linear transformation: Definition LT 441)

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
-x_{1}+x_{2}+x_{3} \\
-x_{1}+2 x_{2}+2 x_{3} \\
x_{1}+x_{2}+3 x_{3} \\
2 x_{1}+3 x_{2}+x_{3} \\
-2 x_{1}+x_{2}+3 x_{3}
\end{array}\right]
$$

A basis for the null space of the linear transformation: (Definition KLT 468)

Injective: Yes. Definition ILT 465)
Since $\mathcal{K}(T)=\{\mathbf{0}\}$, Theorem KILT 471 tells us that T is injective.
\square A basis for the range of the linear transformation: (Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT 487):

$$
\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
2 \\
-2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
1 \\
3
\end{array}\right]\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI 472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
-10 \\
6
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
7 \\
-3
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
1
\end{array}\right]\right\}
$$

\square Surjective: No. Definition SLT 479)
The dimension of the range is 3 , and the codomain $\left(\mathbb{C}^{5}\right)$ has dimension 5 . So the transformation is not surjective. Notice too that since the domain \mathbb{C}^{3} has dimension 3 , it is impossible for the range to have a dimension greater than 3 , and no matter what the actual definition of the function, it cannot possibly be surjective in this situation.

To be more precise, verify that $\left[\begin{array}{c}2 \\ 1 \\ -3 \\ 2 \\ 6\end{array}\right] \notin \mathcal{R}(T)$, by setting the output equal to this vector and seeing that
the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage, $T^{-1}\left(\left[\begin{array}{c}2 \\ 1 \\ -3 \\ 2 \\ 6\end{array}\right]\right)$, is empty. This alone is sufficient to see that the linear transformation is not onto.
\square Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503 .

Domain dimension: 3 Rank: 3 Nullity: 0

Invertible: No.
The relative dimensions of the domain and codomain prohibit any possibility of being surjective, so apply Theorem ILTIS 498.
\square Matrix representation Theorem MLTCV 448):

$$
T: \mathbb{C}^{3} \mapsto \mathbb{C}^{5}, \quad T(\mathbf{x})=A \mathbf{x}, \quad A=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
-1 & 2 & 2 \\
1 & 1 & 3 \\
2 & 3 & 1 \\
-2 & 1 & 3
\end{array}\right]
$$

Archetype Q

Summary Linear transformation with equal-sized domain and codomain, so it has the potential to be invertible, but in this case is not. Neither injective nor surjective. Diagonalizable, though.
\square A linear transformation: Definition LT 441)

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
-2 x_{1}+3 x_{2}+3 x_{3}-6 x_{4}+3 x_{5} \\
-16 x_{1}+9 x_{2}+12 x_{3}-28 x_{4}+28 x_{5} \\
-19 x_{1}+7 x_{2}+14 x_{3}-32 x_{4}+37 x_{5} \\
-21 x_{1}+9 x_{2}+15 x_{3}-35 x_{4}+39 x_{5} \\
-9 x_{1}+5 x_{2}+7 x_{3}-16 x_{4}+16 x_{5}
\end{array}\right]
$$

A basis for the null space of the linear transformation: (Definition KLT 468)

$$
\left\{\left[\begin{array}{l}
3 \\
4 \\
1 \\
3 \\
3
\end{array}\right]\right\}
$$

Injective: No. Definition ILT 465)
Since the kernel is nontrivial Theorem KILT 471 tells us that the linear transformation is not injective. Also, since the rank can not exceed 3 , we are guaranteed to have a nullity of at least 2 , just from checking dimensions of the domain and the codomain. In particular, verify that

$$
T\left(\left[\begin{array}{c}
1 \\
3 \\
-1 \\
2 \\
4
\end{array}\right]\right)=\left[\begin{array}{c}
4 \\
55 \\
72 \\
77 \\
31
\end{array}\right]
$$

$$
T\left(\left[\begin{array}{l}
4 \\
7 \\
0 \\
5 \\
7
\end{array}\right]\right)=\left[\begin{array}{c}
4 \\
55 \\
72 \\
77 \\
31
\end{array}\right]
$$

This demonstration that T is not injective is constructed with the observation that

$$
\left[\begin{array}{l}
4 \\
7 \\
0 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
-1 \\
2 \\
4
\end{array}\right]+\left[\begin{array}{l}
3 \\
4 \\
1 \\
3 \\
3
\end{array}\right]
$$

and

$$
\mathbf{z}=\left[\begin{array}{l}
3 \\
4 \\
1 \\
3 \\
3
\end{array}\right] \in \mathcal{K}(T)
$$

so the vector \mathbf{z} effectively "does nothing" in the evaluation of T.
\square A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT (487):

$$
\left\{\left[\begin{array}{c}
-2 \\
-16 \\
-19 \\
-21 \\
-9
\end{array}\right],\left[\begin{array}{l}
3 \\
9 \\
7 \\
9 \\
5
\end{array}\right],\left[\begin{array}{c}
3 \\
12 \\
14 \\
15 \\
7
\end{array}\right],\left[\begin{array}{c}
-6 \\
-28 \\
-32 \\
-35 \\
-16
\end{array}\right],\left[\begin{array}{c}
3 \\
28 \\
37 \\
39 \\
16
\end{array}\right]\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI (472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right]\right\}
$$

\square Surjective: No. Definition SLT 479)
The dimension of the range is 4 , and the codomain $\left(\mathbb{C}^{5}\right)$ has dimension 5. So $\mathcal{R}(T) \neq \mathbb{C}^{5}$ and by Theorem RSLT 485 the transformation is not surjective.

To be more precise, verify that $\left[\begin{array}{c}-1 \\ 2 \\ 3 \\ -1 \\ 4\end{array}\right] \notin \mathcal{R}(T)$, by setting the output equal to this vector and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage, $T^{-1}\left(\left[\begin{array}{c}-1 \\ 2 \\ 3 \\ -1 \\ 4\end{array}\right]\right)$, is empty. This alone is sufficient to see that the linear transformation is not onto.
\square Subspace dimensions associated with the linear transformation. Examine parallels with earlier results
for matrices. Verify Theorem RPNDD 503.
Domain dimension: 5 Rank: 4 Nullity: 1
\square Invertible: No.
Neither injective nor surjective. Notice that since the domain and codomain have the same dimension, either the transformation is both onto and one-to-one (making it invertible) or else it is both not onto and not one-to-one (as in this case) by Theorem RPNDD 503.

Matrix representation Theorem MLTCV 448):

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{5}, \quad T(\mathbf{x})=A \mathbf{x}, \quad A=\left[\begin{array}{ccccc}
-2 & 3 & 3 & -6 & 3 \\
-16 & 9 & 12 & -28 & 28 \\
-19 & 7 & 14 & -32 & 37 \\
-21 & 9 & 15 & -35 & 39 \\
-9 & 5 & 7 & -16 & 16
\end{array}\right]
$$

Eigenvalues and eigenvectors Definition EELT 559, Theorem EER 571):

$$
\begin{array}{ll}
\lambda=-1 & \mathcal{E}_{T}(-1)=\left\langle\left\{\left[\begin{array}{l}
0 \\
2 \\
3 \\
3 \\
1
\end{array}\right]\right\}\right. \\
\lambda=0 & \mathcal{E}_{T}(0)=\left\langle\left\{\begin{array}{l}
3 \\
4 \\
1 \\
3 \\
3
\end{array}\right]\right\} \\
\lambda=1 & \mathcal{E}_{T}(1)=\left\langle\left\{\left[\begin{array}{l}
5 \\
3 \\
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2 \\
0 \\
0
\end{array}\right]\right\}\right.
\end{array}
$$

Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

$$
B=\left\{\left[\begin{array}{l}
0 \\
2 \\
3 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1 \\
3 \\
3
\end{array}\right],\left[\begin{array}{l}
5 \\
3 \\
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2 \\
0 \\
0
\end{array}\right]\right\}
$$

$$
M_{B, B}^{T}=\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Archetype R

Summary Linear transformation with equal-sized domain and codomain. Injective, surjective, invertible, diagonalizable, the works.
\square A linear transformation: Definition LT 441)

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{5}, \quad T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
-65 x_{1}+128 x_{2}+10 x_{3}-262 x_{4}+40 x_{5} \\
36 x_{1}-73 x_{2}-x_{3}+151 x_{4}-16 x_{5} \\
-44 x_{1}+88 x_{2}+5 x_{3}-180 x_{4}+24 x_{5} \\
34 x_{1}-68 x_{2}-3 x_{3}+140 x_{4}-18 x_{5} \\
12 x_{1}-24 x_{2}-x_{3}+49 x_{4}-5 x_{5}
\end{array}\right]
$$

\square A basis for the null space of the linear transformation: Definition KLT 468)

Injective: Yes. Definition ILT 465)
Since the kernel is trivial Theorem KILT 471 tells us that the linear transformation is injective.
\square A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT (487):

$$
\left\{\left[\begin{array}{c}
-65 \\
36 \\
-44 \\
34 \\
12
\end{array}\right],\left[\begin{array}{c}
128 \\
-73 \\
88 \\
-68 \\
-24
\end{array}\right],\left[\begin{array}{c}
10 \\
-1 \\
5 \\
-3 \\
-1
\end{array}\right],\left[\begin{array}{c}
-262 \\
151 \\
-180 \\
140 \\
49
\end{array}\right],\left[\begin{array}{c}
40 \\
-16 \\
24 \\
-18 \\
-5
\end{array}\right]\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI (472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

\square Surjective: Yes. Definition SLT 479)
A basis for the range is the standard basis of \mathbb{C}^{5}, so $\mathcal{R}(T)=\mathbb{C}^{5}$ and Theorem RSLT 485 tells us T is surjective. Or, the dimension of the range is 5 , and the codomain $\left(\mathbb{C}^{5}\right)$ has dimension 5 . So the transformation is surjective.
\square Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503.

Domain dimension: 5 Rank: 5 Nullity: 0
\square Invertible: Yes.
Both injective and surjective Theorem ILTIS 498). Notice that since the domain and codomain have the same dimesion, either the transformation is both injective and surjective (making it invertible, as in this case) or else it is both not injective and not surjective.
\square Matrix representation Theorem MLTCV 448):

$$
T: \mathbb{C}^{5} \mapsto \mathbb{C}^{5}, \quad T(\mathbf{x})=A \mathbf{x}, \quad A=\left[\begin{array}{ccccc}
-65 & 128 & 10 & -262 & 40 \\
36 & -73 & -1 & 151 & -16 \\
-44 & 88 & 5 & -180 & 24 \\
34 & -68 & -3 & 140 & -18 \\
12 & -24 & -1 & 49 & -5
\end{array}\right]
$$

\square The inverse linear transformation Definition IVLT 495):

$$
T^{-1}: \mathbb{C}^{5} \rightarrow \mathbb{C}^{5}, \quad T^{-1}\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]\right)=\left[\begin{array}{c}
-47 x_{1}+92 x_{2}+x_{3}-181 x_{4}-14 x_{5} \\
27 x_{1}-55 x_{2}+\frac{7}{2} x_{3}+\frac{221}{4} x_{4}+11 x_{5} \\
-32 x_{1}+64 x_{2}-x_{3}-126 x_{4}-12 x_{5} \\
25 x_{1}-50 x_{2}+\frac{3}{2} x_{3}+\frac{199}{2} x_{4}+9 x_{5} \\
9 x_{1}-18 x_{2}+\frac{1}{2} x_{3}+\frac{71}{2} x_{4}+4 x_{5}
\end{array}\right]
$$

Verify that $T\left(T^{-1}(\mathbf{x})\right)=\mathbf{x}$ and $T\left(T^{-1}(\mathbf{x})\right)=\mathbf{x}$, and notice that the representations of the transformation and its inverse are matrix inverses (Theorem IMR 542, Definition MI 208).

Eigenvalues and eigenvectors Definition EELT 559, Theorem EER 571):

$$
\lambda=-1 \quad \mathcal{E}_{T}(-1)=\left\langle\left\{\left[\begin{array}{c}
-57 \\
0 \\
-18 \\
14 \\
5
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]\right\}\right\rangle
$$

$$
\begin{array}{ll}
\lambda=1 & \mathcal{E}_{T}(1)=\left\langle\left\{\left[\begin{array}{c}
-10 \\
-5 \\
-6 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
1 \\
1 \\
0
\end{array}\right]\right\}\right\rangle \\
\lambda=2 & \mathcal{E}_{T}(2)=\left\langle\left\{\left[\begin{array}{c}
-6 \\
3 \\
-4 \\
3 \\
1
\end{array}\right]\right\}\right\rangle
\end{array}
$$

Evaluate the linear transformation with each of these eigenvectors as an interesting check.
\square A diagonal matrix representation relative to a basis of eigenvectors, B.

$$
\begin{aligned}
B=\left\{\left[\begin{array}{c}
-57 \\
0 \\
-18 \\
14 \\
5
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-10 \\
-5 \\
-6 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-6 \\
3 \\
-4 \\
3 \\
1
\end{array}\right]\right\} \\
M_{B, B}^{T}=\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

Archetype S

Summary Domain is column vectors, codomain is matrices. Domain is dimension 3 and codomain is dimension 4. Not injective, not surjective.
\square A linear transformation: Definition LT 441)

$$
T: \mathbb{C}^{3} \mapsto M_{22}, \quad T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{cc}
a-b & 2 a+2 b+c \\
3 a+b+c & -2 a-6 b-2 c
\end{array}\right]
$$

\square A basis for the null space of the linear transformation: Definition KLT 468)

$$
\left\{\left[\begin{array}{c}
-1 \\
-1 \\
4
\end{array}\right]\right\}
$$

\square Injective: No. Definition ILT 465)
Since the kernel is nontrivial Theorem KILT 471 tells us that the linear transformation is not injective. Also, since the rank can not exceed 3, we are guaranteed to have a nullity of at least 1 , just from checking dimensions of the domain and the codomain. In particular, verify that

$$
T\left(\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 9 \\
10 & -16
\end{array}\right] \quad T\left(\left[\begin{array}{c}
0 \\
-1 \\
11
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 9 \\
10 & -16
\end{array}\right]
$$

This demonstration that T is not injective is constructed with the observation that

$$
\left[\begin{array}{c}
0 \\
-1 \\
11
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{c}
-2 \\
-2 \\
8
\end{array}\right]
$$

and

$$
\mathbf{z}=\left[\begin{array}{c}
-2 \\
-2 \\
8
\end{array}\right] \in \mathcal{K}(T)
$$

so the vector \mathbf{z} effectively "does nothing" in the evaluation of T.
\square A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT
487):

$$
\left\{\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right],\left[\begin{array}{cc}
-1 & 2 \\
1 & -6
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right]\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI (472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right]\right\}
$$

Surjective: No. Definition SLT 479)
The dimension of the range is 2 , and the codomain $\left(M_{22}\right)$ has dimension 4 . So the transformation is not surjective. Notice too that since the domain \mathbb{C}^{3} has dimension 3 , it is impossible for the range to have a dimension greater than 3, and no matter what the actual definition of the function, it cannot possibly be surjective in this situation.

To be more precise, verify that $\left[\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right] \notin \mathcal{R}(T)$, by setting the output of T equal to this matrix and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage, $T^{-1}\left(\left[\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right]\right)$, is empty. This alone is sufficient to see that the linear transformation is not onto.
\square Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503.

$$
\text { Domain dimension: } 3 \quad \text { Rank: } 2 \quad \text { Nullity: } 1
$$

Invertible: No.
Not injective Theorem ILTIS 498), and the relative dimensions of the domain and codomain prohibit any possibility of being surjective.

Matrix representation Definition MR 527):

$$
\begin{aligned}
B & =\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \\
C & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
M_{B, C}^{T} & =\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 2 & 1 \\
3 & 1 & 1 \\
-2 & -6 & -2
\end{array}\right]
\end{aligned}
$$

Archetype T

Summary Domain and codomain are polynomials. Domain has dimension 5, while codomain has dimension 6. Is injective, can't be surjective.
\square
A linear transformation: Definition LT 441)

$$
T: P_{4} \mapsto P_{5}, \quad T(p(x))=(x-2) p(x)
$$

\square A basis for the null space of the linear transformation: Definition KLT 468)

Injective: Yes. Definition ILT 465)
Since the kernel is trivial Theorem KILT 471 tells us that the linear transformation is injective.
\square A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT (487):

$$
\left\{x-2, x^{2}-2 x, x^{3}-2 x^{2}, x^{4}-2 x^{3}, x^{5}-2 x^{4}, x^{6}-2 x^{5}\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI (472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{-\frac{1}{32} x^{5}+1,-\frac{1}{16} x^{5}+x,-\frac{1}{8} x^{5}+x^{2},-\frac{1}{4} x^{5}+x^{3},-\frac{1}{2} x^{5}+x^{4}\right\}
$$

Surjective: No. Definition SLT 479)
The dimension of the range is 5 , and the codomain $\left(P_{5}\right)$ has dimension 6 . So the transformation is not surjective. Notice too that since the domain P_{4} has dimension 5, it is impossible for the range to have a dimension greater than 5 , and no matter what the actual definition of the function, it cannot possibly be surjective in this situation.

To be more precise, verify that $1+x+x^{2}+x^{3}+x^{4} \notin \mathcal{R}(T)$, by setting the output equal to this vector and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage,
$T^{-1}\left(1+x+x^{2}+x^{3}+x^{4}\right)$, is nonempty. This alone is sufficient to see that the linear transformation is not onto.
\square Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503.

Domain dimension: 5 Rank: 5 Nullity: 0

Invertible: No.
The relative dimensions of the domain and codomain prohibit any possibility of being surjective, so apply Theorem ILTIS 498.

Matrix representation Definition MR 527):

$$
\begin{aligned}
B & =\left\{1, x, x^{2}, x^{3}, x^{4}\right\} \\
C & =\left\{1, x, x^{2}, x^{3}, x^{4}, x^{5}\right\} \\
M_{B, C}^{T} & =\left[\begin{array}{ccccc}
-2 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Archetype U

Summary Domain is matrices, codomain is column vectors. Domain has dimension 6, while codomain has dimension 4. Can't be injective, is surjective.
\square A linear transformation: Definition LT 441)

$$
T: M_{23} \mapsto \mathbb{C}^{4}, \quad T\left(\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]\right)=\left[\begin{array}{c}
a+2 b+12 c-3 d+e+6 f \\
2 a-b-c+d-11 f \\
a+b+7 c+2 d+e-3 f \\
a+2 b+12 c+5 e-5 f
\end{array}\right]
$$

A basis for the null space of the linear transformation: Definition KLT 468)

$$
\left\{\left[\begin{array}{ccc}
3 & -4 & 0 \\
1 & 2 & 1
\end{array}\right],\left[\begin{array}{ccc}
-2 & -5 & 1 \\
0 & 0 & 0
\end{array}\right]\right\}
$$

Injective: No. Definition ILT 465)
Since the kernel is nontrivial Theorem KILT 471 tells us that the linear transformation is not injective. Also, since the rank can not exceed 4, we are guaranteed to have a nullity of at least 2, just from checking dimensions of the domain and the codomain. In particular, verify that

$$
T\left(\left[\begin{array}{ccc}
1 & 10 & -2 \\
3 & -1 & 1
\end{array}\right]\right)=\left[\begin{array}{c}
-7 \\
-14 \\
-1 \\
-13
\end{array}\right] \quad T\left(\left[\begin{array}{ccc}
5 & -3 & -1 \\
5 & 3 & 3
\end{array}\right]\right)=\left[\begin{array}{c}
-7 \\
-14 \\
-1 \\
-13
\end{array}\right]
$$

This demonstration that T is not injective is constructed with the observation that

$$
\left[\begin{array}{ccc}
5 & -3 & -1 \\
5 & 3 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 10 & -2 \\
3 & -1 & 1
\end{array}\right]+\left[\begin{array}{ccc}
4 & -13 & 1 \\
2 & 4 & 2
\end{array}\right]
$$

and

$$
\mathbf{z}=\left[\begin{array}{ccc}
4 & -13 & 1 \\
2 & 4 & 2
\end{array}\right] \in \mathcal{K}(T)
$$

so the vector \mathbf{z} effectively "does nothing" in the evaluation of T.
\square A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT 487):

$$
\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
12 \\
-1 \\
7 \\
12
\end{array}\right],\left[\begin{array}{c}
-3 \\
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
5
\end{array}\right],\left[\begin{array}{c}
6 \\
-11 \\
-3 \\
-5
\end{array}\right]
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI (472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Surjective: Yes. Definition SLT 479)
A basis for the range is the standard basis of \mathbb{C}^{4}, so $\mathcal{R}(T)=\mathbb{C}^{4}$ and Theorem RSLT 485 tells us T is surjective. Or, the dimension of the range is 4 , and the codomain $\left(\mathbb{C}^{4}\right)$ has dimension 4 . So the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503.

Domain dimension: 6 Rank: 4 Nullity: 2

Invertible: No.
The relative sizes of the domain and codomain mean the linear transformation cannot be injective. Theorem ILTIS 498)
\square Matrix representation Definition MR 527):

$$
\begin{aligned}
B & =\left\{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} \\
C & =\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\} \\
M_{B, C}^{T} & =\left[\begin{array}{cccccc}
1 & 2 & 12 & -3 & 1 & 6 \\
2 & -1 & -1 & 1 & 0 & -11 \\
1 & 1 & 7 & 2 & 1 & -3 \\
1 & 2 & 12 & 0 & 5 & -5
\end{array}\right]
\end{aligned}
$$

Archetype V

Summary Domain is polynomials, codomain is matrices. Domain and codomain both have dimension 4. Injective, surjective, invertible. Square matrix representation, but domain and codomain are unequal, so no eigenvalue information.
\square A linear transformation: Definition LT 441)

$$
T: P_{3} \mapsto M_{22}, \quad T\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{cc}
a+b & a-2 c \\
d & b-d
\end{array}\right]
$$

\square A basis for the null space of the linear transformation: Definition KLT 468)

\{ \}

Injective: Yes. Definition ILT 465)
Since the kernel is trivial Theorem KILT 471 tells us that the linear transformation is injective.

A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT 487):

$$
\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI (472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

\square Surjective: Yes. Definition SLT 479)
A basis for the range is the standard basis of M_{22}, so $\mathcal{R}(T)=M_{22}$ and Theorem RSLT 485 tells us
T is surjective. Or, the dimension of the range is 4 , and the codomain $\left(M_{22}\right)$ has dimension 4 . So the transformation is surjective.
\square Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503 .

Domain dimension: 4 Rank: 4 Nullity: 0

Invertible: Yes.
Both injective and surjective Theorem ILTIS 498). Notice that since the domain and codomain have the same dimesion, either the transformation is both injective and surjective (making it invertible, as in this case) or else it is both not injective and not surjective.
\square Matrix representation Definition MR 527):

$$
\begin{aligned}
B & =\left\{1, x, x^{2}, x^{3}\right\} \\
C & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
M_{B, C}^{T} & =\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right]
\end{aligned}
$$

\square Since invertible, the inverse linear transformation. Definition IVLT 495)

$$
T^{-1}: M_{22} \mapsto P_{3}, \quad T^{-1}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a-c-d)+(c+d) x+\frac{1}{2}(a-b-c-d) x^{2}+c x^{3}
$$

Archetype W

Summary Domain is polynomials, codomain is polynomials. Domain and codomain both have dimension 3. Injective, surjective, invertible, 3 distinct eigenvalues, diagonalizable.
\square A linear transformation: Definition LT 441)

$$
T: P_{2} \mapsto P_{2}, \quad T\left(a+b x+c x^{2}\right)=(19 a+6 b-4 c)+(-24 a-7 b+4 c)+(36 a+12 b-9 c)
$$

\square A basis for the null space of the linear transformation: Definition KLT 468)

Injective: Yes. Definition ILT 465)
Since the kernel is trivial Theorem KILT 471 tells us that the linear transformation is injective.
\square A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT 487):

$$
\left\{19-24 x+36 x^{2}, 6-7 x+12 x^{2},-4+4 x-9 x^{2}\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI 472). This spanning set may be converted to a "nice" basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{1, x, x^{2}\right\}
$$

\square Surjective: Yes. Definition SLT 479)
A basis for the range is the standard basis of \mathbb{C}^{5}, so $\mathcal{R}(T)=\mathbb{C}^{5}$ and Theorem RSLT 485 tells us T is surjective. Or, the dimension of the range is 5 , and the codomain $\left(\mathbb{C}^{5}\right)$ has dimension 5 . So the transformation is surjective.

Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503.

Invertible: Yes.
Both injective and surjective Theorem ILTIS 498). Notice that since the domain and codomain have the same dimesion, either the transformation is both injective and surjective (making it invertible, as in this case) or else it is both not injective and not surjective.
\square Matrix representation Definition MR 527):

$$
\begin{aligned}
B & =\left\{1, x, x^{2}\right\} \\
C & =\left\{1, x, x^{2}\right\} \\
M_{B, C}^{T} & =\left[\begin{array}{ccc}
19 & 6 & -4 \\
-24 & -7 & 4 \\
36 & 12 & -9
\end{array}\right]
\end{aligned}
$$

\square Since invertible, the inverse linear transformation. Definition IVLT 495)

$$
T^{-1}: P_{2} \mapsto P_{2}, \quad T^{-1}\left(a+b x+c x^{2}\right)=\left(-5 a-2 b+\frac{4}{3} c\right)+\left(24 a+9 b-\frac{20}{3} c\right) x+\left(12 a+4 b-\frac{11}{3} c\right) x^{2}
$$

\square Eigenvalues and eigenvectors Definition EELT 559, Theorem EER 571):

$$
\begin{aligned}
& \lambda=-1 \\
& \lambda=1 \\
& \lambda=3
\end{aligned}
$$

$$
\mathcal{E}_{T}(-1)=\left\langle\left\{2 x+3 x^{2}\right\}\right\rangle
$$

$$
\mathcal{E}_{T}(1)=\langle\{-1+3 x\}\rangle
$$

$$
\mathcal{E}_{T}(3)=\left\langle\left\{1-2 x+x^{2}\right\}\right\rangle
$$

Evaluate the linear transformation with each of these eigenvectors as an interesting check.
\square A diagonal matrix representation relative to a basis of eigenvectors, B.

$$
\begin{aligned}
B & =\left\{2 x+3 x^{2},-1+3 x, 1-2 x+x^{2}\right\} \\
M_{B, B}^{T} & =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

Archetype X

Summary Domain and codomain are square matrices. Domain and codomain both have dimension 4. Not injective, not surjective, not invertible, 3 distinct eigenvalues, diagonalizable.
\square A linear transformation: Definition LT 441)

$$
T: M_{22} \mapsto M_{22}, \quad T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
-2 a+15 b+3 c+27 d & 10 b+6 c+18 d \\
a-5 b-9 d & -a-4 b-5 c-8 d
\end{array}\right]
$$

\square A basis for the null space of the linear transformation: Definition KLT 468)

$$
\left\{\left[\begin{array}{cc}
-6 & -3 \\
2 & 1
\end{array}\right]\right\}
$$

\square Injective: No. Definition ILT 465)
Since the kernel is nontrivial Theorem KILT 471 tells us that the linear transformation is not injective. In particular, verify that

$$
T\left(\left[\begin{array}{cc}
-2 & 0 \\
1 & -4
\end{array}\right]\right)=\left[\begin{array}{cc}
115 & 78 \\
-38 & -35
\end{array}\right] \quad T\left(\left[\begin{array}{cc}
4 & 3 \\
-1 & 3
\end{array}\right]\right)=\left[\begin{array}{cc}
\left.\begin{array}{cc}
115 & 78 \\
-38 & -35
\end{array}\right]
\end{array}\right.
$$

This demonstration that T is not injective is constructed with the observation that

$$
\left[\begin{array}{cc}
4 & 3 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{cc}
-2 & 0 \\
1 & -4
\end{array}\right]+\left[\begin{array}{cc}
6 & 3 \\
-2 & -1
\end{array}\right]
$$

and

$$
\mathbf{z}=\left[\begin{array}{cc}
6 & 3 \\
-2 & -1
\end{array}\right] \in \mathcal{K}(T)
$$

so the vector \mathbf{z} effectively "does nothing" in the evaluation of T.

A basis for the range of the linear transformation: Definition RLT 483)
Evaluate the linear transformation on a standard basis to get a spanning set for the range Theorem SSRLT 487):

$$
\left\{\left[\begin{array}{cc}
-2 & 0 \\
1 & -1
\end{array}\right],\left[\begin{array}{cc}
15 & 10 \\
-5 & -4
\end{array}\right],\left[\begin{array}{cc}
3 & 6 \\
0 & -5
\end{array}\right],\left[\begin{array}{cc}
27 & 18 \\
-9 & -8
\end{array}\right]\right\}
$$

If the linear transformation is injective, then the set above is guaranteed to be linearly independent Theorem ILTLI 472). This spanning set may be converted to a "nice" basis, by making the vectors the rows
of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS 240), and perhaps un-coordinatizing. A basis for the range is:

$$
\left\{\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{2} & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
\frac{1}{4} & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Surjective: No. Definition SLT 479)
The dimension of the range is 3 , and the codomain $\left(M_{22}\right)$ has dimension 5. So $\mathcal{R}(T) \neq M_{22}$ and by Theorem RSLT 485 the transformation is not surjective.

To be more precise, verify that $\left[\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right] \notin \mathcal{R}(T)$, by setting the output of T equal to this matrix and seeing that the resulting system of linear equations has no solution, i.e. is inconsistent. So the preimage, $T^{-1}\left(\left[\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right]\right)$, is empty. This alone is sufficient to see that the linear transformation is not onto.
\square Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD 503.

$$
\text { Domain dimension: } 4 \quad \text { Rank: } 3 \quad \text { Nullity: } 1
$$

\square Invertible: No.
Neither injective nor surjective Theorem ILTIS (498). Notice that since the domain and codomain have the same dimesion, either the transformation is both injective and surjective or else it is both not injective and not surjective (making it not invertible, as in this case).
\square Matrix representation Definition MR 527):

$$
\begin{aligned}
B & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
C & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
M_{B, C}^{T} & =\left[\begin{array}{cccc}
-2 & 15 & 3 & 27 \\
0 & 10 & 6 & 18 \\
1 & -5 & 0 & -9 \\
-1 & -4 & -5 & -8
\end{array}\right]
\end{aligned}
$$

\square Eigenvalues and eigenvectors Definition EELT 559, Theorem EER 571):

$$
\lambda=0 \quad \mathcal{E}_{T}(0)=\left\langle\left\{\left[\begin{array}{cc}
-6 & -3 \\
2 & 1
\end{array}\right]\right\}\right\rangle
$$

$$
\begin{array}{ll}
\lambda=1 & \mathcal{E}_{T}(1)=\left\langle\left\{\left[\begin{array}{cc}
-7 & -2 \\
3 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & -2 \\
0 & 1
\end{array}\right]\right\}\right\rangle \\
\lambda=3 & \mathcal{E}_{T}(3)=\left\langle\left\{\left[\begin{array}{cc}
-3 & -2 \\
1 & 1
\end{array}\right]\right\}\right\rangle
\end{array}
$$

Evaluate the linear transformation with each of these eigenvectors as an interesting check.

A diagonal matrix representation relative to a basis of eigenvectors, B.

$$
\begin{aligned}
B & =\left\{\left[\begin{array}{cc}
-6 & -3 \\
2 & 1
\end{array}\right],\left[\begin{array}{cc}
-7 & -2 \\
3 & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & -2 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-3 & -2 \\
1 & 1
\end{array}\right]\right\} \\
M_{B, B}^{T} & =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

Appendix GFDL GNU Free Documentation License

Version 1.2, November 2002
Copyright © $2000,2001,2002$ Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or BackCover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3 .

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name
of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

Part T Topics

Section F

Fields

Draft: This Section Complete, But Subject To Change

We have chosen to present introductory linear algebra in the Core (Part C 3) using scalars from the set of complex numbers, \mathbb{C}. We could have instead chosen to use scalars from the set of real numbers, \mathbb{R}. This would have presented certain difficulties when we encountered characteristic polynomials with complex roots (Definition CP 396) or when we needed to be sure every matrix had at least one eigenvalue (Theorem EMHE [393]). However, much of the basics would be unchanged. The definition of a vector space would not change, nor would the ideas of linear independence, spanning, or bases. Linear transformations would still behave the same and we would still obtain matrix representations, though our ideas about canonical forms would have to be adjusted slightly.

The real numbers and the complex numbers are both examples of what are called fields, and we can "do" linear algebra in just a bit more generality by letting our scalars take values from some unspecified field. So in this section we will describe exactly what constitutes a field, give some finite examples, and discuss another connection between fields and vector spaces. Vector spaces over finite fields are very important in certain applications, so this is partially background for other topics. As such, we will not prove every claim we make.

Subsection F
 Fields

TH

Like a vector space, a field is a set along with two binary operations. The distinction is that both operations accept two elements of the set, and then produce a new element of the set. In a vector space we have two sets - the vectors and the scalars, and scalar multiplication mixes one of each to produce a vector. Here is the careful definition of a field.

Definition F

Field
Suppose that F is a set upon which we have defined two operations: (1) addition, which combines two elements of F and is denoted by " + ", and (2) multiplication, which combines two elements of F and is denoted by juxtaposition. Then F, along with the two operations, is a field if the following properties hold.

- ACF Additive Closure, Field

If $\alpha, \beta \in F$, then $\alpha+\beta \in F$.

- MCF Multiplicative Closure, Field

If $\alpha, \beta \in F$, then $\alpha \beta \in F$.

- ACF Additive Commutativity, Field

If $\alpha, \beta \in F$, then $\alpha+\beta=\beta+\alpha$.

- MCF Multiplicative Commutativity, Field

If $\alpha, \beta \in F$, then $\alpha \beta=\beta \alpha$.

- AAF Additive Associativity, Field

If $\alpha, \beta, \gamma \in V$, then $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$.

- MAF Multiplicative Associativity, Field

If $\alpha, \beta, \gamma \in V$, then $\alpha(\beta \gamma)=(\alpha \beta) \gamma$.

- DF Distributivity, Field

If $\alpha, \beta, \gamma \in F$, then $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$.

- ZF Zero, Field

There is an element, $0 \in F$, called zero, such that $\alpha+0=\alpha$ for all $\alpha \in F$.

- OF One, Field

There is an element, $1 \in F$, called one, such that $\alpha(1)=\alpha$ for all $\alpha \in F$.

- AIF Additive Inverse, Field

If $\alpha \in F$, then there exists $-\alpha \in V$ so that $\alpha+(-\alpha)=0$.

- MIF Multiplicative Inverse, Field

If $\alpha \in F, \alpha \neq 0$, then there exists $\frac{1}{\alpha} \in V$ so that $\alpha\left(\frac{1}{\alpha}\right)=1$.

Mostly this definition says that all the good things you might expect, really do happen in a field. The one technicality is that the special element, 0 , the additive identity element, does not have a multiplicative inverse. In other words, no dividing by zero.

This definition should remind you of Theorem PCNA 666, and indeed, Theorem PCNA 666 provides the justification for the statement that the complex numbers form a field. Another example of field is the set of rational numbers

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \text { are integers, } q \neq 0\right\}
$$

Of course, the real numbers, \mathbb{R}, also form a field. It is this field that you probably studied for many years. You began studying the integers ("counting"), then the rationals ("fractions"), then the reals ("algebra"), along with some excursions in the complex numbers ("imaginary numbers"). So you should have seen three fields already in your previous studies.

Our first observation about fields is that we can go back to our definition of a vector space Definition VS (275) and replace every occurence of \mathbb{C} by some general, unspecified field, F, and all our subsequent definitions and theorems are still true, so long as we avoid roots of polynomials (or equivalently, factoring polynomials). So if you consult more advanced texts on linear algebra, you will see this sort of approach. You might study some of the first theorems we proved about vector spaces in Subsection VS.VSP 281 and work through their proofs in the more general setting of an arbitrary field. This exercise should convince you that very little changes when we move from \mathbb{C} to an arbitrary field F. (See Exercise F.T10 788.)

Subsection FF

Finite Fields

It may sound odd at first, but there exist finite fields, and even finite vector spaces. We will find certain of these important in subsequent applications, so we collect some ideas and properties here.

Definition IMP

Integers Modulo a Prime

Suppose that p is a prime number. Let $\mathbb{Z}_{p}=\{0,1,2, \ldots, p-1\}$. Add and multiply elements of \mathbb{Z}_{p} as integers, but whenever a result lies outside of the set \mathbb{Z}_{p}, find its remainder after division by p and replace the result by this remainder.

We have defined a set, and two binary operations. The result is a field.

Theorem FIMP

Field of Integers Modulo a Prime

The set of integers modulo a prime p, \mathbb{Z}_{p}, is a field.

Example IM11

Integers mod 11

\mathbb{Z}_{11} is a field by Theorem FIMP 783. Here we provide some sample calculations.

$$
\begin{aligned}
8+5 & =2 & -8 & =3 \\
5(7) & =2 & \frac{1}{7} & =8 \\
2^{5} & =10 & -1 & =10
\end{aligned} \begin{aligned}
5-9 & =7 \\
\frac{6}{5} & =10 \\
& \frac{1}{0}
\end{aligned}=?
$$

We can now "do" linear algebra using scalars from a finite field.

Example VSIM5

Vector space over integers mod 5

Let $\left(\mathbb{Z}_{5}\right)^{3}$ be the set of all column vectors of length 3 with entries from \mathbb{Z}_{5}. Use \mathbb{Z}_{5} as the set of scalars. Define addition and multiplication the usual way. We exhibit a few sample calculations.

$$
\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]+\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right] \quad 3\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

We can, of course, build linear combinations, such as

$$
2\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]-4\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right]
$$

which almost looks like a relation of linear dependence. The set

$$
\left\{\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]\right\}
$$

is linearly independent, while the set

$$
\left\{\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
3 \\
2
\end{array}\right]\right\}
$$

is linearly dependent, as can be seen from the relation of linear dependence formed by the scalars $a_{1}=2$, $a_{2}=1$ and $a_{3}=4$. To find these scalars, one would take the same approach as Example LDS 131, but in performing row operations to solve a homogeneous system, you would need to take care that all scalar (field) operations are performed over \mathbb{Z}_{5}, especially when multiplying a row by a scalar to make a leading entry equal to 1 . One more observation about this example - the set

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

is a basis for $\left(\mathbb{Z}_{5}\right)^{3}$, since it is both linearly independent and spans $\left(\mathbb{Z}_{5}\right)^{3}$.
In applications to computer science or electrical engineering, \mathbb{Z}_{2} is the most important field, since it can be used to describe the binary nature of logic, circuitry, communications and their intertwined relationships. The vector space of column vectors with entries from $\mathbb{Z}_{2},\left(\mathbb{Z}_{2}\right)^{n}$, with scalars taken from \mathbb{Z}_{2} is the natural extension of this idea. Notice that \mathbb{Z}_{2} has the minimum number of elements to be a field, since any field must contain a zero and a one Property ZF 782, Property OF 782).

Example SM2Z7

Symmetric matrices of size 2 over \mathbb{Z}_{7}
We can employ the field of integers modulo a prime to build other examples of vector spaces with novel fields of scalars. Define

$$
S_{22}\left(\mathbb{Z}_{7}\right)=\left\{\left.\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Z}_{7}\right\}
$$

which is the set of all 2×2 symmetric matrices with entries from \mathbb{Z}_{7}. Use the field \mathbb{Z}_{7} as the set of scalars, and define vector addition and scalar multiplication in the natural way. The result will be a vector space.

Notice that the field of scalars is finite, as is the vector space, since there are $7^{3}=343$ matrices in $S_{22}\left(\mathbb{Z}_{7}\right)$. The set

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a basis, so $\operatorname{dim}\left(S_{22}\left(\mathbb{Z}_{7}\right)\right)=3$.
In a more advanced algebra course it is possible to prove that the number of elements in a finite field must be of the form p^{n}, where p is a prime. We can't go so far afield as to prove this here, but we can demonstrate an example.

Example FF8

Finite field of size 8

Define the set F as $F=\left\{a+b t+c t^{2} \mid a, b, c \in \mathbb{Z}_{2}\right\}$. Add and multiply these quantities as polynomials in the variable t, but replace any occurence of t^{3} by $t+1$.

This defines a set, and the two operations on elements of that set. Do not be concerned with what t "is," because it isn't. t is just a handy device that makes the example a field. We'll say a bit more about t when we finish. But first, some examples. Remember that $1+1=0$ in \mathbb{Z}_{2}. Addition is quite simple, for example,

$$
\left(1+t+t^{2}\right)+\left(1+t^{2}\right)=(1+1)+(1+0) t+(1+1) t^{2}=t
$$

Multiplication gets more involved, for example,

$$
\begin{aligned}
\left(1+t+t^{2}\right)\left(1+t^{2}\right) & =1+t^{2}+t+t^{3}+t^{2}+t^{4} \\
& =1+t+(1+1) t^{2}+t^{3}(1+t) \\
& =1+t+(1+t)(1+t) \\
& =1+t+1+t+t+t^{2} \\
& =(1+1)+(1+1+1) t+t^{2} \\
& =t+t^{2}
\end{aligned}
$$

Every element has a multiplicative inverse Property MIF 782). What is the inverse of $t+t^{2}$? Check that

$$
\left(t+t^{2}\right)(1+t)=t+t^{2}+t^{2}+t^{3}
$$

$$
\begin{aligned}
& =t+(1+1) t^{2}+(1+t) \\
& =t+1+t \\
& =1+(1+1) t \\
& =1
\end{aligned}
$$

So we can write $\frac{1}{t+t^{2}}=1+t$. So that you may experiment, we give you the complete addition and multiplication tables for this field. Addition is simple, while multiplication is more interesting, so verify a few entries of each table. Because of the commutativity of addition and multiplication (Property ACF 781, Property MCF 781), we have just listed half of each table.

$+$	0	1	t	t^{2}	$t+1$	$t^{2}+t$	$t^{2}+t+1$	$t^{2}+1$
0	0	1	t	t^{2}	$t+1$	$t^{2}+t$	$t^{2}+t+1$	$t^{2}+1$
1			$t+1$	$t^{2}+1$	t	$t^{2}+t+1$	$t^{2}+t$	t^{2}
t			0	$t^{2}+t$	1	t^{2}	$t^{2}+1$	$t^{2}+t+1$
t^{2}				0	$t^{2}+t+1$	t	$t+1$	1
$t+1$					0	$t^{2}+1$	t^{2}	$t^{2}+t$
$t^{2}+t$						0	1	$t+1$
$t^{2}+t+1$							0	t
$t^{2}+1$								0
.	0	1	t	t^{2}	$t+1$	$t^{2}+t$	$t^{2}+t+1$	$t^{2}+1$
0	0	0	0	0	0	0	0	0
1		1	t	t^{2}	$t+1$	$t^{2}+t$	$t^{2}+t+1$	$t^{2}+1$
t			t^{2}	$t+1$	$t^{2}+t$	$t^{2}+t+1$	$t^{2}+1$	1
t^{2}				$t^{2}+t$	$t^{2}+t+1$	$t^{2}+1$	1	t
$t+1$					$t^{2}+1$	1	t	t^{2}
$t^{2}+t$						t	t^{2}	$t+1$
$t^{2}+t+1$							$1+t$	$t^{2}+t$
$t^{2}+1$								$t^{2}+t+1$

Note that every element of F is a linear combination (with scalars from \mathbb{Z}_{2}) of the polynomials $1, t, t^{2}$. So $B=\left\{1, t, t^{2}\right\}$ is a spanning set for F. Further, B is linearly independent since there is no nontrivial relation of linear dependence, and B is a basis. So $\operatorname{dim}(F)=3$. Of course, this paragraph presumes that F is also a vector space over \mathbb{Z}_{2} (which it is).

The defining relation for $t\left(t^{3}=t+1\right)$ in Example FF8 784 arises from the polynomial $t^{3}+t+1$, which has no factorization with coefficients from \mathbb{Z}_{2}. This is an example of an irreducible polynomial, which involves considerable theory to fully understand. In the exercises, we provide you with a few more irreducible polynomials to experiment with. See the suggested readings if you would like to learn more.

Trivially, every field (finite or otherwise) is a vector space. Suppose we begin with a field F. From this we know F has two binary operations defined on it. We need to somehow create a vector space from F, in a general way. First we need a set of vectors. That'll be F. We also need a set of scalars. That'll be F as well. How do we define the addition of two vectors? By the same rule that we use to add them when they are in the field. How do we define scalar multiplication? Since a scalar is an element of F, and a vector is an element of F, we can define scalar multiplication to be the same rule that we use to multiply the two elements as members of the field. With these definitions, F will be a vector space Exercise F.T20 [788). This is something of a trivial situation, since the set of vectors and the set of scalars are identical. In particular, do not confuse this with Example FF8 784 where the set of vectors has eight elements, and the set of scalars has just two elements.

Further Reading

Robert J. McEliece, Finite Fields for Scientists and Engineers. Kluwer Academic Publishers, 1987.

Rudolpf Lidl, Harald Niederreiter, Introduction to Finite Fields and Their Applications, Revised Edition. Cambridge University Press, 1994.

Subsection EXC
 Exercises

C60 Consider the vector space $\left(\mathbb{Z}_{5}\right)^{4}$ composed of column vectors of size 4 with entries from \mathbb{Z}_{5}. The $\operatorname{matrix} A$ is a square matrix composed of four such column vectors.

$$
A=\left[\begin{array}{llll}
3 & 3 & 0 & 3 \\
1 & 2 & 3 & 0 \\
1 & 1 & 0 & 2 \\
4 & 2 & 2 & 1
\end{array}\right]
$$

Find the inverse of A. Use this to find a solution to $\mathcal{L S}(A, \mathbf{b})$ when

$$
\mathbf{b}=\left[\begin{array}{l}
3 \\
3 \\
2 \\
0
\end{array}\right]
$$

Contributed by Robert Beezer Solution 789
M10 Suppose we relax the restriction in Definition IMP 782 to allow p to not be a prime. Will the construction given still be a field? Is \mathbb{Z}_{6} a field? Can you generalize?
Contributed by Robert Beezer
M40 Construct a finite field with 9 elements using the set

$$
F=\left\{a+b t \mid a, b \in \mathbb{Z}_{3}\right\}
$$

where t^{2} is consistently replaced by $2 t+1$ in any intermediate results obtained with polynomial multiplication. Compute the first nine powers of $t\left(t^{0}\right.$ through $\left.t^{8}\right)$. Use this information to aid you in the construction of the multiplication table for this field. What is the multiplicative inverse of $2 t$?
Contributed by Robert Beezer
M45 Construct a finite field with 25 elements using the set

$$
F=\left\{a+b t \mid a, b \in \mathbb{Z}_{5}\right\}
$$

where t^{2} is consistently replaced by $t+3$ in any intermediate results obtained with polynomial multiplication. Compute the first 25 powers of $t\left(t^{0}\right.$ through $\left.t^{24}\right)$. Use this information to aid you in computing in this field. What is the multiplicative inverse of $2 t$? What is the multiplicative inverse of 4 ? What is the multiplicative inverse of $1+4 t$?

Find a basis for F as a vector space with \mathbb{Z}_{5} used as the set of scalars.
Contributed by Robert Beezer
M50 Construct a finite field with 16 elements using the set

$$
F=\left\{a+b t+c t^{2}+d t^{3} \mid a, b, c, d \in \mathbb{Z}_{2}\right\}
$$

where t^{4} is consistently replaced by $t+1$ in any intermediate results obtained with polynomial multiplication. Compute the first 16 powers of $t\left(t^{0}\right.$ through $\left.t^{15}\right)$. Consider the set $G=\left\{0,1, t^{5}, t^{10}\right\}$. Then G will also be a finite field, a subfield of F. Construct the addition and multiplication tables for G. Notice that since both G and F are vector spaces over \mathbb{Z}_{2}, and $G \subseteq F$, by Definition S 289, G is a subspace of F. Contributed by Robert Beezer

T10 Give a new proof of Theorem ZVSM 282 for a vector space whose scalars come from an arbitrary field F.
Contributed by Robert Beezer
T20 By applying Definition VS 275, prove that every field is also a vector space. (See the construction at the end of this section.)
Contributed by Robert Beezer

Subsection SOL
 Solutions

C60 Contributed by Robert Beezer Statement 787
Remember that every computation must be done with arithmetic in the field, reducing any intermediate number outside of $\{0,1,2,3,4\}$ to its remainder after division by 5 .

The matrix inverse can be found with Theorem CINM 213 (and we discover along the way that A is nonsingular). The inverse is

$$
A^{-1}=\left[\begin{array}{llll}
1 & 1 & 3 & 1 \\
3 & 4 & 1 & 4 \\
1 & 4 & 0 & 2 \\
3 & 0 & 1 & 0
\end{array}\right]
$$

Then by an application of Theorem SNCM 223 the (unique) solution to the system will be

$$
A^{-1} \mathbf{b}=\left[\begin{array}{cccc}
1 & 1 & 3 & 1 \\
3 & 4 & 1 & 4 \\
1 & 4 & 0 & 2 \\
3 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
3 \\
2 \\
0
\end{array}\right] \quad=\left[\begin{array}{l}
2 \\
3 \\
0 \\
1
\end{array}\right]
$$

Chapter MD Matrix Decompositions

This chapter is about breaking up a matrix A into pieces that somehow combine to recreate A. Usually the pieces are again matrices, and usually they are then combined via matrix multiplication Definition MM (192). In some cases, the decomposition will be valid for any matrix, but often we might need extra conditions on A, such as being square (Definition SQM 67) or diagonalizable (Definition DZM 428) before we can guarantee the decomposition. If you are comfortable with topics like decomposing a solution vector into linear combinations Subsection LC.VFSS 91) or decomposing vector spaces into direct sums (Subsection PD.DS 355), then we will be doing similar things in this chapter. If not, review these ideas and take another look at Technique DC 680 on decompositions.

We have studied one matrix decomposition already, so we will review that here in this introduction, both as a way of previewing the topic in a familiar setting, but also since it does not deserve another section all of its own.

A diagonalizable matrix (Definition DZM (428) is defined to be a square matrix A such that there is an invertible matrix S and a diagonal matrix D where $A=S^{-1} D S$. Here we have a decomposition of A into three matrices, S^{-1}, D and S, which recombine through matrix multiplication to recreate A. We cannot form this decomposition for just any matrix - A must be square and we know from Theorem DC 429 that a matrix of size n is diagonalizable if and only if there is a basis for \mathbb{C}^{n} composed entirely of eigenvectors of A, or by Theorem DMFE 431 we know that A is diagonalizable if and only if each eigenvalue of A has a geometric multiplicity equal to its algebraic multiplicity. Some authors prefer to call this an eigen decomposition of A rather than a matrix diagonalization.

Each section of this chapter is a different matrix decomposition, and they will become progessively more general and more complicated. As such, later decompositions will require greater familiarity with topics from the Core Part C (3).

Section ROD

Rank One Decomposition

This Section Under Construction

Our first decomposition applies only to diagonalizable (Definition DZM 428) matrices, and yields a decomposition into a sum of very simple matrices.

Theorem ROD

Rank One Decomposition

Suppose that A is a diagonalizable matrix of size n and rank r. Then there are r square matrices
$A_{1}, A_{2}, A_{3}, \ldots, A_{r}$, each of size n and rank 1 such that

$$
A=A_{1}+A_{2}+A_{3}+\cdots+A_{r}
$$

Furthermore, if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of A, then there are two sets of r linearly independent vectors from \mathbb{C}^{n},

$$
X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{r}\right\} \quad Y=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{r}\right\}
$$

such that $A_{k}=\lambda_{k} \mathbf{x}_{k} \mathbf{y}_{k}^{t}, 1 \leq k \leq r$.
Proof The proof is constructive. Generally, we will diagonalize A, creating a nonsingular matrix S and a diagonal matrix D. Then we split up the diagonal matrix into a sum of matrices with a single nonzero entry (on the diagonal). This fundamentally creates the decomposition in the statement of the theorem, the remainder is just bookkeeping. The vectors in X and Y will result from the columns of S and the rows of S^{-1}.

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ be the eigenvalues of A (repeated according to their algebraic multiplicity). If A has rank r, then $\operatorname{dim}(\mathcal{N}(A))=n-r$ (Theorem RPNC [342). The null space of A is the eigenspace of the eigenvalue $\lambda=0$ (Theorem EMNS 398), so it follows that the algebraic multiplicity of $\lambda=0$ is $n-r$, $\alpha_{A}(0)=n-r$. Presume that the complete list of eigenvalues is ordered so that $\lambda_{k}=0$ for $r+1 \leq k \leq n$.

Since A is hypothesized to be diagonalizable, there exists a diagonal matrix D and an invertible matrix S, such that $D=S^{-1} A S$. We can rearrange tis equation to read, $A=S D S^{-1}$. Also, the proof of Theorem DC 429 says that the diagonal elements of D are the eigenvalues of A and we have the flexibility to assume they lie on the diagonal in the same order as we have specified above. Now, let $X^{*}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{n}\right\}$ be the columns of S, and let $Y^{*}=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \ldots, \mathbf{y}_{n}\right\}$ be the rows of S^{-1} converted to column vectors. With little motivation other than the statement of the theorem, define size n matrices $A_{k}, 1 \leq k \leq n$ by $A_{k}=\lambda_{k} \mathbf{x}_{k} \mathbf{y}_{k}^{t}$. Finally, let D_{k} be the size n matrix that is totally zero, other than having λ_{k} in row k and column k.

With everything in place, we compute entry-by-entry,

$$
\begin{array}{rlrl}
{[A]_{i j}} & =\left[S D S^{-1}\right]_{i j} & & \text { Definition DZM 428 } \\
& =\left[S\left(\sum_{k=1}^{n} D_{k}\right) S^{-1}\right]_{i j} & & \text { Definition MA 177 } \\
& =\left[S\left(\sum_{k=1}^{n} D_{k} S^{-1}\right)\right]_{i j} & & \text { Theorem MMDAA 196 } \\
& =\left[\sum_{k=1}^{n} S D_{k} S^{-1}\right]_{i j} & & \text { Theorem MMDAA 196 } \\
& =\sum_{k=1}^{n}\left[S D_{k} S^{-1}\right]_{i j} & & \text { Definition MA 177 } \\
& =\sum_{k=1}^{n} \sum_{\ell=1}^{n}\left[S D_{k}\right]_{i \ell}\left[S^{-1}\right]_{\ell j} & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n} \sum_{\ell=1}^{n} \sum_{p=1}^{n}[S]_{i p}\left[D_{k}\right]_{p \ell}\left[S^{-1}\right]_{\ell j} & \text { Theorem EMP 193 } \\
& =\sum_{k=1}^{n}[S]_{i k}\left[D_{k}\right]_{k k}\left[S^{-1}\right]_{k j} & {\left[D_{k}\right]_{p \ell}=0 \text { if } p \neq k, \text { or } \ell \neq k} \\
& =\sum_{k=1}^{n}[S]_{i k} \lambda_{k}\left[S^{-1}\right]_{k j} & {\left[D_{k}\right]_{k k}=\lambda_{k}}
\end{array}
$$

$$
\begin{array}{ll}
=\sum_{k=1}^{n} \lambda_{k}[S]_{i k}\left[S^{-1}\right]_{k j} & \text { Property MCCN 666 } \\
=\sum_{k=1}^{n} \lambda_{k}\left[\mathbf{x}_{k}\right]_{i 1}\left[\mathbf{y}_{k}^{t}\right]_{1 j} & \text { Definition of } X^{*}, Y^{*} \\
=\sum_{k=1}^{n} \lambda_{k} \sum_{q=1}^{1}\left[\mathbf{x}_{k}\right]_{i q}\left[\mathbf{y}_{k}^{t}\right]_{q j} & \\
=\sum_{k=1}^{n} \lambda_{k}\left[\mathbf{x}_{k} \mathbf{y}_{k}^{t}\right]_{i j} & \text { Theorem EMP 193 } \\
=\sum_{k=1}^{n}\left[\lambda_{k} \mathbf{x}_{k} \mathbf{y}_{k}^{t}\right]_{i j} & \\
=\sum_{k=1}^{n}\left[A_{k}\right]_{i j} & \text { Definition MSM 178 } \\
=\left[\sum_{k=1}^{n} A_{k}\right]_{i j} & \text { Definition of } A_{k} \\
& \text { Definition MA 177 }
\end{array}
$$

So by Definition ME 177 we have the desired equality of matrices. The careful reader will have noted that $A_{k}=\mathcal{O}, r+1 \leq k \leq n$, since $\lambda_{k}=0$ in these instances. To get the sets X and Y from X^{*} and Y^{*}, simply discard the last $n-r$ vectors. We can safely ignore (or remove) $A_{r+1}, A_{r+2}, \ldots, A_{n}$ from the summation just derived.

One last assertion to check. What is the rank of $A_{k}, 1 \leq k \leq r$? Every row of A_{k} is a scalar multiple of \mathbf{y}_{k}^{t}, row k of the nonsingular matrix S^{-1} Theorem MIMI 215). As a row of a nonsingular matrix, \mathbf{y}_{k}^{t} cannot be all zeros. In particular, row i of A_{k} is obtained as a scalar multiple of \mathbf{y}_{k}^{t} by the scalar $\alpha_{k}\left[\mathbf{x}_{k}\right]_{i}$. We have restricted ourselves to the nonzero eigenvalues of A, and as S is nonsingular, some entry of \mathbf{x}_{k} is nonzero. This all implies that some row of A_{k} will be nonzero. Now consider row-reducing A_{k}. Swap the nonzero row up into row 1 . Use scalar multiples of this row to zero out every other row. This leaves a single nonzero row in the reduced row-echelon form, so A_{k} has rank one.

We record two observations that was not stated in our theorem above. First, the vectors in X, chosen as columns of S, are eigenvectors of A. Second, the product of two vectors from X and Y in the opposite order, by which we mean $\mathbf{y}_{i}^{t} \mathbf{x}_{j}$, is the entry in row i and column j of the matrix product $S^{-1} S=I_{n}$ (Theorem EMP 193). In particular,

$$
\mathbf{y}_{i}^{t} \mathbf{x}_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

We give two computational examples. One small, one a bit bigger.

Example ROD2

Rank one decomposition, size 2

Consider the 2×2 matrix,

$$
A=\left[\begin{array}{cc}
-16 & -6 \\
45 & 17
\end{array}\right]
$$

By the techniques of Chapter E 389 we find the eigenvalues and eigenspaces,

$$
\lambda_{1}=2 \quad \mathcal{E}_{A}(2)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
3
\end{array}\right]\right\}\right\rangle \quad \lambda_{2}=-1 \quad \mathcal{E}_{A}(-1)=\left\langle\left\{\left[\begin{array}{c}
-2 \\
5
\end{array}\right]\right\}\right\rangle
$$

With $n=2$ distinct eigenvalues, Theorem DED 433 tells us that A is diagonalizable, and with no zero eigenvalues we see that A has full rank. Theorem DC 429 says we can construct the nonsingular matrix S with eigenvectors of A as columns, so we have

$$
S=\left[\begin{array}{cc}
-1 & -2 \\
3 & 5
\end{array}\right] \quad S^{-1}=\left[\begin{array}{cc}
5 & 2 \\
-3 & -1
\end{array}\right]
$$

From these matrices we obtain the sets of vectors

$$
X=\left\{\left[\begin{array}{c}
-1 \\
3
\end{array}\right],\left[\begin{array}{c}
-2 \\
5
\end{array}\right]\right\} \quad Y=\left\{\left[\begin{array}{l}
5 \\
2
\end{array}\right],\left[\begin{array}{l}
-3 \\
-1
\end{array}\right]\right\}
$$

And we have the matrices,

$$
\begin{aligned}
& A_{1}=2\left[\begin{array}{c}
-1 \\
3
\end{array}\right]\left[\begin{array}{l}
5 \\
2
\end{array}\right]^{t}=2\left[\begin{array}{cc}
-5 & -2 \\
15 & 6
\end{array}\right]=\left[\begin{array}{cc}
-10 & -4 \\
30 & 12
\end{array}\right] \\
& A_{2}=(-1)\left[\begin{array}{c}
-2 \\
5
\end{array}\right]\left[\begin{array}{l}
-3 \\
-1
\end{array}\right]^{t}=(-1)\left[\begin{array}{cc}
6 & 2 \\
-15 & -5
\end{array}\right]=\left[\begin{array}{cc}
-6 & -2 \\
15 & 5
\end{array}\right]
\end{aligned}
$$

And you can easily verify that $A=A_{1}+A_{2}$.
Here's a slightly larger example, and the matrix does not have full rank.

Example ROD4

Rank one decomposition, size 4

Consider the 4×4 matrix,

$$
B=\left[\begin{array}{cccc}
34 & 18 & -1 & -6 \\
-44 & -24 & -1 & 9 \\
36 & 18 & -3 & -6 \\
36 & 18 & -6 & -3
\end{array}\right]
$$

By the techniques of Chapter E 389 we find the eigenvalues and eigenvectors,

$$
\begin{array}{ll}
\lambda_{1}=3 & \mathcal{E}_{B}(3)=\left\langle\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
2
\end{array}\right]\right\}\right\rangle \\
\lambda_{2}=-2 & \mathcal{E}_{B}(-2)=\left\langle\left\{\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right]\right\}\right\rangle \\
\lambda_{3}=0 & \mathcal{E}_{A}(0)=\left\langle\left\{\left[\begin{array}{c}
2 \\
-3 \\
2 \\
2
\end{array}\right]\right\}\right\rangle
\end{array}
$$

The algebraic and geometric multiplicities of each eigenvalue are equal, so Theorem DMFE 431 tells us that A is diagonalizable. With a single zero eigenvalue we see that A has rank $4-1=3$. Theorem DC 429 says we can construct the nonsingular matrix S with eigenvectors of A as columns, so we have

$$
S=\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
-2 & -1 & 2 & -3 \\
1 & 1 & 0 & 2 \\
-1 & 2 & 0 & 2
\end{array}\right]
$$

$$
S^{-1}=\left[\begin{array}{cccc}
4 & 2 & 0 & -1 \\
8 & 4 & -1 & -1 \\
-1 & 0 & 1 & 0 \\
-6 & -3 & 1 & 1
\end{array}\right]
$$

Since $r=3$, we need only collect three vectors from each of these matrices,

$$
X=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right]\right\} \quad Y=\left\{\left[\begin{array}{c}
4 \\
2 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{c}
8 \\
4 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

And we obtain the matrices,

$$
\begin{aligned}
& B_{1}=3\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-1
\end{array}\right]\left[\begin{array}{c}
4 \\
2 \\
0 \\
-1
\end{array}\right]^{t}=3\left[\begin{array}{cccc}
4 & 2 & 0 & -1 \\
-8 & -4 & 0 & 2 \\
4 & 2 & 0 & -1 \\
-4 & -2 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
12 & 6 & 0 & -3 \\
-24 & -12 & 0 & 6 \\
12 & 6 & 0 & -3 \\
-12 & -6 & 0 & 3
\end{array}\right] \\
& B_{2}=3\left[\begin{array}{c}
1 \\
-1 \\
1 \\
2
\end{array}\right]\left[\begin{array}{c}
8 \\
4 \\
-1 \\
-1
\end{array}\right]^{t}=3\left[\begin{array}{cccc}
8 & 4 & -1 & -1 \\
-8 & -4 & 1 & 1 \\
8 & 4 & -1 & -1 \\
16 & 8 & -2 & -2
\end{array}\right]=\left[\begin{array}{cccc}
24 & 12 & -3 & -3 \\
-24 & -12 & 3 & 3 \\
24 & 12 & -3 & -3 \\
48 & 24 & -6 & -6
\end{array}\right] \\
& B_{3}=(-2)\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]^{t}=(-2)\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
-2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
-2 & 0 & 2 & 0 \\
4 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Then we verify that

$$
\begin{aligned}
& B=B_{1}+B_{2}+B_{3} \\
& =\left[\begin{array}{cccc}
12 & 6 & 0 & -3 \\
-24 & -12 & 0 & 6 \\
12 & 6 & 0 & -3 \\
-12 & -6 & 0 & 3
\end{array}\right]+\left[\begin{array}{cccc}
24 & 12 & -3 & -3 \\
-24 & -12 & 3 & 3 \\
24 & 12 & -3 & -3 \\
48 & 24 & -6 & -6
\end{array}\right]+\left[\begin{array}{cccc}
-2 & 0 & 2 & 0 \\
4 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
34 & 18 & -1 & -6 \\
-44 & -24 & -1 & 9 \\
36 & 18 & -3 & -6 \\
36 & 18 & -6 & -3
\end{array}\right]
\end{aligned}
$$

Further Reading

Section TD
 Triangular Decomposition

Draft: This Section Complete, But Subject To Change

Our next decomposition will break a square matrix into a product of two matrices, one lower triangular and the other upper triangular. So we will write $A=L U$, and hence many refer to this as $\mathbf{L U}$ decomposition. We will see that this decomposition is very easy to compute and that it has a direct application to solving systems of equations. Since this section is about triangular matrices you might want to review the definitions and a couple of basic theorems back in Subsection OD.TM 587.

Subsection TD
 Triangular Decomposition

With a slight condition on the nonsingularity of certain submatrices, we can split a matrix into a product of two triangular matrices.

Theorem TD
 Triangular Decomposition

Suppose A is a square matrix of size n. Let A_{k} be the $k \times k$ matrix formed from A by taking the first k rows and the first k columns. Suppose that A_{k} is nonsingular for all $1 \leq k \leq n$. Then there is a lower triangular matrix L with all of its diagonal entries equal to 1 and an upper triangular matrix U such that $A=L U$. Furthermore, this decomposition is unique.
Proof We will row reduce A to a row-equivalent upper triangular matrix through a series of row operations, forming intermediate matrices $A_{j}^{\prime}, 1 \leq j \leq n$, that denote the state of the conversion after working on column j. First, the lone entry of A_{1} is $[A]_{11}$ and this scalar must be nonzero if A_{1} is nonsingular Theorem SMZD (383). We can use row operations Definition RO 28] of the form $\alpha R_{1}+R_{k}, 2 \leq k \leq n$, where $\alpha=-[A]_{1 k} /[A]_{11}$ to place zeros in the first column below the diagonal. The first two rows and columns of A_{1}^{\prime} are a 2×2 upper triangular matrix whose determinant is equal to the determinant of A_{2}, since the matrices are row-equivalent through a sequence of row operations strictly of the third type Theorem DRMCA [??]). As such the diagonal entries of this 2×2 submatrix of A_{1}^{\prime} are nonzero. We can employ this nonzero diagonal element with row operations of the form $\alpha R_{2}+R_{k}, 3 \leq k \leq n$ to place zeros below the diagonal in the second column. We can continue this process, column by column. The key observations are that our hypothesis on the nonsingularity of the A_{k} will guarantee a nonzero diagonal entry for each column when we need it, that the row operations employed are always of the third type using a multiple of a row to transform another row with a greater row index, and that the final result will be a nonsingular upper triangular matrix. This is the desired matrix U.

Each row operation described in the previous paragraph can be accompished with matrix multiplication by the appropriate elementary matrix (Theorem EMDRO 365). Since every row operation employed is adding a multiple of a row to a subsequent row these elementary matrices are of the form $E_{j, k}(\alpha)$ with $j<k$. By Definition ELEM 363, these matrices are lower triangular with every diagonal entry equal to 1 . We know that the product of two such matrices will again be lower triangular (Theorem PTMT 587), but also, as you can also easily check using a proof with a style similar to one above, that the product maintains all 1's on the diagonal. Let $E_{1}, E_{2}, E_{3}, \ldots, E_{m}$ denote the elementary matrices for this sequence of row operations. Then

$$
U=E_{m} E_{m-1} \ldots E_{3} E_{2} E_{1} A=L^{\prime} A
$$

where L^{\prime} is the product of the elementary matrices, and we know L^{\prime} is lower triangular with all 1's on the diagonal. Our desired matrix L is then $L=\left(L^{\prime}\right)^{-1}$. By Theorem ITMT 588, L is lower triangular with all 1's on the diagonal and $A=L U$, as desired.

The process just described is deterministic. That is, the proof is constructive, with no freedom for each of us to walk through it differently. But could there be other matrices with the same properties as L and U that give such a decomposition of A. In other words, is the decomposition unique Technique U 678)? Suppose that we have two triangular decompositions, $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$. Since A is nonsingular, two applications of Theorem NPNT 221 imply that $L_{1}, L_{2}, U_{1}, U_{2}$ are all nonsingular. We have

$$
\begin{aligned}
L_{2}^{-1} L_{1} & =L_{2}^{-1} I_{n} L_{1} & & \text { Theorem MMIM 195 } \\
& =L_{2}^{-1} A A^{-1} L_{1} & & \text { Definition MI 208 } \\
& =L_{2}^{-1} L_{2} U_{2}\left(L_{1} U_{1}\right)^{-1} L_{1} & & \\
& =L_{2}^{-1} L_{2} U_{2} U_{1}^{-1} L_{1}^{-1} L_{1} & & \text { Theorem SS 214 } \\
& =I_{n} U_{2} U_{1}^{-1} I_{n} & & \text { Definition MI 208 } \\
& =U_{2} U_{1}^{-1} & & \text { Theorem MMIM 195 }
\end{aligned}
$$

Theorem ITMT 588 tells us that L_{2}^{-1} is lower triangular and has 1's as the diagonal entries. By Theorem PTMT 587, the product $L_{2}^{-1} L_{1}$ is again lower triangular, and it is simple to check (as before) that the diagonal entries of the product are again all 1's. By the entirely similar process we can conclude that the product $U_{2} U_{1}^{-1}$ is upper triangular. Because these two products are equal, their common value is a matrix that is both lower triangular and upper triangular, with all 1's on the diagonal. The only matrix meeting these three requirements is the identity matrix (Definition IM 68). So, we have,

$$
I_{n}=L_{2}^{-1} L_{1} \Rightarrow L_{2}=L_{1} \quad I_{n}=U_{2} U_{1}^{-1} \Rightarrow U_{1}=U_{2}
$$

which establishes the uniqueness of the decomposition.
Studying the proofs of some previous theorems will perhaps give you an idea for an approach to computing a triangular decomposition. In the proof of Theorem CINM 213 we augmented a nonsingular matrix with an identity matrix of the same size, and row-reduced until the original matrix became the identity matrix (as we knew in advance would happen, since we knew Theorem NMRRI 68). Theorem PEEF 258 tells us about properties of extended echelon form, and in particular, that $B=J A$, where A is the matrix that begins on the left, and B is the reduced row-echelon form of A. The matrix J is the result on the right side of the augmented matrix, which is the result of applying the same row operations to the identity matrix. We should recognize now that J is just the product of the elementary matrices (Subsection DM.EM 363) that perform these row operations. Theorem ITMT 588 used the extended echelon form to discern properties of the inverse of a triangular matrix. Theorem TD 797 proves the existence of a triangular decomposition by applying specific row operations, and tracking the relevant elementary row operations. It is not a great leap to combine these obervations into a computational procedure.

To find the triangular decomposition of A, augment A with the identity matrix of the same size and call this new $2 n \times n$ matrix, M. Perform row operations on M that convert the first n columns to an upper triangular matrix. Do this using only row operations that add a scalar multiple of one row to another row with higher index (i.e. lower down). In this way, the last n columns of M will be converted into a lower triangular matrix with 1's on the diagonal (since M has 1's in these locations initially). We could think of this process as doing about half of the work required to compute the inverse of A. Take the first n columns of the row-equivalent version of M and call this matrix U. Take the final n columns of the row-equivalent version of M and call this matrix L^{\prime}. Then by a proof employing elementary matrices, or a proof similar in spirit to the one used to prove Theorem PEEF [258, we arrive at a result similar to the second assertion of Theorem PEEF 258. Namely, $U=L^{\prime} A$. Multiplication on the left, by the inverse of L^{\prime}, will give us a decomposition of A (which we know to be unique). Ready? Lets try it.

Example TD4

Triangular decomposition, size 4

In this example, we will illustrate the process for computing a triangular decomposition, as described in the previous paragraphs. Consider the nonsingular square matrix A of size 4,

$$
A=\left[\begin{array}{cccc}
-2 & 6 & -8 & 7 \\
-4 & 16 & -14 & 15 \\
-6 & 22 & -23 & 26 \\
-6 & 26 & -18 & 17
\end{array}\right]
$$

We form M by augmenting A with the size 4 identity matrix I_{4}. We will perform the allowed operations, column by column, only reporting intermediate results as we finish converting each column. It is easy to determine exactly which row operations we perform, since the final four columns contain a record of each such operation. We will not verify our hypotheses about the nonsingularity of the A_{k}, since if we do not have these conditions, we will reach a stage where a diagonal entry is zero and we cannot create the row operations we need to zero out the bottom portion of the associated column. In other words, we can boldly proceed and the necessity of our hypotheses will become apparent.

$$
\begin{aligned}
M & =\left[\begin{array}{cccccccc}
-2 & 6 & -8 & 7 & 1 & 0 & 0 & 0 \\
-4 & 16 & -14 & 15 & 0 & 1 & 0 & 0 \\
-6 & 22 & -23 & 26 & 0 & 0 & 1 & 0 \\
-6 & 26 & -18 & 17 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccccc}
-2 & 6 & -8 & 7 & 1 & 0 & 0 & 0 \\
0 & 4 & 2 & 1 & -2 & 1 & 0 & 0 \\
0 & 4 & 1 & 5 & -3 & 0 & 1 & 0 \\
0 & 8 & 6 & -4 & -3 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccccc}
-2 & 6 & -8 & 7 & 1 & 0 & 0 & 0 \\
0 & 4 & 2 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & -1 & 4 & -1 & -1 & 1 & 0 \\
0 & 0 & 2 & -6 & 1 & -2 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccccccc}
-2 & 6 & -8 & 7 & 1 & 0 & 0 & 0 \\
0 & 4 & 2 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & -1 & 4 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 2 & -1 & -4 & 2 & 1
\end{array}\right]
\end{aligned}
$$

So at this point, we have U and L^{\prime},

$$
U=\left[\begin{array}{cccc}
-2 & 6 & -8 & 7 \\
0 & 4 & 2 & 1 \\
0 & 0 & -1 & 4 \\
0 & 0 & 0 & 2
\end{array}\right] \quad L^{\prime}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-1 & -1 & 1 & 0 \\
-1 & -4 & 2 & 1
\end{array}\right]
$$

Then by whatever procedure we like (such as Theorem CINM 213), we find

$$
L=\left(L^{\prime}\right)^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 1 & 1 & 0 \\
3 & 2 & -2 & 1
\end{array}\right]
$$

It is instructive to verify that indeed $L U=A$.

Subsection TDSSE Triangular Decomposition and Solving Systems of Equations

In this section we give an explanation of why you might be interested in a triangular decomposition for a matrix. Many of the computational problems in linear algebra revolve around solving large systems of equations, or nearly equivalently, finding inverses of large matrices. Suppose we have a system of equations with coefficient matrix A and vector of constants \mathbf{b}, and suppose further that A has the triangular decomposition $A=L U$.

Let \mathbf{y} be the solution to the linear system $\mathcal{L S}(L, \mathbf{b})$, so that by Theorem SLEMM 190, we have $L \mathbf{y}=\mathbf{b}$. Notice that since L is nonsingular, this solution is unique, and the form of L makes it trivial to solve the system. The first component of \mathbf{y} is determined easily, and we can continue on through determining the components of \mathbf{y}, without even ever dividing. Now, with \mathbf{y} in hand, consider the linear system, $\mathcal{L S}(U, \mathbf{y})$. Let \mathbf{x} be the unique solution to this system, so by Theorem SLEMM 190 we have $U \mathbf{x}=\mathbf{y}$. Notice that a system of equations with U as a coefficient matrix is also straightforward to solve, though we will compute the bottom entries of \mathbf{x} first, and we will need to divide. The upshot of all this is that \mathbf{x} is a solution to $\mathcal{L S}(A, \mathbf{b})$, as we now show,

$$
A \mathbf{x}=L U \mathbf{x}=L(U \mathbf{x})=L \mathbf{y}=\mathbf{b}
$$

An application of Theorem SLEMM 190 demonstrates that \mathbf{x} is a solution to $\mathcal{L S}(A, \mathbf{b})$.

Example TDSSE

Triangular decomposition solves a system of equations

Here we illustrate the previous discussion, recycling the decomposition found previously in Example TD4 799 . Consider the linear system $\mathcal{L S}(A, \mathbf{b})$ with

$$
A=\left[\begin{array}{cccc}
-2 & 6 & -8 & 7 \\
-4 & 16 & -14 & 15 \\
-6 & 22 & -23 & 26 \\
-6 & 26 & -18 & 17
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
-10 \\
-2 \\
-1 \\
-8
\end{array}\right]
$$

First we solve the system $\mathcal{L S}(L, \mathbf{b})$ (see Example TD4 799 for L),

$$
\begin{aligned}
y_{1} & =-10 \\
2 y_{1}+y_{2} & =-2 \\
3 y_{1}+y_{2}+y_{3} & =-1 \\
3 y_{1}+2 y_{2}-2 y_{3}+y_{4} & =-8
\end{aligned}
$$

Then

$$
\begin{aligned}
& y_{1}=-10 \\
& y_{2}=-2-2 y_{1}=-2-2(-10)=18 \\
& y_{3}=-1-3 y_{1}-y_{2}=-1-3(-10)-18=11 \\
& y_{4}=-8-3 y_{1}-2 y_{2}+2 y_{3}=-8-3(-10)-2(18)+2(11)=8
\end{aligned}
$$

so

$$
\mathbf{y}=\left[\begin{array}{c}
-10 \\
18 \\
11 \\
8
\end{array}\right]
$$

Then we solve the system $\mathcal{L S}(U, \mathbf{y})$ (see Example TD4 799 for U),

$$
\begin{aligned}
-2 x_{1}+6 x_{2}-8 x_{3}+7 x_{4} & =-10 \\
4 x_{2}+2 x_{3}+x_{4} & =18 \\
-x_{3}+4 x_{4} & =11 \\
2 x_{4} & =8
\end{aligned}
$$

Then

$$
\begin{aligned}
& x_{4}=8 / 2=4 \\
& x_{3}=\left(11-4 x_{4}\right) /(-1)=(11-4(4)) /(-1)=5 \\
& x_{2}=\left(18-2 x_{3}-x_{4}\right) / 4=(18-2(5)-4) / 4=1 \\
& x_{1}=\left(-10-6 x_{2}+8 x_{3}-7 x_{4}\right) /(-2)=(-10-6(1)+8(5)-7(4)) /(-2)=2
\end{aligned}
$$

And so

$$
\mathbf{x}=\left[\begin{array}{l}
4 \\
5 \\
1 \\
2
\end{array}\right]
$$

is the solution to $\mathcal{L S}(U, \mathbf{y})$ and consequently is the unique solution to $\mathcal{L S}(A, \mathbf{b})$, as you can easily verify.

Subsection CTD

Computing Triangular Decompositions

It would be a simple matter to adjust the algorithm for converting a matrix to reduced row-echelon form and obtain an algorithm to compute the triangular decomposition of the matrix, along the lines of Example TD4 799 and the discussion preceding this example. However, it is possible to obtain relatively simple formulas for the entries of the decomposition, and if computed in the proper order, an implemtation will be straightfoward. We will state the result as a theorem and then give an example of its use.

Theorem TDEE

Triangular Decomposition, Entry by Entry

Suppose that A is a squarematrix of size n with a triangular decomposition $A=L U$, where L is lower triangular with diagonal entries all equal to 1 , and U is upper triangular. Then

$$
\begin{array}{ll}
{[U]_{i j}=[A]_{i j}-\sum_{k=1}^{i-1}[L]_{i k}[U]_{k j}} & 1 \leq i \leq j \leq n \\
{[L]_{i j}=\frac{1}{[U]_{j j}}\left([A]_{i j}-\sum_{k=1}^{j-1}[L]_{i k}[U]_{k j}\right)} & 1 \leq j<i \leq n
\end{array}
$$

Proof Consider a single scalar product of an entry of L with an entry of U of the form $[L]_{i k}[U]_{k j}$. By Definition LTM 587, if $k>i$ then $[L]_{i k}=0$, while Definition UTM 587, says that if $k>j$ then $[U]_{k j}=0$. So we can combine these two facts to assert that if $k>\min (i, j),[L]_{i k}[U]_{k j}=0$ since at least one term of the product will be zero. Employing this observation,

$$
[A]_{i j}=\sum_{k=1}^{n}[L]_{i k}[U]_{k j}
$$

Theorem EMP 193

$$
=\sum_{k=1}^{\min (i, j)}[L]_{i k}[U]_{k j}
$$

Now, assume that $1 \leq i \leq j \leq n$,

$$
\begin{aligned}
{[U]_{i j} } & =[A]_{i j}-[A]_{i j}+[U]_{i j} \\
& =[A]_{i j}-\sum_{k=1}^{\min (i, j)}[L]_{i k}[U]_{k j}+[U]_{i j} \\
& =[A]_{i j}-\sum_{k=1}^{i}[L]_{i k}[U]_{k j}+[U]_{i j} \\
& =[A]_{i j}-\sum_{k=1}^{i-1}[L]_{i k}[U]_{k j}-[L]_{i i}[U]_{i j}+[U]_{i j} \\
& =[A]_{i j}-\sum_{k=1}^{i-1}[L]_{i k}[U]_{k j}-[U]_{i j}+[U]_{i j} \\
& =[A]_{i j}-\sum_{k=1}^{i-1}[L]_{i k}[U]_{k j}
\end{aligned}
$$

And for $1 \leq j<i \leq n$,

$$
\begin{aligned}
{[L]_{i j} } & =\frac{1}{[U]_{j j}}\left([L]_{i j}[U]_{j j}\right) \\
& =\frac{1}{[U]_{j j}}\left([A]_{i j}-[A]_{i j}+[L]_{i j}[U]_{j j}\right) \\
& =\frac{1}{[U]_{j j}}\left([A]_{i j}-\sum_{k=1}^{\min (i, j)}[L]_{i k}[U]_{k j}+[L]_{i j}[U]_{j j}\right) \\
& =\frac{1}{[U]_{j j}}\left([A]_{i j}-\sum_{k=1}^{j}[L]_{i k}[U]_{k j}+[L]_{i j}[U]_{j j}\right) \\
& =\frac{1}{[U]_{j j}}\left([A]_{i j}-\sum_{k=1}^{j-1}[L]_{i k}[U]_{k j}-[L]_{i j}[U]_{j j}+[L]_{i j}[U]_{j j}\right) \\
& =\frac{1}{[U]_{j j}}\left([A]_{i j}-\sum_{k=1}^{j-1}[L]_{i k}[U]_{k j}\right)
\end{aligned}
$$

At first glance, these formulas may look exceedingly complex. Upon closer examination, it looks even worse. We have expressions for entries of U that depend on other entries of U and also on entries of L. But then the formula for entries of L depend on entries from L and entries from U. Do these formula have circular dependencies? Or perhaps equivalently, how do we get started? The key is to be organized about the computations and employ these two (similar) formulas in a specific order. First compute the first row of L, followed by the first column of U. Then the second row of L, followed by the second column of U. And so on. In this way, all of the values required for each new entry will have already been computed previously.

Of course, the formula for entries of L require division by diagonal entries of U. These entries might be zero, but in this case A is nonsingular and does not have a triangular decomposition. So we need not
check the hypothesis carefully and can launch into the arithmetic dictated by the formulas, confident that we will be reminded when a decomposition is not possible. Note that these formula give us all of the values that we need for the decomposition, since we require that L has 1 's on the diagonal. If we replace the 1 's on the diagonal of L by zeros, and add the matrix U, we get an $n \times n$ matrix containing all the information we need to ressurect the triangular decomposition. This is mostly a notational convenience, but it is a frequent way of presenting the information. We'll employ it in the next example.

Example TDEE6

Triangular decomposition, entry by entry, size 6

We illustrate the application of the formulas in Theorem TDEE 801 for the 6×6 matrix A.

$$
A=\left[\begin{array}{cccccc}
3 & 3 & -3 & -2 & -1 & 0 \\
-6 & -4 & 5 & 2 & 4 & 2 \\
9 & 9 & -7 & -7 & 0 & 1 \\
-6 & -10 & 8 & 10 & -1 & -7 \\
6 & 4 & -9 & -2 & -10 & 1 \\
9 & 3 & -12 & -3 & -21 & -2
\end{array}\right]
$$

Using the notational convenience of packaging the two triangular matrices into one matrix, and using the ordering of the computations mentioned above, we display the results after computing a single row and column of each of the two triangular matrices.

$$
\left.\begin{array}{lllll}
{\left[\begin{array}{ccccc}
3 & 3 & -3 & -2 & -1
\end{array} 0\right.} \\
-2 & & & & \\
3 & & & \\
-2 & & & \\
2 & & \\
3 & & & {\left[\begin{array}{ccccc}
3 & 3 & -3 & -2 & -1
\end{array}\right.} & 0 \\
-2 & 2 & -1 & -2 & 2
\end{array} 2\right\}
$$

Splitting out the pieces of this matrix, we have the decomposition,

$$
L=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 & 0 \\
-2 & -2 & 0 & 1 & 0 & 0 \\
2 & -1 & -2 & -1 & 1 & 0 \\
3 & -3 & -3 & -3 & 0 & 1
\end{array}\right] \quad U=\left[\begin{array}{cccccc}
3 & 3 & -3 & -2 & -1 & 0 \\
0 & 2 & -1 & -2 & 2 & 2 \\
0 & 0 & 2 & -1 & 3 & 1 \\
0 & 0 & 0 & 2 & 1 & -3 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & -2
\end{array}\right]
$$

Further Reading

Part A
 Applications

Index

A (appendix), 685
A (archetype), 689
A (definition), 184
A (notation), 184
AA (Property), 275
AA (subsection, section WILA), 4
AA (theorem), 185
AAC (Property), 82
AACN (Property), 666
AAF (Property), 781
AALC (example), 89
AAM (Property), 179
ABLC (example), 88
ABS (example), 111
AC (Property), 275
ACC (Property), 82
ACCN (Property), 666
ACF (Property), 781
ACM (Property), 179
ACN (example), 665
additive associativity
column vectors
Property AAC, 82
complex numbers
Property AACN, 666
matrices
Property AAM, 179
vectors
Property AA, 275
additive commutativity
complex numbers
Property ACCN, 666
additive inverse
complex numbers
Property AICN, 667
from scalar multiplication
theorem AISM, 283
additive inverses
column vectors
Property AIC, 82
matrices
Property AIM, 179
unique
theorem AIU, 282
vectors
Property AI, 276
addtive closure
column vectors
Property ACC, 82
field
Property ACF, 781
matrices
Property ACM, 179
vectors
Property AC, 275
adjoint
definition A, 184
inner product
theorem AIP, 199
notation, 184
of a matrix sum theorem AMA, 184
of an adjoint theorem AA, 185
of matrix scalar multiplication
theorem AMSM, 184
AHSAC (example), 57
AI (Property), 276
AIC (Property), 82
AICN (Property), 667
AIF (Property), 782
AIM (Property), 179
AIP (theorem), 199
AISM (theorem), 283
AIU (theorem), 282
AIVLT (example), 495
ALT (example), 442
ALTMM (example), 531
AM (definition), 28
AM (example), 25
AM (notation), 28
AM (subsection, section MO), 184
AMA (theorem), 184
AMAA (example), 28

AME (definition), 399
AMSM (theorem), 184
ANILT (example), 496
ANM (example), 592
AOS (example), 169
Archetype A
column space, 235
linearly dependent columns, 136
singular matrix, 67
solving homogeneous system, 58
system as linear combination, 89
archetype A
augmented matrix
example AMAA, 28
Archetype B
column space, 236
inverse
example CMIAB, 213
linearly independent columns, 136
nonsingular matrix, 68
not invertible
example MWIAA, 208
solutions via inverse
example SABMI, 207
solving homogeneous system, 58
system as linear combination, 88
vector equality, 80
archetype B
solutions
example $\mathrm{SAB}, 33$
Archetype C
homogeneous system, 57
Archetype D
column space, original columns, 234
solving homogeneous system, 58
vector form of solutions, 92
Archetype I
column space from row operations, 242
null space, 60
row space, 238
vector form of solutions, 98
Archetype I:casting out vectors, 151
Archetype L
null space span, linearly independent, 139
vector form of solutions, 100
ASC (example), 519
augmented matrix
notation, 28
AVR (example), 313
B (archetype), 694

B (definition), 321
B (section), 321
B (subsection, section B), 321
basis
columns nonsingular matrix
example CABAK, 326
common size
theorem BIS, 338
crazy vector apace
example BC, 324
definition B, 321
matrices
example BM, 322
example BSM22, 323
polynomials
example BP, 322
example BPR, 350
example BSP4, 322
example SVP4, 351
subspace of matrices
example BDM22, 351
BC (example), 324
BCS (theorem), 234
BDE (example), 416
BDM22 (example), 351
best cities
money magazine example MBC, 190
BIS (theorem), 338
BM (example), 322
BNM (subsection, section B), 326
BNS (theorem), 138
BP (example), 322
BPR (example), 350
BRLT (example), 488
BRS (theorem), 240
BS (theorem), 154
BSCV (subsection, section B), 324
BSM22 (example), 323
BSP4 (example), 322
C (archetype), 699
C (definition), 670
C (notation), 670
C (part), 3
C (Property), 275
C (technique, section PT), 675
CABAK (example), 326
CAEHW (example), 394
cancellation
vector addition
theorem VAC, 284
canonical form
nilpotent linear transformation
example CFNLT, 610
theorem CFNLT, 606
CAV (subsection, section O), 163
Cayley-Hamilton
theorem CHT, 655
CB (section), 559
CB (theorem), 561
CBCV (example), 564
CBM (definition), 560
CBM (subsection, section CB), 560
CBP (example), 561
CC (Property), 82
CCCV (definition), 163
CCCV (notation), 163
CCM (definition), 182
CCM (example), 182
CCM (notation), 182
CCM (theorem), 183
CCN (definition), 667
CCN (notation), 667
CCN (subsection, section CNO), 667
CCRA (theorem), 667
CCRM (theorem), 667
CCT (theorem), 668
CD (subsection, section DM), 369
CD (technique, section PT), 678
CEE (subsection, section EE), 396
CELT (example), 577
CELT (subsection, section CB), 572
CEMS6 (example), 402
CFDVS (theorem), 519
CFNLT (example), 610
CFNLT (subsection, section NLT), 606
CFNLT (theorem), 606
CFV (example), 52
change of basis
between polynomials example CBP, 561
change-of-basis
between column vectors
example CBCV, 564
matrix representation
theorem MRCB, 566
similarity
theorem SCB, 568
theorem CB, 561
change-of-basis matrix
definition CBM, 560
inverse
theorem ICBM, 561
characteristic polynomial
definition CP, 396
degree
theorem DCP, 418
size 3 matrix
example CPMS3, 396
CHT (subsection, section JCF), 654
CHT (theorem), 655
CILT (subsection, section ILT), 474
CILTI (theorem), 474
CIM (subsection, section MISLE), 209
CINM (theorem), 213
CIVLT (theorem), 499
CLI (theorem), 520
CLTLT (theorem), 456
CM (definition), 26
CM (Property), 179
CM32 (example), 522
CMI (example), 211
CMIAB (example), 213
CMVEI (theorem), 52
CN (appendix), 657
CNA (definition), 666
CNA (notation), 666
CNA (subsection, section CNO), 665
CNE (definition), 666
CNE (notation), 666
CNM (definition), 666
CNM (notation), 666
CNMB (theorem), 326
CNO (section), 665
CNS1 (example), 60
CNS2 (example), 61
CNSV (example), 167
COB (theorem), 328
coefficient matrix
definition CM, 26
nonsingular
theorem SNCM, 223
column space
as null space
theorem FS, 259
Archetype A
example CSAA, 235
Archetype B
example CSAB, 236
as null space
example CSANS, 254
as null space, Archetype G
example FSAG, 265
as row space
theorem CSRST, 241
basis
theorem BCS, 234
consistent system
theorem CSCS, 232
consistent systems example CSMCS, 231
isomorphic to range, 540
matrix, 231
nonsingular matrix
theorem CSNM, 236
notation, 231
original columns, Archetype D
example CSOCD, 234
row operations, Archetype I
example CSROI, 242
subspace
theorem CSMS, 299
testing membership
example MCSM, 232
two computations example CSTW, 233
column vector addition
notation, 81
column vector scalar multiplication
notation, 81
commutativity
column vectors
Property CC, 82
matrices
Property CM, 179
vectors
Property C, 275
complex m-space
example VSCV, 277
complex arithmetic
example ACN, 665
complex number
conjugate
example CSCN, 667
modulus
example MSCN, 668
complex number
conjugate
definition CCN, 667
modulus
definition MCN, 668
complex numbers
addition
definition CNA, 666
notation, 666
arithmetic properties
theorem PCNA, 666
equality
definition CNE, 666
notation, 666
multiplication
definition CNM, 666
notation, 666
complex vector space
dimension
theorem DCM, 339
composition
injective linear transformations
theorem CILTI, 474
surjective linear transformations
theorem CSLTS, 490
conjugate
addition
theorem CCRA, 667
column vector
definition CCCV, 163
matrix
definition CCM, 182
notation, 182
multiplication
theorem CCRM, 667
notation, 667
of conjugate of a matrix theorem CCM, 183
scalar multiplication theorem CRSM, 163
twice
theorem CCT, 668
vector addition
theorem CRVA, 163
conjugate of a vector
notation, 163
conjugation
matrix addition
theorem CRMA, 183
matrix scalar multiplication theorem CRMSM, 183
matrix transpose theorem MCT, 184
consistent linear system, 50
consistent linear systems theorem CSRN, 51
consistent system definition CS, 47
constructive proofs technique $\mathrm{C}, 675$
contradiction
technique CD, 678
contrapositive technique CP, 677
converse
technique CV, 677
coordinates
orthonormal basis
theorem COB, 328
coordinatization
linear combination of matrices
example CM32,522
linear independence
theorem CLI, 520
orthonormal basis
example CROB3, 329
example CROB4, 328
spanning sets
theorem CSS, 520
coordinatization principle, 522
coordinatizing
polynomials
example CP2,521
COV (example), 151
COV (subsection, section LDS), 151
CP (definition), 396
CP (subsection, section VR), 520
CP (technique, section PT), 677
CP2 (example), 521
CPMS3 (example), 396
crazy vector space
example CVSR, 519
properties
example PCVS, 283
CRMA (theorem), 183
CRMSM (theorem), 183
CRN (theorem), 341
CROB3 (example), 329
CROB4 (example), 328
CRS (section), 231
CRS (subsection, section FS), 254
CRSM (theorem), 163
CRVA (theorem), 163
CS (definition), 47

CS (example), 670
CS (subsection, section TSS), 47
CSAA (example), 235
CSAB (example), 236
CSANS (example), 254
CSCN (example), 667
CSCS (theorem), 232
CSIP (example), 164
CSLT (subsection, section SLT), 490
CSLTS (theorem), 490
CSM (definition), 231
CSM (notation), 231
CSMCS (example), 231
CSMS (theorem), 299
CSNM (subsection, section CRS), 235
CSNM (theorem), 236
CSOCD (example), 234
CSRN (theorem), 51
CSROI (example), 242
CSRST (theorem), 241
CSS (theorem), 520
CSSE (subsection, section CRS), 231
CSSM (theorem), 284
CSSOC (subsection, section CRS), 233
CSTW (example), 233
CTD (subsection, section TD), 801
CTLT (example), 457
CUMOS (theorem), 225
CV (definition), 25
CV (notation), 26
CV (technique, section PT), 677
CVA (definition), 80
CVA (notation), 81
CVC (notation), 26
CVE (definition), 80
CVE (notation), 80
CVS (example), 279
CVS (subsection, section VR), 519
CVSM (definition), 81
CVSM (example), 82
CVSM (notation), 81
CVSM (theorem), 285
CVSR (example), 519
D (archetype), 703
D (chapter), 363
D (definition), 335
D (notation), 335
D (section), 335
D (subsection, section D), 335
D (subsection, section SD), 428

D (technique, section PT), 673
D33M (example), 368
DAB (example), 428
DC (example), 340
DC (technique, section PT), 680
DC (theorem), 429
DCM (theorem), 339
DCN (Property), 666
DCP (theorem), 418
DD (subsection, section DM), 367
DEC (theorem), 370
decomposition
technique $\mathrm{DC}, 680$
DED (theorem), 433
definition
A, 184
AM, 28
AME, 399
B, 321
C, 670
CBM, 560
CCCV, 163
CCM, 182
CCN, 667
CM, 26
CNA, 666
CNE, 666
CNM, 666
CP, 396
CS, 47
CSM, 231
CV, 25
CVA, 80
CVE, 80
CVSM, 81
D, 335
DIM, 428
DM, 368
DS, 355
DZM, 428
EEF, 257
EELT, 559
EEM, 389
ELEM, 363
EM, 397
EO, 13
ES, 669
ESYS, 13
F, 781
GES, 619

GEV, 618
GME, 399
HM, 200
HS, 57
IDLT, 495
IDV, 49
IE, 629
ILT, 465
IM, 68
IMP, 782
IP, 164
IS, 615
IVLT, 495
IVS, 501
JB, 599
JCF, 641
KLT, 468
LC, 294
LCCV, 87
LI, 305
LICV, 131
LNS, 253
LSMR, 27
LT, 441
LTA, 454
LTC, 456
LTM, 587
LTR, 623
LTSM, 455
M, 25
MA, 177
MCN, 668
ME, 177
MI, 208
MM, 192
MR, 527
MSM, 178
MVP, 189
NLT, 597
NM, 67
NOLT, 502
NOM, 341
NRML, 592
NSM, 59
NV, 167
ONS, 172
OSV, 169
OV, 168
PI, 452
REM, 29

RLD, 305
RLDCV, 131
RLT, 483
RO, 28
ROLT, 502
ROM, 341
RR, 36
RREF, 31
RSM, 237
S, 289
SC, 671
SE, 670
SET, 669
SI, 671
SIM, 425
SLE, 11
SLT, 479
SM, 367
SQM, 67
SS, 295
SSCV, 111
SSET, 669
SU, 671
SUV, 210
SV, 27
SYM, 181
technique D, 673
TM, 180
TS, 293
TSHSE, 57
TSVS, 310
UM, 224
UTM, 587
VOC, 26
VR, 513
VS, 275
VSCV, 79
VSM, 177
ZCV, 26
ZM, 180
DEHD (example), 433
DEM (theorem), 382
DEMMM (theorem), 383
DEMS5 (example), 404
DER (theorem), 369
DERC (theorem), 379
determinant
computed two ways example TCSD, 371
definition DM, 368
equal rows or columns theorem DERC, 379
expansion, columns theorem DEC, 370
expansion, rows
theorem DER, 369
identity matrix theorem DIM, 381
matrix multiplication theorem DRMM, 385
nonsingular matrix, 383
notation, 368
row or column multiple
theorem DRCM, 378
row or column swap
theorem DRCS, 377
size 2 matrix
theorem DMST, 369
size 3 matrix
example D33M, 368
transpose
theorem DT, 370
via row operations
example DRO, 380
zero
theorem SMZD, 383
zero row or column
theorem DZRC, 377
zero versus nonzero example ZNDAB, 384
determinant, upper triangular matrix
example DUTM, 372
determinants
elementary matrices
theorem DEMMM, 383
DF (Property), 782
DFS (subsection, section PD), 354
DFS (theorem), 354
DGES (theorem), 641
diagonal matrix
definition DIM, 428
diagonalizable
definition DZM, 428
distinct eigenvalues
example DEHD, 433
theorem DED, 433
full eigenspaces
theorem DMFE, 431
not
example NDMS4,433
diagonalizable matrix
high power
example HPDM, 434
diagonalization
Archetype B
example DAB, 428
criteria
theorem DC, 429
example DMS3, 430
DIM (definition), 428
DIM (theorem), 381
dimension
crazy vector space
example DC, 340
definition D, 335
notation, 335
polynomial subspace
example DSP4, 340
proper subspaces theorem PSSD, 352
subspace
example DSM22, 339
direct sum
decomposing zero vector
theorem DSZV, 356
definition DS, 355
dimension
theorem DSD, 358
example SDS, 355
from a basis
theorem DSFB, 355
from one subspace theorem DSFOS, 356
notation, 355
zero intersection theorem DSZI, 357
direct sums
linear independence
theorem DSLI, 358
repeated theorem RDS, 359
distributivity
complex numbers
Property DCN, 666
field
Property DF, 782
distributivity, matrix addition
matrices
Property DMAM, 179
distributivity, scalar addition
column vectors
Property DSAC, 83
matrices
Property DSAM, 179
vectors
Property DSA, 276
distributivity, vector addition
column vectors
Property DVAC, 83
vectors
Property DVA, 276
DLDS (theorem), 149
DM (definition), 368
DM (notation), 368
DM (section), 363
DM (theorem), 339
DMAM (Property), 179
DMFE (theorem), 431
DMS3 (example), 430
DMST (theorem), 369
DNLT (theorem), 603
DNMMM (subsection, section PDM), 383
DP (theorem), 339
DRCM (theorem), 378
DRCMA (theorem), 379
DRCS (theorem), 377
DRMM (theorem), 385
DRO (example), 380
DRO (subsection, section PDM), 377
DROEM (subsection, section PDM), 381
DS (definition), 355
DS (notation), 355
DS (subsection, section PD), 355
DSA (Property), 276
DSAC (Property), 83
DSAM (Property), 179
DSD (theorem), 358
DSFB (theorem), 355
DSFOS (theorem), 356
DSLI (theorem), 358
DSM22 (example), 339
DSP4 (example), 340
DSZI (theorem), 357
DSZV (theorem), 356
DT (theorem), 370
DUTM (example), 372
DVA (Property), 276
DVAC (Property), 83
DVS (subsection, section D), 339
DZM (definition), 428

DZRC (theorem), 377
E (archetype), 707
E (chapter), 389
E (technique, section PT), 676
ECEE (subsection, section EE), 399
EDELI (theorem), 413
EDYES (theorem), 352
EE (section), 389
EEE (subsection, section EE), 392
EEF (definition), 257
EEF (subsection, section FS), 257
EELT (definition), 559
EELT (subsection, section CB), 559
EEM (definition), 389
EEM (subsection, section EE), 389
EENS (example), 428
EER (theorem), 571
EHM (subsection, section PEE), 421
eigenspace
as null space
theorem EMNS, 398
definition EM, 397
invariant subspace
theorem EIS, 616
subspace
theorem EMS, 397
eigenvalue
algebraic multiplicity
definition AME, 399
complex
example CEMS6, 402
definition EEM, 389
existence
example CAEHW, 394
theorem EMHE, 393
geometric multiplicity
definition GME, 399
index, 629
linear transformation
definition EELT, 559
multiplicities
example EMMS4, 399
power
theorem EOMP, 415
root of characteristic polynomial theorem EMRCP, 397
scalar multiple
theorem ESMM, 415
symmetric matrix
example ESMS4, 400
zero
theorem SMZE, 414
eigenvalues
building desired
example BDE, 416
complex, of a linear transformation
example CELT, 577
conjugate pairs
theorem ERMCP, 417
distinct
example DEMS5, 404
example SEE, 389
Hermitian matrices
theorem HMRE, 421
inverse
theorem EIM, 416
maximum number
theorem MNEM, 421
multiplicities
example HMEM5, 401
theorem ME, 419
number
theorem NEM, 419
of a polynomial
theorem EPM, 415
size 3 matrix
example EMS3, 397
example ESMS3, 398
transpose
theorem ETM, 417
eigenvalues, eigenvectors
vector, matrix representations
theorem EER, 571
eigenvector, 389
linear transformation, 559
eigenvectors, 390
conjugate pairs, 417
Hermitian matrices
theorem HMOE, 422
linear transformation
example ELTBM, 559
example ELTBP, 560
linearly independent
theorem EDELI, 413
of a linear transformation
example ELTT, 572
EILT (subsection, section ILT), 465
EIM (theorem), 416
EIS (example), 617
EIS (theorem), 616

ELEM (definition), 363
ELEM (notation), 364
elementary matrices
definition ELEM, 363
determinants
theorem DEM, 382
nonsingular
theorem EMN, 367
notation, 364
row operations
example EMRO, 364
theorem EMDRO, 365
ELIS (theorem), 349
ELTBM (example), 559
ELTBP (example), 560
ELTT (example), 572
EM (definition), 397
EM (subsection, section DM), 363
EMDRO (theorem), 365
EMHE (theorem), 393
EMMS4 (example), 399
EMMVP (theorem), 191
EMN (theorem), 367
EMNS (theorem), 398
EMP (theorem), 193
empty set, 669
notation, 669
EMRCP (theorem), 397
EMRO (example), 364
EMS (theorem), 397
EMS3 (example), 397
ENLT (theorem), 602
EO (definition), 13
EOMP (theorem), 415
EOPSS (theorem), 14
EPM (theorem), 415
equal matrices
via equal matrix-vector products
theorem EMMVP, 191
equation operations
definition EO, 13
theorem EOPSS, 14
equivalence statements
technique $\mathrm{E}, 676$
equivalences
technique ME, 679
equivalent systems
definition ESYS, 13
ERMCP (theorem), 417
ES (definition), 669

ES (notation), 669
ESEO (subsection, section SSLE), 13
ESLT (subsection, section SLT), 479
ESMM (theorem), 415
ESMS3 (example), 398
ESMS4 (example), 400
ESYS (definition), 13
ETM (theorem), 417
EVS (subsection, section VS), 276
example
AALC, 89
ABLC, 88
ABS, 111
ACN, 665
AHSAC, 57
AIVLT, 495
ALT, 442
ALTMM, 531
AM, 25
AMAA, 28
ANILT, 496
ANM, 592
AOS, 169
ASC, 519
AVR, 313
BC, 324
BDE, 416
BDM22, 351
BM, 322
BP, 322
BPR, 350
BRLT, 488
BSM22, 323
BSP4, 322
CABAK, 326
CAEHW, 394
CBCV, 564
CBP, 561
CCM, 182
CELT, 577
CEMS6, 402
CFNLT, 610
CFV, 52
CM32, 522
CMI, 211
CMIAB, 213
CNS1, 60
CNS2, 61
CNSV, 167
COV, 151

CP2, 521
CPMS3, 396
CROB3, 329
CROB4, 328
CS, 670
CSAA, 235
CSAB, 236
CSANS, 254
CSCN, 667
CSIP, 164
CSMCS, 231
CSOCD, 234
CSROI, 242
CSTW, 233
CTLT, 457
CVS, 279
CVSM, 82
CVSR, 519
D33M, 368
DAB, 428
DC, 340
DEHD, 433
DEMS5, 404
DMS3, 430
DRO, 380
DSM22, 339
DSP4, 340
DUTM, 372
EENS, 428
EIS, 617
ELTBM, 559
ELTBP, 560
ELTT, 572
EMMS4, 399
EMRO, 364
EMS3, 397
ESMS3, 398
ESMS4, 400
FDV, 49
FF8, 784
FRAN, 484
FS1, 263
FS2, 264
FSAG, 265
GE4, 620
GE6, 621
GENR6, 629
GSTV, 172
HISAA, 58
HISAD, 58

HMEM5, 401
HPDM, 434
HUSAB, 58
IAP, 472
IAR, 466
IAS, 241
IAV, 467
ILTVR, 543
IM, 68
IM11, 783
IS, 17
ISJB, 618
ISMR4, 626
ISMR6, 627
ISSI, 48
IVSAV, 501
JB4, 599
JCF10, 643
KPNLT, 605
KVMR, 538
LCM, 294
LDCAA, 136
LDHS, 134
LDP4, 338
LDRN, 135
LDS, 131
LIC, 309
LICAB, 136
LIHS, 133
LIM32, 307
LINSB, 137
LIP4, 305
LIS, 132
LLDS, 135
LNS, 253
LTDB1, 450
LTDB2, 451
LTDB3, 451
LTM, 445
LTPM, 444
LTPP, 444
LTRGE, 623
MA, 178
MBC, 190
MCSM, 232
MFLT, 447
MI, 209
MIVS, 520
MMNC, 193
MNSLE, 190

MOLT, 448
MPMR, 534
MRBE, 569
MRCM, 566
MSCN, 668
MSM, 178
MTV, 189
MWIAA, 208
NDMS4, 433
NIAO, 472
NIAQ, 465
NIAQR, 471
NIDAU, 473
NJB5, 600
NKAO, 468
NLT, 443
NM, 68
NM62,598
NM64, 597
NM83, 601
NRREF, 31
NSAO, 486
NSAQ, 479
NSAQR, 486
NSC2A, 292
NSC2S, 292
NSC2Z, 292
NSDAT, 489
NSDS, 118
NSE, 12
NSEAI, 60
NSLE, 27
NSLIL, 139
NSNM, 70
NSR, 69
NSS, 69
OLTTR, 527
ONFV, 173
ONTV, 173
OSGMD, 53
OSMC, 225
PCVS, 283
PM, 391
PSHS, 103
PTM, 192
PTMEE, 194
RAO, 483
RES, 156
RNM, 341
RNSM, 342

ROD2, 793
ROD4, 794
RREF, 31
RREFN, 47
RRTI, 353
RS, 325
RSAI, 237
RSB, 324
RSC5, 150
RSNS, 294
RSREM, 240
RSSC4, 155
RVMR, 541
S, 67
SAA, 34
SAB, 33
SABMI, 207
SAE, 35
SAN, 487
SAR, 480
SAV, 481
SC, 672
SC3, 289
SCAA, 113
SCAB, 115
SCAD, 119
SDS, 355
SEE, 389
SEEF, 257
SETM, 669
SI, 671
SM2Z7, 784
SM32, 297
SMLT, 455
SMS3, 426
SMS5, 425
SP4, 291
SPIAS, 452
SRR, 69
SS, 367
SSC, 312
SSET, 669
SSM22, 311
SSNS, 117
SSP, 296
SSP4, 310
STLT, 454
STNE, 11
SU, 671
SUVOS, 169

SVP4, 351
SYM, 181
TCSD, 371
TD4, 799
TDEE6, 803
TDSSE, 800
TIS, 615
TIVS, 519
TKAP, 469
TLC, 87
TM, 180
TMP, 4
TOV, 168
TREM, 29
TTS, 12
UM3, 224
UPM, 224
US, 16
USR, 30
VA, 81
VESE, 80
VFS, 93
VFSAD, 92
VFSAI, 98
VFSAL, 100
VRC4, 515
VRP2, 516
VSCV, 277
VSF, 278
VSIM5, 783
VSIS, 278
VSM, 277
VSP, 277
VSPUD, 340
VSS, 279
ZNDAB, 384
EXC (subsection, section B), 331
EXC (subsection, section CB), 581
EXC (subsection, section CRS), 244
EXC (subsection, section D), 345
EXC (subsection, section DM), 374
EXC (subsection, section EE), 407
EXC (subsection, section F), 787
EXC (subsection, section FS), 268
EXC (subsection, section HSE), 62
EXC (subsection, section ILT), 475
EXC (subsection, section IVLT), 508
EXC (subsection, section LC), 107
EXC (subsection, section LDS), 158
EXC (subsection, section LI), 141

EXC (subsection, section LISS), 316
EXC (subsection, section LT), 459
EXC (subsection, section MINM), 228
EXC (subsection, section MISLE), 217
EXC (subsection, section MM), 202
EXC (subsection, section MO), 186
EXC (subsection, section MR), 547
EXC (subsection, section NM), 74
EXC (subsection, section O), 175
EXC (subsection, section PD), 360
EXC (subsection, section PDM), 387
EXC (subsection, section PEE), 423
EXC (subsection, section RREF), 38
EXC (subsection, section S), 301
EXC (subsection, section SD), 437
EXC (subsection, section SLT), 491
EXC (subsection, section SS), 122
EXC (subsection, section SSLE), 20
EXC (subsection, section TSS), 55
EXC (subsection, section VO), 84
EXC (subsection, section VR), 524
EXC (subsection, section VS), 287
EXC (subsection, section WILA), 8
extended echelon form
submatrices example SEEF, 257
extended reduced row-echelon form
properties theorem PEEF, 258

F (archetype), 711
F (definition), 781
F (section), 781
F (subsection, section F), 781
FDV (example), 49
FF (subsection, section F), 782
FF8 (example), 784
field
definition F, 781
FIMP (theorem), 783
finite field size 8
example FF8, 784
four subsets
example FS1, 263
example FS2, 264
four subspaces dimension
theorem DFS, 354
FRAN (example), 484
free variables
example CFV, 52
free variables, number
theorem FVCS, 51
free, independent variables
example FDV, 49
FS (section), 253
FS (subsection, section FS), 259
FS (theorem), 259
FS1 (example), 263
FS2 (example), 264
FSAG (example), 265
FTMR (theorem), 529
FV (subsection, section TSS), 51
FVCS (theorem), 51
G (archetype), 716
G (theorem), 349
GE4 (example), 620
GE6 (example), 621
GEE (subsection, section IS), 618
GEK (theorem), 620
generalized eigenspace
as kernel
theorem GEK, 620
definition GES, 619
dimension
theorem DGES, 641
dimension 4 domain
example GE4, 620
dimension 6 domain
example GE6, 621
invariant subspace
theorem GESIS, 619
nilpotent restriction
theorem RGEN, 628
nilpotent restrictions, dimension 6 domain
example GENR6, 629
notation, 619
generalized eigenspace decomposition
theorem GESD, 635
generalized eigenvector
definition GEV, 618
GENR6 (example), 629
GES (definition), 619
GES (notation), 619
GESD (subsection, section JCF), 635
GESD (theorem), 635
GESIS (theorem), 619
GEV (definition), 618
GFDL (appendix), 773
GME (definition), 399
goldilocks
theorem G, 349
Gram-Schmidt
column vectors theorem GSPCV, 170
three vectors
example GSTV, 172
gram-schmidt
mathematica, 660
GS (technique, section PT), 675
GSP (subsection, section O), 170
GSP.MMA (computation, section MMA), 660
GSPCV (theorem), 170
GSTV (example), 172
GT (subsection, section PD), 349
H (archetype), 720
hermitian
definition HM, 200
Hermitian matrix
inner product
theorem HMIP, 200
HISAA (example), 58
HISAD (example), 58
HM (definition), 200
HM (subsection, section MM), 199
HMEM5 (example), 401
HMIP (theorem), 200
HMOE (theorem), 422
HMRE (theorem), 421
HMVEI (theorem), 59
homogeneous system
consistent
theorem HSC, 57
definition HS, 57
infinitely many solutions
theorem HMVEI, 59
homogeneous systems
linear independence, 133
homogenous system Archetype C example AHSAC, 57
HPDM (example), 434
HS (definition), 57
HSC (theorem), 57
HSE (section), 57
HUSAB (example), 58
I (archetype), 724
I (technique, section PT), 680
IAP (example), 472

IAR (example), 466
IAS (example), 241
IAV (example), 467
ICBM (theorem), 561
ICLT (theorem), 500
identities
technique PI, 679
identity matrix
determinant, 382
example IM, 68
notation, 68
IDLT (definition), 495
IDV (definition), 49
IE (definition), 629
IE (notation), 629
IFDVS (theorem), 519
IILT (theorem), 498
ILT (definition), 465
ILT (section), 465
ILTB (theorem), 473
ILTD (subsection, section ILT), 473
ILTD (theorem), 473
ILTIS (theorem), 498
ILTLI (subsection, section ILT), 472
ILTLI (theorem), 472
ILTLT (theorem), 498
ILTVR (example), 543
IM (definition), 68
IM (example), 68
IM (notation), 68
IM (subsection, section MISLE), 208
IM11 (example), 783
IMILT (theorem), 544
IMP (definition), 782
IMR (theorem), 542
inconsistent linear systems
theorem ISRN, 51
independent, dependent variables
definition IDV, 49
indesxstring
example SM2Z7, 784
example SSET, 669
index
eigenvalue
definition IE, 629
notation, 629
indexstring
theorem DRCMA, 379
theorem OBUTR, 591
induction
technique I, 680
infinite solution set
example ISSI, 48
infinite solutions, 3×4
example IS, 17
injective
example IAP, 472
example IAR, 466
not
example NIAO, 472
example NIAQ, 465
example NIAQR, 471
not, by dimension example NIDAU, 473
polynomials to matrices example IAV, 467
injective linear transformation
bases
theorem ILTB, 473
injective linear transformations
dimension
theorem ILTD, 473
inner product
anti-commutative
theorem IPAC, 166
example CSIP, 164
norm
theorem IPN, 167
notation, 164
positive
theorem PIP, 168
scalar multiplication
theorem IPSM, 165
vector addition
theorem IPVA, 165
integers
$\bmod p$
definition IMP, 782
$\bmod p$, field
theorem FIMP, 783
$\bmod 11$
example IM11, 783
invariant subspace
definition IS, 615
eigenspace, 616
eigenspaces
example EIS, 617
example TIS, 615
Jordan block
example ISJB, 618
kernels of powers
theorem KPIS, 617
inverse
composition of linear transformations
theorem ICLT, 500
example CMI, 211
example MI, 209
notation, 208
of a matrix, 208
invertible linear transformation
defined by invertible matrix
theorem IMILT, 544
invertible linear transformations
composition
theorem CIVLT, 499
IP (definition), 164
IP (notation), 164
IP (subsection, section O), 164
IPAC (theorem), 166
IPN (theorem), 167
IPSM (theorem), 165
IPVA (theorem), 165
IS (definition), 615
IS (example), 17
IS (section), 615
IS (subsection, section IS), 615
ISJB (example), 618
ISMR4 (example), 626
ISMR6 (example), 627
isomorphic
multiple vector spaces
example MIVS, 520
vector spaces example IVSAV, 501
isomorphic vector spaces
dimension
theorem IVSED, 502
example TIVS, 519
ISRN (theorem), 51
ISSI (example), 48
ITMT (theorem), 588
IV (subsection, section IVLT), 498
IVLT (definition), 495
IVLT (section), 495
IVLT (subsection, section IVLT), 495
IVLT (subsection, section MR), 542
IVS (definition), 501
IVSAV (example), 501
IVSED (theorem), 502
J (archetype), 728

JB (definition), 599
JB (notation), 599
JB4 (example), 599
JCF (definition), 641
JCF (section), 633
JCF (subsection, section JCF), 641
JCF10 (example), 643
JCFLT (theorem), 642
Jordan block
definition JB, 599
nilpotent
theorem NJB, 601
notation, 599
size 4
example JB4, 599
Jordan canonical form
definition JCF, 641
size 10
example JCF10, 643
K (archetype), 733
kernel
injective linear transformation theorem KILT, 471
isomorphic to null space theorem KNSI, 537
linear transformation
example NKAO, 468
notation, 468
of a linear transformation definition KLT, 468
pre-image, 470
subspace
theorem KLTS, 469
trivial
example TKAP, 469
via matrix representation example KVMR, 538
KILT (theorem), 471
KLT (definition), 468
KLT (notation), 468
KLT (subsection, section ILT), 468
KLTS (theorem), 469
KNSI (theorem), 537
KPI (theorem), 470
KPIS (theorem), 617
KPLT (theorem), 603
KPNLT (example), 605
KPNLT (theorem), 604
KVMR (example), 538

L (archetype), 737
L (technique, section PT), 674
LA (subsection, section WILA), 3
LC (definition), 294
LC (section), 87
LC (subsection, section LC), 87
LC (technique, section PT), 682
LCCV (definition), 87
LCM (example), 294
LDCAA (example), 136
LDHS (example), 134
LDP4 (example), 338
LDRN (example), 135
LDS (example), 131
LDS (section), 149
LDSS (subsection, section LDS), 149
left null space
as row space, 259
definition LNS, 253
example LNS, 253
notation, 253
subspace
theorem LNSMS, 300
lemma
technique LC, 682
LI (definition), 305
LI (section), 131
LI (subsection, section LISS), 305
LIC (example), 309
LICAB (example), 136
LICV (definition), 131
LIHS (example), 133
LIM32 (example), 307
linear combination
system of equations
example ABLC, 88
definition LC, 294
definition LCCV, 87
example TLC, 87
linear transformation, 449
matrices
example LCM, 294
system of equations
example AALC, 89
linear combinations
solutions to linear systems
theorem SLSLC, 90
linear dependence
more vectors than size
theorem MVSLD, 136
linear independence
definition LI, 305
definition LICV, 131
homogeneous systems
theorem LIVHS, 133
injective linear transformation
theorem ILTLI, 472
matrices
example LIM32, 307
orthogonal, 170
r and n
theorem LIVRN, 135
linear solve
mathematica, 658
linear system
consistent
theorem RCLS, 50
matrix representation definition LSMR, 27
notation, 27
linear systems
notation
example MNSLE, 190
example NSLE, 27
linear transformation
polynomials to polynomials
example LTPP, 444
addition
definition LTA, 454
theorem MLTLT, 455
theorem SLTLT, 454
as matrix multiplication example ALTMM, 531
basis of range
example BRLT, 488
checking
example ALT, 442
composition
definition LTC, 456
theorem CLTLT, 456
defined by a matrix
example LTM, 445
defined on a basis
example LTDB1, 450
example LTDB2, 451
example LTDB3, 451
theorem LTDB, 450
definition LT, 441
identity
definition IDLT, 495
injection
definition ILT, 465
inverse
theorem ILTLT, 498
inverse of inverse
theorem IILT, 498
invertible
definition IVLT, 495
example AIVLT, 495
invertible, injective and surjective
theorem ILTIS, 498
Jordan canonical form
theorem JCFLT, 642
kernels of powers
theorem KPLT, 603
linear combination
theorem LTLC, 449
matrix of, 448
example MFLT, 447
example MOLT, 448
not
example NLT, 443
not invertible
example ANILT, 496
notation, 441
polynomials to matrices
example LTPM, 444
rank plus nullity
theorem RPNDD, 503
restriction
definition LTR, 623
notation, 623
scalar multiple
example SMLT, 455
scalar multiplication
definition LTSM, 455
spanning range
theorem SSRLT, 487
sum
example STLT, 454
surjection
definition SLT, 479
vector space of, 456
zero vector
theorem LTTZZ, 445
linear transformation inverse
via matrix representation
example ILTVR, 543
linear transformation restriction
on generalized eigenspace
example LTRGE, 623
linear transformations
compositions
example CTLT, 457
from matrices
theorem MBLT, 446
linearly dependent
$r<n$
example LDRN, 135
via homogeneous system
example LDHS, 134
linearly dependent columns
Archetype A
example LDCAA, 136
linearly dependent set
example LDS, 131
linear combinations within theorem DLDS, 149
polynomials
example LDP4, 338
linearly independent
crazy vector space
example LIC, 309
extending sets
theorem ELIS, 349
polynomials
example LIP4, 305
via homogeneous system example LIHS, 133
linearly independent columns
Archetype B
example LICAB, 136
linearly independent set
example LIS, 132
example LLDS, 135
LINM (subsection, section LI), 136
LINSB (example), 137
LIP4 (example), 305
LIS (example), 132
LISS (section), 305
LISV (subsection, section LI), 131
LIVHS (theorem), 133
LIVRN (theorem), 135
LLDS (example), 135
LNS (definition), 253
LNS (example), 253
LNS (notation), 253
LNS (subsection, section FS), 253
LNSMS (theorem), 300
lower triangular matrix
definition LTM, 587
LS.MMA (computation, section MMA), 658
LSMR (definition), 27
LSMR (notation), 27
LT (chapter), 441
LT (definition), 441
LT (notation), 441
LT (section), 441
LT (subsection, section LT), 441
LTA (definition), 454
LTC (definition), 456
LTDB (theorem), 450
LTDB1 (example), 450
LTDB2 (example), 451
LTDB3 (example), 451
LTLC (subsection, section LT), 449
LTLC (theorem), 449
LTM (definition), 587
LTM (example), 445
LTPM (example), 444
LTPP (example), 444
LTR (definition), 623
LTR (notation), 623
LTRGE (example), 623
LTSM (definition), 455
LTTZZ (theorem), 445
M (archetype), 741
M (chapter), 177
M (definition), 25
M (notation), 25
MA (definition), 177
MA (example), 178
MA (notation), 178
MACN (Property), 666
MAF (Property), 782
mathematica
gram-schmidt (computation), 660
linear solve (computation), 658
matrix entry (computation), 657
matrix inverse (computation), 661
matrix multiplication (computation), 661
null space (computation), 659
row reduce (computation), 657
transpose of a matrix (computation), 661
vector form of solutions (computation), 659
vector linear combinations (computation), 658
mathematical language
technique L, 674
matrix
addition
definition MA, 177
notation, 178
augmented
definition AM, 28
column space
definition CSM, 231
complex conjugate example CCM, 182
definition M, 25
equality
definition ME, 177
notation, 177
example AM, 25
identity
definition IM, 68
inverse
definition MI, 208
nonsingular
definition NM, 67
notation, 25
of a linear transformation
theorem MLTCV, 448
product
example PTM, 192
example PTMEE, 194
product with vector
definition MVP, 189
rectangular, 67
row space
definition RSM, 237
scalar multiplication
definition MSM, 178
notation, 178
singular, 67
square
definition SQM, 67
submatrices
example SS, 367
submatrix
definition SM, 367
symmetric
definition SYM, 181
transpose
definition TM, 180
unitary
definition UM, 224
unitary is invertible
theorem UMI, 225
zero
definition ZM, 180
matrix addition
example MA, 178
matrix components
notation, 25
matrix entry
mathematica, 657
ti83, 663
ti86, 662
matrix inverse
Archetype B, 213
computation theorem CINM, 213
mathematica, 661
nonsingular matrix
theorem NI, 223
of a matrix inverse
theorem MIMI, 215
one-sided
theorem OSIS, 222
product
theorem SS, 214
scalar multiple
theorem MISM, 216
size 2 matrices
theorem TTMI, 210
transpose
theorem MIT, 215
uniqueness
theorem MIU, 214
matrix multiplication
adjoints
theorem MMAD, 199
associativity
theorem MMA, 196
complex conjugation
theorem MMCC, 198
definition MM, 192
distributivity
theorem MMDAA, 196
entry-by-entry
theorem EMP, 193
identity matrix
theorem MMIM, 195
inner product
theorem MMIP, 197
mathematica, 661
noncommutative
example MMNC, 193
scalar matrix multiplication
theorem MMSMM, 196
systems of linear equations theorem SLEMM, 190
transposes
theorem MMT, 198
zero matrix
theorem MMZM, 195
matrix product
as composition of linear transformations
example MPMR, 534
matrix representation
basis of eigenvectors
example MRBE, 569
composition of linear transformations
theorem MRCLT, 534
definition MR, 527
invertible
theorem IMR, 542
multiple of a linear transformation
theorem MRMLT, 533
restriction to generalized eigenspace
theorem MRRGE, 631
sum of linear transformations
theorem MRSLT, 533
theorem FTMR, 529
upper triangular theorem UTMR, 588, 633
matrix representations
converting with change-of-basis
example MRCM, 566
example OLTTR, 527
matrix scalar multiplication
example MSM, 178
matrix vector space
dimension
theorem DM, 339
matrix-vector product
example MTV, 189
notation, 189
MBC (example), 190
MBLT (theorem), 446
MC (notation), 25
MCC (subsection, section MO), 182
MCCN (Property), 666
MCF (Property), 781
MCN (definition), 668
MCN (subsection, section CNO), 668
MCSM (example), 232
MCT (theorem), 184
MD (chapter), 791
ME (definition), 177

ME (notation), 177
ME (subsection, section PEE), 418
ME (technique, section PT), 679
ME (theorem), 419
ME.MMA (computation, section MMA), 657
ME.TI83 (computation, section TI83), 663
ME.TI86 (computation, section TI86), 662
MEASM (subsection, section MO), 177
MFLT (example), 447
MI (definition), 208
MI (example), 209
MI (notation), 208
MI.MMA (computation, section MMA), 661

MICN (Property), 667
MIF (Property), 782
MIMI (theorem), 215
MINM (section), 221
MISLE (section), 207
MISM (theorem), 216
MIT (theorem), 215
MIU (theorem), 214
MIVS (example), 520
MLT (subsection, section LT), 445
MLTCV (theorem), 448
MLTLT (theorem), 455
MM (definition), 192
MM (section), 189
MM (subsection, section MM), 192
MM.MMA (computation, section MMA), 661

MMA (section), 657
MMA (theorem), 196
MMAD (theorem), 199
MMCC (theorem), 198
MMDAA (theorem), 196
MMEE (subsection, section MM), 193
MMIM (theorem), 195
MMIP (theorem), 197
MMNC (example), 193
MMSMM (theorem), 196
MMT (theorem), 198
MMZM (theorem), 195
MNEM (theorem), 421
MNSLE (example), 190
MO (section), 177
MOLT (example), 448
more variables than equations
example OSGMD, 53
theorem CMVEI, 52
MPMR (example), 534
MR (definition), 527

MR (section), 527
MRBE (example), 569
MRCB (theorem), 566
MRCLT (theorem), 534
MRCM (example), 566
MRMLT (theorem), 533
MRRGE (theorem), 631
MRS (subsection, section CB), 566
MRSLT (theorem), 533
MSCN (example), 668
MSM (definition), 178
MSM (example), 178
MSM (notation), 178
MTV (example), 189
multiplicative associativity
complex numbers
Property MACN, 666
multiplicative closure
field
Property MCF, 781
multiplicative commuativity
complex numbers
Property MCCN, 666
multiplicative inverse
complex numbers
Property MICN, 667
MVNSE (subsection, section RREF), 25
MVP (definition), 189
MVP (notation), 189
MVP (subsection, section MM), 189
MVSLD (theorem), 136
MWIAA (example), 208
N (archetype), 744
N (subsection, section O), 166
N (technique, section PT), 676
NDMS4 (example), 433
negation of statements
technique N, 676
NEM (theorem), 419
NI (theorem), 223
NIAO (example), 472
NIAQ (example), 465
NIAQR (example), 471
NIDAU (example), 473
nilpotent
linear transformation
definition NLT, 597
NJB (theorem), 601
NJB5 (example), 600
NKAO (example), 468

NLT (definition), 597
NLT (example), 443
NLT (section), 597
NLT (subsection, section NLT), 597
NLTFO (subsection, section LT), 454
NM (definition), 67
NM (example), 68
NM (section), 67
NM (subsection, section NM), 67
NM (subsection, section OD), 592
NM62 (example), 598
NM64 (example), 597
NM83 (example), 601
NME1 (theorem), 73
NME2 (theorem), 137
NME3 (theorem), 223
NME4 (theorem), 237
NME5 (theorem), 327
NME6 (theorem), 343
NME7 (theorem), 384
NME8 (theorem), 414
NME9 (theorem), 545
NMI (subsection, section MINM), 221
NMLIC (theorem), 137
NMPEM (theorem), 367
NMRRI (theorem), 68
NMTNS (theorem), 70
NMUS (theorem), 70
NOILT (theorem), 503
NOLT (definition), 502
NOLT (notation), 502
NOM (definition), 341
NOM (notation), 341
nonsingular
columns as basis
theorem CNMB, 326
nonsingular matrices
linearly independent columns
theorem NMLIC, 137
nonsingular matrix
Archetype B
example NM, 68
column space, 236
elemntary matrices
theorem NMPEM, 367
equivalences
theorem NME1, 73
theorem NME2, 137
theorem NME3, 223
theorem NME4, 237
theorem NME5, 327
theorem NME6, 343
theorem NME7, 384
theorem NME8, 414
theorem NME9, 545
matrix inverse, 223
null space
example NSNM, 70
nullity, 343
product of nonsingular matrices
theorem NPNT, 221
rank
theorem RNNM, 343
row-reduced
theorem NMRRI, 68
trivial null space
theorem NMTNS, 70
unique solutions
theorem NMUS, 70
nonsingular matrix, row-reduced
example NSR, 69
norm
example CNSV, 167
inner product, 167
notation, 167
normal matrix
definition NRML, 592
example ANM, 592
orthonormal basis, 595
notation
A, 184
AM, 28
C, 670
CCCV, 163
CCM, 182
CCN, 667
CNA, 666
CNE, 666
CNM, 666
CSM, 231
CV, 26
CVA, 81
CVC, 26
CVE, 80
CVSM, 81
D, 335
DM, 368
DS, 355
ELEM, 364
ES, 669

GES, 619
IE, 629
IM, 68
IP, 164
JB, 599
KLT, 468
LNS, 253
LSMR, 27
LT, 441
LTR, 623
M, 25
MA, 178
MC, 25
ME, 177
MI, 208
MSM, 178
MVP, 189
NOLT, 502
NOM, 341
NSM, 59
NV, 167
RLT, 483
RO, 29
ROLT, 502
ROM, 341
RREFA, 31
RSM, 237
SC, 671
SE, 670
SETM, 669
SI, 671
SM, 367
SSET, 669
SSV, 111
SU, 671
TM, 180
VSCV, 79
VSM, 177
ZCV, 26
ZM, 180
notation for a linear system
example NSE, 12
NPNT (theorem), 221
NRFO (subsection, section MR), 533
NRML (definition), 592
NRREF (example), 31
NS.MMA (computation, section MMA), 659
NSAO (example), 486
NSAQ (example), 479
NSAQR (example), 486

NSC2A (example), 292
NSC2S (example), 292
NSC2Z (example), 292
NSDAT (example), 489
NSDS (example), 118
NSE (example), 12
NSEAI (example), 60
NSLE (example), 27
NSLIL (example), 139
NSM (definition), 59
NSM (notation), 59
NSM (subsection, section HSE), 59
NSMS (theorem), 293
NSNM (example), 70
NSNM (subsection, section NM), 69
NSR (example), 69
NSS (example), 69
NSSLI (subsection, section LI), 137
Null space
as a span example NSDS, 118
null space
Archetype I
example NSEAI, 60
basis
theorem BNS, 138
computation
example CNS1, 60
example CNS2, 61
isomorphic to kernel, 537
linearly independent basis
example LINSB, 137
mathematica, 659
matrix
definition NSM, 59
nonsingular matrix, 70
notation, 59
singular matrix, 69
spanning set
example SSNS, 117
theorem SSNS, 117
subspace
theorem NSMS, 293
null space span, linearly independent
Archetype L
example NSLIL, 139
nullity
computing, 341
injective linear transformation theorem NOILT, 503
linear transformation
definition NOLT, 502
matrix, 341
definition NOM, 341
notation, 341,502
square matrix, 342
NV (definition), 167
NV (notation), 167
O (archetype), 747
O (Property), 276
O (section), 163
OBC (subsection, section B), 327
OBNM (theorem), 595
OBUTR (theorem), 591
OC (Property), 83
OCN (Property), 667
OD (section), 587
OD (subsection, section OD), 593
OD (theorem), 593
OF (Property), 782
OLTTR (example), 527
OM (Property), 179
one
column vectors
Property OC, 83
complex numbers
Property OCN, 667
field
Property OF, 782
matrices
Property OM, 179
vectors
Property O, 276
ONFV (example), 173
ONS (definition), 172
ONTV (example), 173
orthogonal
linear independence
theorem OSLI, 170
set
example AOS, 169
set of vectors
definition OSV, 169
vector pairs
definition OV, 168
orthogonal vectors
example TOV, 168
orthonormal
definition ONS, 172
matrix columns
example OSMC, 225
orthonormal basis
normal matrix
theorem OBNM, 595
orthonormal diagonalization
theorem OD, 593
orthonormal set
four vectors
example ONFV, 173
three vectors
example ONTV, 173
OSGMD (example), 53
OSIS (theorem), 222
OSLI (theorem), 170
OSMC (example), 225
OSV (definition), 169
OV (definition), 168
OV (subsection, section O), 168
P (appendix), 665
P (archetype), 750
$\mathrm{P}($ technique, section PT$), 681$
particular solutions
example PSHS, 103
PCNA (theorem), 666
PCVS (example), 283
PD (section), 349
PDM (section), 377
PEE (section), 413
PEEF (theorem), 258
PI (definition), 452
PI (subsection, section LT), 452
PI (technique, section PT), 679
PIP (theorem), 168
PM (example), 391
PM (subsection, section EE), 391
PMI (subsection, section MISLE), 214
PMM (subsection, section MM), 195
PMR (subsection, section MR), 537
PNLT (subsection, section NLT), 602
polynomial
of a matrix
example PM, 391
polynomial vector space
dimension
theorem DP, 339
practice
technique $\mathrm{P}, 681$
pre-image
definition PI, 452
kernel
theorem KPI, 470
pre-images
example SPIAS, 452
product of triangular matrices
theorem PTMT, 587
Property
AA, 275
AAC, 82
AACN, 666
AAF, 781
AAM, 179
AC, 275
ACC, 82
ACCN, 666
ACF, 781
ACM, 179
AI, 276
AIC, 82
AICN, 667
AIF, 782
AIM, 179
C, 275
CC, 82
CM, 179
DCN, 666
DF, 782
DMAM, 179
DSA, 276
DSAC, 83
DSAM, 179
DVA, 276
DVAC, 83
MACN, 666
MAF, 782
MCCN, 666
MCF, 781
MICN, 667
MIF, 782
O, 276
OC, 83
OCN, 667
OF, 782
OM, 179
SC, 275
SCC, 82
SCM, 179
SMA, 276
SMAC, 82
SMAM, 179
Z, 276

ZC, 82
ZCN, 666
ZF, 782
ZM, 179
PSHS (example), 103
PSHS (subsection, section LC), 102
PSM (subsection, section SD), 426
PSPHS (theorem), 102
PSS (subsection, section SSLE), 12
PSSD (theorem), 352
PSSLS (theorem), 52
PT (section), 673
PTM (example), 192
PTMEE (example), 194
PTMT (theorem), 587
Q (archetype), 752
R (archetype), 756
R (chapter), 513
range
full
example FRAN, 484
isomorphic to column space
theorem RCSI, 540
linear transformation
example RAO, 483
notation, 483
of a linear transformation definition RLT, 483
pre-image
theorem RPI, 488
subspace
theorem RLTS, 484
surjective linear transformation theorem RSLT, 485
via matrix representation
example RVMR, 541
rank
computing
theorem CRN, 341
linear transformation
definition ROLT, 502
matrix
definition ROM, 341
example RNM, 341
notation, 341,502
of transpose
example RRTI, 353
square matrix
example RNSM, 342
surjective linear transformation theorem ROSLT, 503
transpose
theorem RMRT, 353
rank one decomposition
size 2
example ROD2, 793
size 4
example ROD4, 794
theorem ROD, 791
rank+nullity
theorem RPNC, 342
RAO (example), 483
RCLS (theorem), 50
RCSI (theorem), 540
RD (subsection, section VS), 285
RDS (theorem), 359
READ (subsection, section B), 330
READ (subsection, section CB), 580
READ (subsection, section CRS), 243
READ (subsection, section D), 344
READ (subsection, section DM), 372
READ (subsection, section EE), 406
READ (subsection, section FS), 267
READ (subsection, section HSE), 61
READ (subsection, section ILT), 474
READ (subsection, section IVLT), 507
READ (subsection, section LC), 106
READ (subsection, section LDS), 157
READ (subsection, section LI), 140
READ (subsection, section LISS), 315
READ (subsection, section LT), 457
READ (subsection, section MINM), 227
READ (subsection, section MISLE), 216
READ (subsection, section MM), 201
READ (subsection, section MO), 185
READ (subsection, section MR), 546
READ (subsection, section NM), 73
READ (subsection, section O), 173
READ (subsection, section PD), 359
READ (subsection, section PDM), 386
READ (subsection, section PEE), 422
READ (subsection, section RREF), 37
READ (subsection, section S), 300
READ (subsection, section SD), 436
READ (subsection, section SLT), 490
READ (subsection, section SS), 121
READ (subsection, section SSLE), 19
READ (subsection, section TSS), 54
READ (subsection, section VO), 83

READ (subsection, section VR), 523
READ (subsection, section VS), 286
READ (subsection, section WILA), 7
reduced row-echelon form
analysis
notation, 31
definition RREF, 31
example NRREF, 31
example RREF, 31
extended
definition EEF, 257
notation
example RREFN, 47
unique
theorem RREFU, 104
reducing a span
example RSC5, 150
relation of linear dependence
definition RLD, 305
definition RLDCV, 131
REM (definition), 29
REMEF (theorem), 31
REMES (theorem), 29
REMRS (theorem), 239
RES (example), 156
RGEN (theorem), 628
RLD (definition), 305
RLDCV (definition), 131
RLT (definition), 483
RLT (notation), 483
RLT (subsection, section IS), 623
RLT (subsection, section SLT), 483
RLTS (theorem), 484
RMRT (theorem), 353
RNLT (subsection, section IVLT), 502
RNM (example), 341
RNM (subsection, section D), 341
RNNM (subsection, section D), 342
RNNM (theorem), 343
RNSM (example), 342
RO (definition), 28
RO (notation), 29
RO (subsection, section RREF), 28
ROD (section), 791
ROD (theorem), 791
ROD2 (example), 793
ROD4 (example), 794
ROLT (definition), 502
ROLT (notation), 502
ROM (definition), 341

ROM (notation), 341
ROSLT (theorem), 503
row operations
definition $\mathrm{RO}, 28$
elementary matrices, 364,365
notation, 29
row reduce
mathematica, 657
ti83, 663
ti86, 662
row space
Archetype I
example RSAI, 237
as column space, 241
basis
example RSB, 324
theorem BRS, 240
matrix, 237
notation, 237
row-equivalent matrices
theorem REMRS, 239
subspace
theorem RSMS, 299
row-equivalent matrices
definition REM, 29
example TREM, 29
row space, 239
row spaces
example RSREM, 240
theorem REMES, 29
row-reduce
the verb
definition RR, 36
row-reduced matrices
theorem REMEF, 31
RPI (theorem), 488
RPNC (theorem), 342
RPNDD (theorem), 503
RR (definition), 36
RR.MMA (computation, section MMA), 657
RR.TI83 (computation, section TI83), 663
RR.TI86 (computation, section TI86), 662
RREF (definition), 31
RREF (example), 31
RREF (section), 25
RREF (subsection, section RREF), 30
RREFA (notation), 31
RREFN (example), 47
RREFU (theorem), 104
RRTI (example), 353

RS (example), 325
RSAI (example), 237
RSB (example), 324
RSC5 (example), 150
RSLT (theorem), 485
RSM (definition), 237
RSM (notation), 237
RSM (subsection, section CRS), 237
RSMS (theorem), 299
RSNS (example), 294
RSREM (example), 240
RSSC4 (example), 155
RT (subsection, section PD), 352
RVMR (example), 541
S (archetype), 759
S (definition), 289
S (example), 67
S (section), 289
SAA (example), 34
SAB (example), 33
SABMI (example), 207
SAE (example), 35
SAN (example), 487
SAR (example), 480
SAV (example), 481
SC (definition), 671
SC (example), 672
SC (notation), 671
SC (Property), 275
SC (subsection, section S), 299
SC (subsection, section SET), 670
SC3 (example), 289
SCAA (example), 113
SCAB (example), 115
SCAD (example), 119
scalar closure
column vectors
Property SCC, 82
matrices
Property SCM, 179
vectors
Property SC, 275
scalar multiple
matrix inverse, 216
scalar multiplication
canceling scalars theorem CSSM, 284
canceling vectors
theorem CVSM, 285
zero scalar
theorem ZSSM, 282
zero vector
theorem ZVSM, 282
zero vector result
theorem SMEZV, 284
scalar multiplication associativity
column vectors
Property SMAC, 82
matrices
Property SMAM, 179
vectors
Property SMA, 276
SCB (theorem), 568
SCC (Property), 82
SCM (Property), 179
SD (section), 425
SDS (example), 355
SE (definition), 670
SE (notation), 670
SEE (example), 389
SEEF (example), 257
SER (theorem), 426
set
cardinality
definition C, 670
example CS, 670
notation, 670
complement
definition SC, 671
example SC, 672
notation, 671
definition SET, 669
empty
definition ES, 669
equality
definition SE, 670
notation, 670
intersection
definition SI, 671
example SI, 671
notation, 671
membership
example SETM, 669
notation, 669
size, 670
subset, 669
union
definition SU, 671
example SU, 671
notation, 671

SET (definition), 669
SET (section), 669
SETM (example), 669
SETM (notation), 669
shoes, 214
SHS (subsection, section HSE), 57
SI (definition), 671
SI (example), 671
SI (notation), 671
SI (subsection, section IVLT), 500
SIM (definition), 425
similar matrices
equal eigenvalues
example EENS, 428
eual eigenvalues
theorem SMEE, 427
example SMS3, 426
example SMS5, 425
similarity
definition SIM, 425
equivalence relation theorem SER, 426
singular matrix Archetype A example S, 67 null space example NSS, 69
singular matrix, row-reduced example SRR, 69
SLE (chapter), 3
SLE (definition), 11
SLE (subsection, section SSLE), 11
SLELT (subsection, section IVLT), 505
SLEMM (theorem), 190
SLSLC (theorem), 90
SLT (definition), 479
SLT (section), 479
SLTB (theorem), 488
SLTD (subsection, section SLT), 489
SLTD (theorem), 489
SLTLT (theorem), 454
SM (definition), 367
SM (notation), 367
SM (subsection, section SD), 425
SM2Z7 (example), 784
SM32 (example), 297
SMA (Property), 276
SMAC (Property), 82
SMAM (Property), 179
SMEE (theorem), 427

SMEZV (theorem), 284
SMLT (example), 455
SMS (theorem), 181
SMS3 (example), 426
SMS5 (example), 425
SMZD (theorem), 383
SMZE (theorem), 414
SNCM (theorem), 223
SO (subsection, section SET), 671
socks, 214
SOL (subsection, section B), 332
SOL (subsection, section CB), 582
SOL (subsection, section CRS), 248
SOL (subsection, section D), 347
SOL (subsection, section DM), 375
SOL (subsection, section EE), 408
SOL (subsection, section F), 789
SOL (subsection, section FS), 270
SOL (subsection, section HSE), 64
SOL (subsection, section ILT), 477
SOL (subsection, section IVLT), 510
SOL (subsection, section LC), 109
SOL (subsection, section LDS), 159
SOL (subsection, section LI), 144
SOL (subsection, section LISS), 318
SOL (subsection, section LT), 461
SOL (subsection, section MINM), 229
SOL (subsection, section MISLE), 219
SOL (subsection, section MM), 204
SOL (subsection, section MO), 188
SOL (subsection, section MR), 550
SOL (subsection, section NM), 76
SOL (subsection, section PD), 361
SOL (subsection, section PDM), 388
SOL (subsection, section PEE), 424
SOL (subsection, section RREF), 41
SOL (subsection, section S), 302
SOL (subsection, section SD), 438
SOL (subsection, section SLT), 493
SOL (subsection, section SS), 125
SOL (subsection, section SSLE), 22
SOL (subsection, section TSS), 56
SOL (subsection, section VO), 85
SOL (subsection, section VR), 525
SOL (subsection, section WILA), 9
solution set
Archetype A
example SAA, 34
archetype E
example SAE, 35
theorem PSPHS, 102
solution sets
possibilities
theorem PSSLS, 52
solution vector
definition SV, 27
solving homogeneous system
Archetype A example HISAA, 58
Archetype B
example HUSAB, 58
Archetype D example HISAD, 58
solving nonlinear equations
example STNE, 11
SP4 (example), 291
span
basic
example ABS, 111
basis
theorem BS, 154
definition SS, 295
definition SSCV, 111
improved
example IAS, 241
notation, 111
reducing example RSSC4, 155
reduction
example RS, 325
removing vectors example COV, 151
reworking elements example RES, 156
set of polynomials example SSP, 296
subspace theorem SSS, 295
span of columns
Archetype A
example SCAA, 113
Archetype B example SCAB, 115
Archetype D
example SCAD, 119
spanning set
crazy vector space
example SSC, 312
definition TSVS, 310
matrices
example SSM22, 311
more vectors
theorem SSLD, 335
polynomials
example SSP4, 310
SPIAS (example), 452
SQM (definition), 67
SRR (example), 69
SS (definition), 295
SS (example), 367
SS (section), 111
SS (subsection, section LISS), 309
SS (theorem), 214
SSC (example), 312
SSCV (definition), 111
SSET (definition), 669
SSET (example), 669
SSET (notation), 669
SSLD (theorem), 335
SSLE (section), 11
SSM22 (example), 311
SSNS (example), 117
SSNS (subsection, section SS), 116
SSNS (theorem), 117
SSP (example), 296
SSP4 (example), 310
SSRLT (theorem), 487
SSS (theorem), 295
SSSLT (subsection, section SLT), 487
SSV (notation), 111
SSV (subsection, section SS), 111
starting proofs
technique GS, 675
STLT (example), 454
STNE (example), 11
SU (definition), 671
SU (example), 671
SU (notation), 671
submatrix
notation, 367
subset
definition SSET, 669
notation, 669
subspace
as null space
example RSNS, 294
characterized
example ASC, 519
definition S, 289
in P_{4}
example SP4, 291
not, additive closure example NSC2A, 292
not, scalar closure example NSC2S, 292
not, zero vector example NSC2Z, 292
testing
theorem TSS, 290
trivial
definition TS, 293
verification
example SC3, 289
example SM32, 297
subspaces
equal dimension
theorem EDYES, 352
surjective
Archetype N
example SAN, 487
example SAR, 480
not
example NSAQ, 479
example NSAQR, 486
not, Archetype O example NSAO, 486
not, by dimension example NSDAT, 489
polynomials to matrices example SAV, 481
surjective linear transformation
bases
theorem SLTB, 488
surjective linear transformations
dimension
theorem SLTD, 489
SUV (definition), 210
SUVB (theorem), 321
SUVOS (example), 169
SV (definition), 27
SVP4 (example), 351
SYM (definition), 181
SYM (example), 181
symmetric matrices
theorem SMS, 181
symmetric matrix
example SYM, 181
system of equations
vector equality example VESE, 80
system of linear equations definition SLE, 11

T (archetype), 762
T (part), 781
T (technique, section PT), 674
TCSD (example), 371
TD (section), 797
TD (subsection, section TD), 797
TD (theorem), 797
TD4 (example), 799
TDEE (theorem), 801
TDEE6 (example), 803
TDSSE (example), 800
TDSSE (subsection, section TD), 800
technique
C, 675
CD, 678
CP, 677
CV, 677
D, 673
DC, 680
E, 676
GS, 675
I, 680
L, 674
LC, 682
ME, 679
N, 676
P, 681
PI, 679
T, 674
U, 678
theorem
AA, 185
AIP, 199
AISM, 283
AIU, 282
AMA, 184
AMSM, 184
BCS, 234
BIS, 338
BNS, 138
BRS, 240
BS, 154
CB, 561
CCM, 183
CCRA, 667
CCRM, 667
CCT, 668
CFDVS, 519

CFNLT, 606
CHT, 655
CILTI, 474
CINM, 213
CIVLT, 499
CLI, 520
CLTLT, 456
CMVEI, 52
CNMB, 326
COB, 328
CRMA, 183
CRMSM, 183
CRN, 341
CRSM, 163
CRVA, 163
CSCS, 232
CSLTS, 490
CSMS, 299
CSNM, 236
CSRN, 51
CSRST, 241
CSS, 520
CSSM, 284
CUMOS, 225
CVSM, 285
DC, 429
DCM, 339
DCP, 418
DEC, 370
DED, 433
DEM, 382
DEMMM, 383
DER, 369
DERC, 379
DFS, 354
DGES, 641
DIM, 381
DLDS, 149
DM, 339
DMFE, 431
DMST, 369
DNLT, 603
DP, 339
DRCM, 378
DRCMA, 379
DRCS, 377
DRMM, 385
DSD, 358
DSFB, 355
DSFOS, 356

DSLI, 358
DSZI, 357
DSZV, 356
DT, 370
DZRC, 377
EDELI, 413
EDYES, 352
EER, 571
EIM, 416
EIS, 616
ELIS, 349
EMDRO, 365
EMHE, 393
EMMVP, 191
EMN, 367
EMNS, 398
EMP, 193
EMRCP, 397
EMS, 397
ENLT, 602
EOMP, 415
EOPSS, 14
EPM, 415
ERMCP,417
ESMM, 415
ETM, 417
FIMP, 783
FS, 259
FTMR, 529
FVCS, 51
G, 349
GEK, 620
GESD, 635
GESIS, 619
GSPCV, 170
HMIP, 200
HMOE, 422
HMRE, 421
HMVEI, 59
HSC, 57
ICBM, 561
ICLT, 500
IFDVS, 519
IILT, 498
ILTB, 473
ILTD, 473
ILTIS, 498
ILTLI, 472
ILTLT, 498
IMILT, 544

IMR, 542
IPAC, 166
IPN, 167
IPSM, 165
IPVA, 165
ISRN, 51
ITMT, 588
IVSED, 502
JCFLT, 642
KILT, 471
KLTS, 469
KNSI, 537
KPI, 470
KPIS, 617
KPLT, 603
KPNLT, 604
LIVHS, 133
LIVRN, 135
LNSMS, 300
LTDB, 450
LTLC, 449
LTTZZ, 445
MBLT, 446
MCT, 184
ME, 419
MIMI, 215
MISM, 216
MIT, 215
MIU, 214
MLTCV, 448
MLTLT, 455
MMA, 196
MMAD, 199
MMCC, 198
MMDAA, 196
MMIM, 195
MMIP, 197
MMSMM, 196
MMT, 198
MMZM, 195
MNEM, 421
MRCB, 566
MRCLT, 534
MRMLT, 533
MRRGE, 631
MRSLT, 533
MVSLD, 136
NEM, 419
NI, 223
NJB, 601

NME1, 73
NME2, 137
NME3, 223
NME4, 237
NME5, 327
NME6, 343
NME7, 384
NME8, 414
NME9, 545
NMLIC, 137
NMPEM, 367
NMRRI, 68
NMTNS, 70
NMUS, 70
NOILT, 503
NPNT, 221
NSMS, 293
OBNM, 595
OBUTR, 591
OD, 593
OSIS, 222
OSLI, 170
PCNA, 666
PEEF, 258
PIP, 168
PSPHS, 102
PSSD, 352
PSSLS, 52
PTMT, 587
RCLS, 50
RCSI, 540
RDS, 359
REMEF, 31
REMES, 29
REMRS, 239
RGEN, 628
RLTS, 484
RMRT, 353
RNNM, 343
ROD, 791
ROSLT, 503
RPI, 488
RPNC, 342
RPNDD, 503
RREFU, 104
RSLT, 485
RSMS, 299
SCB, 568
SER, 426
SLEMM, 190

SLSLC, 90
SLTB, 488
SLTD, 489
SLTLT, 454
SMEE, 427
SMEZV, 284
SMS, 181
SMZD, 383
SMZE, 414
SNCM, 223
SS, 214
SSLD, 335
SSNS, 117
SSRLT, 487
SSS, 295
SUVB, 321
TD, 797
TDEE, 801
technique T, 674
TMA, 181
TMSM, 182
TSS, 290
TT, 182
TTMI, 210
UMI, 225
UMPIP, 226
UTMR, 588,633
VAC, 284
VFSLS, 96
VRI, 518
VRILT, 519
VRLT, 513
VRRB, 314
VRS, 518
VSLT, 456
VSPCV, 82
VSPM, 179
ZSSM, 282
ZVSM, 282
ZVU, 281
ti83
matrix entry (computation), 663
row reduce (computation), 663
vector linear combinations (computation), 664
TI83 (section), 663
ti86
matrix entry (computation), 662
row reduce (computation), 662
transpose of a matrix (computation), 663
vector linear combinations (computation), 662

TI86 (section), 662
TIS (example), 615
TIVS (example), 519
TKAP (example), 469
TLC (example), 87
TM (definition), 180
TM (example), 180
TM (notation), 180
TM (subsection, section OD), 587
TM.MMA (computation, section MMA), 661
TM.TI86 (computation, section TI86), 663
TMA (theorem), 181
TMP (example), 4
TMSM (theorem), 182
TOV (example), 168
trail mix
example TMP, 4
transpose
matrix scalar multiplication
theorem TMSM, 182
example TM, 180
matrix addition theorem TMA, 181
matrix inverse, 215
notation, 180
scalar multiplication, 182
transpose of a matrix
mathematica, 661
ti86, 663
transpose of a transpose
theorem TT, 182
TREM (example), 29
triangular decomposition
entry by entry, size 6
example TDEE6, 803
entry by entry
theorem TDEE, 801
size 4
example TD4, 799
solving systems of equations
example TDSSE, 800
theorem TD, 797
triangular matrix
inverse
theorem ITMT, 588
trivial solution
system of equations
definition TSHSE, 57
TS (definition), 293
TS (subsection, section S), 290

TSHSE (definition), 57
TSM (subsection, section MO), 180
TSS (section), 47
TSS (subsection, section S), 294
TSS (theorem), 290
TSVS (definition), 310
TT (theorem), 182
TTMI (theorem), 210
TTS (example), 12
typical systems, 2×2
example TTS, 12
U (archetype), 764
U (technique, section PT), 678
UM (definition), 224
UM (subsection, section MINM), 224
UM3 (example), 224
UMI (theorem), 225
UMPIP (theorem), 226
unique solution, 3×3
example US, 16
example USR, 30
uniqueness
technique U, 678
unit vectors
basis
theorem SUVB, 321
definition SUV, 210
orthogonal
example SUVOS, 169
unitary
permutation matrix example UPM, 224
size 3
example UM3, 224
unitary matrices
columns theorem CUMOS, 225
unitary matrix
inner product
theorem UMPIP, 226
UPM (example), 224
upper triangular matrix
definition UTM, 587
URREF (subsection, section LC), 104
US (example), 16
USR (example), 30
UTM (definition), 587
UTMR (subsection, section JCF), 633
UTMR (subsection, section OD), 588
UTMR (theorem), 588, 633

V (archetype), 766
V (chapter), 79
VA (example), 81
VAC (theorem), 284
VEASM (subsection, section VO), 80
vector
addition
definition CVA, 80
column
definition CV, 25
equality
definition CVE, 80
notation, 80
inner product
definition IP, 164
norm
definition NV, 167
notation, 26
of constants
definition VOC, 26
product with matrix, 189,192
scalar multiplication
definition CVSM, 81
vector addition
example VA, 81
vector component
notation, 26
vector form of solutions
Archetype D
example VFSAD, 92
Archetype I
example VFSAI, 98
Archetype L
example VFSAL, 100
example VFS, 93
mathematica, 659
theorem VFSLS, 96
vector linear combinations
mathematica, 658
ti83, 664
ti86, 662
vector representation
example AVR, 313
example VRC4, 515
injective
theorem VRI, 518
invertible
theorem VRILT, 519
linear transformation
definition VR, 513
theorem VRLT, 513
surjective
theorem VRS, 518
theorem VRRB, 314
vector representations
polynomials
example VRP2,516
vector scalar multiplication
example CVSM, 82
vector space
characterization
theorem CFDVS, 519
column vectors
definition VSCV, 79
definition VS, 275
infinite dimension
example VSPUD, 340
linear transformations
theorem VSLT, 456
over integers mod 5
example VSIM5, 783
vector space of column vectors
notation, 79
vector space of functions
example VSF, 278
vector space of infinite sequences
example VSIS, 278
vector space of matrices
definition VSM, 177
example VSM, 277
notation, 177
vector space of polynomials
example VSP, 277
vector space properties
column vectors
theorem VSPCV, 82
matrices
theorem VSPM, 179
vector space, crazy
example CVS, 279
vector space, singleton
example VSS, 279
vector spaces
isomorphic
definition IVS, 501
theorem IFDVS, 519
VESE (example), 80
VFS (example), 93
VFSAD (example), 92
VFSAI (example), 98

VFSAL (example), 100
VFSLS (theorem), 96
VFSS (subsection, section LC), 91
VFSS.MMA (computation, section MMA), 659
VLC.MMA (computation, section MMA), 658
VLC.TI83 (computation, section TI83), 664
VLC.TI86 (computation, section TI86), 662
VO (section), 79
VOC (definition), 26
VR (definition), 513
VR (section), 513
VR (subsection, section LISS), 313
VRC4 (example), 515
VRI (theorem), 518
VRILT (theorem), 519
VRLT (theorem), 513
VRP2 (example), 516
VRRB (theorem), 314
VRS (theorem), 518
VS (chapter), 275
VS (definition), 275
VS (section), 275
VS (subsection, section VS), 275
VSCV (definition), 79
VSCV (example), 277
VSCV (notation), 79
VSF (example), 278
VSIM5 (example), 783
VSIS (example), 278
VSLT (theorem), 456
VSM (definition), 177
VSM (example), 277
VSM (notation), 177
VSP (example), 277
VSP (subsection, section MO), 179
VSP (subsection, section VO), 82
VSP (subsection, section VS), 281
VSPCV (theorem), 82
VSPM (theorem), 179
VSPUD (example), 340
VSS (example), 279
W (archetype), 768
WILA (section), 3
X (archetype), 770
Z (Property), 276
ZC (Property), 82
ZCN (Property), 666
ZCV (definition), 26

ZCV (notation), 26
zero
complex numbers
Property ZCN, 666
field
Property ZF, 782
zero column vector
definition ZCV, 26
notation, 26
zero matrix
notation, 180
zero vector
column vectors
Property ZC, 82
matrices
Property ZM, 179
unique
theorem ZVU, 281
vectors
Property Z, 276
ZF (Property), 782
ZM (definition), 180
ZM (notation), 180
ZM (Property), 179
ZNDAB (example), 384
ZSSM (theorem), 282
ZVSM (theorem), 282
ZVU (theorem), 281

[^0]: Archetype Facts
 $\mathrm{S}=$ System of Equations, $\mathrm{M}=$ Matrix, $\mathrm{L}=$ Linear Transformation
 $\mathrm{U}=$ Unique solution, $\mathrm{I}=$ Infinitely many solutions, $\mathrm{N}=$ No solutions
 $\mathrm{Y}=$ Yes, $\mathrm{N}=\mathrm{No}, \mathrm{X}=$ Impossible, blank=Not Applicable

