Symbol |
Description |
Location |
A |
Matrix |
Definition M |
[A]ij |
Matrix Entries |
Definition M |
v |
Column Vector |
Definition CV |
[v]i |
Column Vector Entries |
Definition CV |
0 |
Zero Column Vector |
Definition ZCV |
LS(A,b) |
Matrix Representation of a Linear System |
Definition MRLS |
[A|b] |
Augmented Matrix |
Definition AM |
Ri↔Rj |
Row Operation, Swap |
Definition RO |
αRi |
Row Operation, Multiply |
Definition RO |
αRi+Rj |
Row Operation, Add |
Definition RO |
r, D, F |
Reduced Row-Echelon Form Analysis |
Definition RREF |
N(A) |
Null Space of a Matrix |
Definition NSM |
Im |
Identity Matrix |
Definition IM |
Cm |
Vector Space of Column Vectors |
Definition VSCV |
u=v |
Column Vector Equality |
Definition CVE |
u+v |
Column Vector Addition |
Definition CVA |
αu |
Column Vector Scalar Multiplication |
Definition CVSM |
⟨S⟩ |
Span of a Set of Vectors |
Definition SSCV |
¯u |
Complex Conjugate of a Column Vector |
Definition CCCV |
⟨u,v⟩ |
Inner Product |
Definition IP |
‖ |
Norm of a Vector |
Definition NV |
\vect{e}_i |
Standard Unit Vectors |
Definition SUV |
M_{mn} |
Vector Space of Matrices |
Definition VSM |
A=B |
Matrix Equality |
Definition ME |
A+B |
Matrix Addition |
Definition MA |
\alpha A |
Matrix Scalar Multiplication |
Definition MSM |
\zeromatrix |
Zero Matrix |
Definition ZM |
\transpose{A} |
Transpose of a Matrix |
Definition TM |
\conjugate{A} |
Complex Conjugate of a Matrix |
Definition CCM |
\adjoint{A} |
Adjoint |
Definition A |
A\vect{u} |
Matrix-Vector Product |
Definition MVP |
AB |
Matrix Multiplication |
Definition MM |
\inverse{A} |
Matrix Inverse |
Definition MI |
\csp{A} |
Column Space of a Matrix |
Definition CSM |
\rsp{A} |
Row Space of a Matrix |
Definition RSM |
\lns{A} |
Left Null Space |
Definition LNS |
U+V |
Sum of Subspaces |
Definition SOS |
\dimension{V} |
Dimension |
Definition D |
\nullity{A} |
Nullity of a Matrix |
Definition NOM |
\rank{A} |
Rank of a Matrix |
Definition ROM |
\elemswap{i}{j} |
Elementary Matrix, Swap |
Definition ELEM |
\elemmult{\alpha}{i} |
Elementary Matrix, Multiply |
Definition ELEM |
\elemadd{\alpha}{i}{j} |
Elementary Matrix, Add |
Definition ELEM |
\submatrix{A}{i}{j} |
SubMatrix |
Definition SM |
\detbars{A} |
Determinant of a Matrix, Bars |
Definition DM |
\detname{A} |
Determinant of a Matrix, Functional |
Definition DM |
\algmult{A}{\lambda} |
Algebraic Multiplicity of an Eigenvalue |
Definition AME |
\geomult{A}{\lambda} |
Geometric Multiplicity of an Eigenvalue |
Definition GME |
\ltdefn{T}{U}{V} |
Linear Transformation |
Definition LT |
\krn{T} |
Kernel of a Linear Transformation |
Definition KLT |
\rng{T} |
Range of a Linear Transformation |
Definition RLT |
\rank{T} |
Rank of a Linear Transformation |
Definition ROLT |
\nullity{T} |
Nullity of a Linear Transformation |
Definition NOLT |
\vectrep{B}{\vect{w}} |
Vector Representation |
Definition VR |
\matrixrep{T}{B}{C} |
Matrix Representation |
Definition MR |
\alpha=\beta |
Complex Number Equality |
Definition CNE |
\alpha+\beta |
Complex Number Addition |
Definition CNA |
\alpha\beta |
Complex Number Multiplication |
Definition CNM |
\conjugate{\alpha} |
Conjugate of a Complex Number |
Definition CCN |
x\in S |
Set Membership |
Definition SET |
S\subseteq T |
Subset |
Definition SSET |
\emptyset |
Empty Set |
Definition ES |
S=T |
Set Equality |
Definition SE |
\card{S} |
Cardinality |
Definition C |
S\cup T |
Set Union |
Definition SU |
S\cap T |
Set Intersection |
Definition SI |
\setcomplement{S} |
Set Complement |
Definition SC |