From A First Course in Linear Algebra
Version 2.99
© 2004.
Licensed under the GNU Free Documentation License.
http://linear.ups.edu/
Summary Domain and codomain are polynomials. Domain has dimension 5, while codomain has dimension 6. Is injective, can’t be surjective.
A linear transformation: (Definition LT)
![]() ![]() ![]() |
A basis for the null space of the linear transformation: (Definition KLT)
![]() ![]() |
Injective: Yes. (Definition ILT)
Since the kernel is trivial Theorem KILT tells us that the linear transformation is
injective.
A basis for the range of the linear transformation: (Definition RLT)
Evaluate the linear transformation on a standard basis to get a spanning set for
the range (Theorem SSRLT):
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
If the linear transformation is injective, then the set above is guaranteed to be linearly independent (Theorem ILTLI). This spanning set may be converted to a “nice” basis, by making the vectors the rows of a matrix (perhaps after using a vector reperesentation), row-reducing, and retaining the nonzero rows (Theorem BRS), and perhaps un-coordinatizing. A basis for the range is:
![]() ![]() ![]() ![]() ![]() ![]() |
Surjective: No. (Definition SLT)
The dimension of the range is 5, and the codomain
(
To be more precise, verify that T
Subspace dimensions associated with the linear transformation. Examine parallels with earlier results for matrices. Verify Theorem RPNDD.
Invertible: No.
The relative dimensions of the domain and codomain prohibit any possibility of
being surjective, so apply Theorem ILTIS.
Matrix representation (Definition MR):